Mars Propellant Liquefaction Modeling in Thermal Desktop

Pooja Desai¹, Dan Hauser², Steven Sutherlin³ ¹Johnson Space Center, Houston, TX, 77058, USA ² Glenn Research Center, Cleveland, OH, 44135, USA ² Marshall Spaceflight Center, Huntsville, AL, 35812, USA

> Space Cryogenics Workshop 7/07/2017

Agenda

- Background/Purpose for Liquefaction
- Broad Area Cooling (Method of Liquefaction) Overview
- MAV Model Overview and Results
- Overview of Zero Boil-off testing campaign at Glenn Research Center
- ZBO Model Overview (similar to MAV Model)
- ZBO Model Validation with Test Results
- Future Work

Background

- Current Mars human architectures point to using In-Situ Resource Utilization
- An ISRU plant could potentially reduce the landed mass required by 30000 kilograms
- Gaseous oxygen and methane that ISRU produces must be liquefied and stored as propellants for the Mars Ascent Vehicle (MAV)
- 23 tons (~21000 kg) of liquid oxygen needed in 500+ days
- An energy efficient liquefaction system required

Broad Area Cooling (BAC)

- Working fluid is circulated by a reverse Turbo-Brayton (RTB) cycle cryocooler through a tubing network welded over the whole surface of a cryogenic tank
- Working fluid intercepts the heat that would otherwise go into the propellant
- Interest in using BAC as cooling system for zero boil-off for storage of cryogenic rocket engine propellants
- Now also being considered as a liquefaction method

(0)

Model Scope

- Integrated model of MAV sized propellant tank with an integrated reverse Turbo-Brayton cycle cryocooler created in Thermal Desktop
- Predicts liquefaction performance and operation
- Includes Martian daily cycle heat loads and radiator temperatures
- <u>First step</u>: Create a MAV sized spherical propellant tank for liquid oxygen

Thermal Desktop Tank Model Details

- Tank model is a thin walled spherical aluminum tank with a liquid volume and a gas volume (twinned lump), propellant: liquid oxygen
- Heat transfer between wall and fluid is represented by pool boiling ties ($\dot{Q}_{\rm VLB}$ and $\dot{Q}_{\rm VLC}$)
- Heat transfer from environment to tank is represented by a given Martian daily cycle heat load
- <u>No</u> stratification is modeled

Coolant path

Thermal Desktop Tank Model Details

Tank Material	Aluminum 6061-T6				
Tank Outer Diameter	2.65	m	104.33	in	based on MAV tank estimates
Tank Thickness	0.00635	m	0.25	in	
Starting Conditions in Tank					
Liquid oxygen temperature	90	К			
Vapor Temperature	273.15	К			
Pressure	101325	Pa	1	atm	
Void Fraction	0.99				
Initial Tank and Pipe Wall Temperature	90	К			
Flow into Tank					
Mass Flow	2.2	kg/hr			from ISRU estimates
Temperature	273.15	К			
Pressure	101325	Pa	1	atm	
Heat Load	9 to 15	W/m^2			modeled as a sine curve
3 pipe loops					
Material	Aluminum 6061-T6				
Outer Diameter	0.009525	m	0.375	in	
Thickness	0.000889	m	0.035	in	
Coolant	Neon				

Tank Model integration with Creare Cryocooler Model

• Between 7-8 is the tank model

Liquid Mass

- Rest of the system is represented by equations for the Creare 90 K and 500 W cryocooler (given by Creare)
- Integrated system modeled in Thermal Desktop

Tank Model	Creare Cryocooler Model			
Inputs from Cryocooler	Inputs from TD Model			
BAC inlet temperature (T7)	BAC outlet temperatre (T8)			
Coolant Mass flow Rate (mdot)	Pressure drop from 7 to 8			
Outputs	Outputs			
Tank Wall Temperatures	Net refrigeration			
Coolant Temperatures	Coolant Mass Flow			
Coolant Pressures				
Liquid Temperature				
Tank Pressure				
Ullage Volume Fraction				

Temperature [K], Time = 1.8e+06 sec

(500 hours)

(250 hours)

Results – Net Refrigeration (W) and Liquid Volume Fraction (%)

Net Refrigeration (W)

Liquid Volume Fraction (%)

Model Case Runs

- Radiator temperature is the temperature at point 2 in the diagram (where cryocooler rejects heat)
- Two cases ran: one with a constant radiator temperature of 300 K and one with a sine curve fit from MAV thermal analysis
- Tank starts at an initial ullage volume fraction of 0.99
- Results:
 - Constant Trad 4750 W
 - Changing Trad 4000 W
- Mars environmental temperature cycles can potentially reduce cryocooler power and mass by 15-20% with current radiator design

ZBO Model Overview

- Assembly consists of Zero Boiloff (ZBO) test tank, with the tube-on-tank BAC system, covered with insulation
- Propellant: liquid nitrogen
- Coolant: neon
- 10 tests were performed with the ZBO tank
 - Test 1: Passive Boiloff (15 days)
 - Test 2: Passive Pressurization (1 day)
 - Test 3: Active ZBO (6 days)
 - Test 4: Active high power A (1 day)
 - Test 5: Active low power (1 day)
 - Test 6: Active de-stratification (2 days)
 - Test 7: Active high power B (1 day)
 - Test 8: Active low-fill ZBO (7 days)
 - Test 9: Active low fill and high power (1 day)
 - Test 10: Passive boiloff at 300 K (10 days)

Top of ZBO tank

Bottom of ZBO tank

ZBO Test Descriptions

- Test 2: Passive Pressurization
 - Tank fill level at 90%, tank pressure at 82 psi
 - Tank's vent valve was closed, tank self-pressurized
 - Tank pressurization rate 0.33 psi/hr
 - Tank heat leak 4.64 W
 - No mixing or <u>cooling</u> occurred
- Test 4: Active Zero Boiloff
 - Cryocooler power increased from 145 W (test 3) to 272 W
 - Initial tank pressure at 82 psi
 - Cryocooler mass flow increased to 2.2 g/s
 - Pressure drop was 0.14 psi/hr (over 16 hours)
- Test 6: Active destratification
 - Cryocooler power on, heaters also powered on to match heat loads in Test 2
 - Compare pressure rise to Test 2
- Test 9: Active Low Fill, High Power
 - Cryocooler power increased to 208 W
 - Tank pressure drop was 0.11 psi/hr (over 23 hours)

Figure 31.—Test 2 tank pressure and liquid temperatures.

ZBO Modeling Overview

- **Goal:** Compare ZBO thermal desktop model with available data
- Created a model in Thermal Desktop of the liquid nitrogen test tank and BAC cooling loops
 - Tank and pipe walls are modeled with MLI insulation attached
 - No stratification modeled in tank (liquid lump and vapor lump each at one temperature)
 - Strut heat load included as heat loads on 3 tank wall nodes
 - (0.136 W on each wall node)
 - Vent, fill, nipple, strap, and parasitic heat loads applied on tank wall nodes near top of tank

Tank Drawing

ZBO Model Cases

Test Number and Type	Test Description	Test	dP/dt	Qfluid	
		Duration	(psi/hr)	(W)	
2 – Passive Pressurization	Tank fill level at 90%, vent	1 day	0.33	3.80	
	valve closed, tank self-				
	pressurized				
4 – Active High Power at	Tank fill level at 90%,	1 day	-0.096	-7.13	
High Fill	cryocooler power on at 272				
	W				
6 – Active Destratification	Tank fill level at 90%,	1 day	0.024	2.75	
	cryocooler on to homogenize				
	liquid temperature, heat				
	added to tank to compare				
	with test 2				
9 – Active High Power at	Tank fill level at 27%,	1 day	-0.11	-2.73	
Low Fill	cryocooler power on at 208				
	W				

Cases	Test to	Time	Fill Volume (%)	Initial Tank Vapor	Initial	Initial Tank	Initial Tank	Initial Tank Pressure	Coolant
	Compare	Duration		Wall Temperature	Tank	Liquid	Vapor	(psi)	Mass
		(hr)		(K)	Liquid	Temperature	Temperature		Flow
					Wall	(K)	(K)		(g/s)
					Temperat				
					ure				
					(K)				
1	2	20	95%	105.2	95.3	95.4	98.3	82	0
2	6	20	95%	98.7	95	95.3	96.1	82	0
3	4	20	95%	98.7	95.1	95.4	96.2	82	2.2
4	9	20	27%	98.9	95.3	95.4	96.5	82	1.7

ZBO Model Results - Net Heat Addition Positive

ZBO Model Results - Cryocooler on, Net Heat Addition Negative

and the second secon

Test 9: 27% Fill Level

Future Work

- Further testing on ZBO test tank
- Validate test matrix by running simulations of planned tests with ZBO model
 - Look at constant versus batch liquefaction
- Look at effects of non-condensable gases on liquefaction performance
- MAV model also look at constant versus batch liquefaction
 - Cryocooler 12 hours on/12 hours off