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Abstract 20 

The Soil Moisture Active Passive (SMAP) mission is dedicated toward global soil moisture 21 

mapping. Typically, an L-band microwave radiometer has spatial resolution on the order of 36-22 

40 km, which is too coarse for many specific hydro-meteorological and agricultural applications. 23 

With the failure of the SMAP active radar within three months of becoming operational, an 24 

intermediate (9-km) and finer (3-km) scale soil moisture product solely from the SMAP mission 25 

is no longer possible. Therefore, the focus of this study is a disaggregation of the 36-km 26 

resolution SMAP passive-only surface soil moisture (SSM) using the Soil Evaporative 27 

Efficiency (SEE) approach to spatial scales of 3-km and 9-km. The SEE was computed using 28 

thermal-infrared (TIR) estimation of surface evaporation over Continental U.S. (CONUS). The 29 

disaggregation results were compared with the 3 months of SMAP-Active (SMAP-A) and 30 

Active/Passive (AP) products, while comparisons with SMAP-Enhanced (SMAP-E), SMAP-31 

Passive (SMAP-P), as well as with more than 180 Soil Climate Analysis Network (SCAN) 32 

stations across CONUS were performed for a 19 month period. At the 9-km spatial scale, the 33 

TIR-Downscaled data correlated strongly with the SMAP-E SSM both spatially (r = 0.90) and 34 

temporally (r = 0.87). In comparison with SCAN observations, overall correlations of 0.49 and 35 

0.47; bias of -0.022 and -0.019 and unbiased RMSD of 0.105 and 0.100 were found for SMAP-E 36 

and TIR-Downscaled SSM across the Continental U.S., respectively. At 3-km scale, TIR-37 

Downscaled and SMAP-A had a mean temporal correlation of only 0.27. In terms of gain 38 

statistics, the highest percentage of SCAN sites with positive gains (> 55%) was observed with 39 

the TIR-Downscaled SSM at 9-km. Overall, the TIR-based downscaled SSM showed strong 40 

correspondence with SMAP-E; compared to SCAN, and overall both SMAP-E and TIR-41 
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Downscaled performed similarly, however, gain statistics shows that TIR-Downscaled SSM 42 

slightly outperformed SMAP-E. 43 

Keywords - SMAP, Soil moisture, Disaggregation, ALEXI, MW-TIR coupling 44 

 45 

1. Introduction 46 

Soil moisture is an essential component of both the hydrologic and energy budgets. The 47 

amount of moisture in the soil drives a wide variety of hydrological, geotechnical, agricultural, 48 

and meteorological processes (Romano, 2014). Soil moisture (SM) can be estimated through 49 

ground based in-situ measurements, biophysical and land surface models (LSMs), or through 50 

remote sensing techniques. Existing ground based soil moisture networks are too sparse to 51 

provide accurate large-area assessments  (Aghakouchak et al., 2015); therefore, LSMs offer the 52 

most common source for spatially distributed SM estimates. However, LSMs can be subject to 53 

error and bias and for this reason, other sources of SM data have been developed to aid in the 54 

correction of model inaccuracies. In particular, remote sensing technologies and land data 55 

assimilation techniques have come to the forefront to address these issues. 56 

Microwave (MW) sensors, since their inception in late 1970s, have been used to estimate 57 

large scale surface SM (SSM), typically from higher frequency C-band [~6 GHz] and X-band 58 

[~10 GHz] sensors such as the Scanning Multichannel Microwave Radiometer (SMMR) (Owe et 59 

al., 2001); Special Sensor Microwave/Imager (SSM/I) (Paloscia et al., 2001); and the Advanced 60 

Microwave Scanning Radiometer (AMSR-E) (Njoku et al., 2003). Sensors such as the Soil 61 

Moisture and Ocean Salinity (SMOS) (Kerr et al., 2010) instrument and the Soil Moisture Active 62 

Passive (SMAP) (Entekhabi et al., 2010a) are the only missions dedicated toward global SSM 63 
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mapping operating at L-band [~1 GHz] frequencies. Low frequency L-band radiometers have 64 

penetration depths of approximately 3-5 cm and are sensitive to soil moisture through 65 

moderately thick vegetation water content (<5 kg/m2) (Entekhabi et al., 2010a). Although 66 

exhibiting relatively higher accuracy and attenuated atmospheric absorption compared to the C- 67 

and X-bands, the L-band MW radiometer spatial resolution is on the order of 36-40 km (Merlin 68 

et al., 2015). Such spatial resolutions are acceptable for hydro-climatological studies but are 69 

known to be too coarse for many hydro-meteorological and agricultural applications (Brown et 70 

al., 2013). 71 

The active sensors such as synthetic aperture radar (SARs) on the other hand can provide 72 

relatively higher spatial resolution than radiometers. Despite offering higher spatial resolution 73 

the active radars are typically limited by swath width and sensitive to even sparse vegetation 74 

cover thus tend to contain higher error/uncertainties than radiometers (Das et al., 2011). The 75 

SMAP mission, therefore aimed to combine both a high accuracy  moderate resolution 76 

radiometer with a higher resolution but relatively less accurate radar on board a single platform 77 

to develop an integrated SSM product at intermediate resolution of 9-km with radiometer-like 78 

accuracy of 0.04 m3/m3 (Das et al., 2011; Entekhabi et al., 2010a).The integration of active and 79 

passive MW observations has been used as a disaggregation scheme to reduce the spatial 80 

footprint of coarse resolution radiometers with some success (Bindlish et al., 2009; Das et al., 81 

2011; Narayan and Lakshmi, 2008; Rudiger et al., 2016). However, the SMAP radar 82 

malfunctioned within three months of it becoming operational and now been classified as legacy 83 

product with no further active efforts towards its retrieval. An alternate data stream distinct, from 84 

the original merged active-passive product, continues at intermediate spatial scale (9-km) called 85 

the SMAP-Enhanced (SMAP-E). The SMAP-E SSM is developed through an antenna gain 86 
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pattern analysis to achieve data interpolation from the original 11-km radiometer scale 87 

instantaneous field-of-view (IFOV) paths (Chan et al., 2017).  88 

Given the limitations of current passive MW SM missions to obtain fine-scale (<5-km) 89 

SSM, several methods are under development, or have been developed, involving the use of finer 90 

resolution active MW data from other instruments. In particular, the Sentinel-1 (A and B) data 91 

stream has been identified by Das et al., (2016) as a primary candidate to replace the SMAP 92 

radar. However, current efforts in this regard have either concentrated on enhancement of lower 93 

resolution SMAP products (Santi et al., 2018) or have achieved only modest (and statistically 94 

insignificant) improvements to the 9 km product (Lievens et al., 2017). Recently a beta version 95 

of finer (1 and 3-km) resolution SM product (SPL2SMAP_S) (Colliander, 2017; Das and 96 

Dunbar, 2017) has been developed using sentinel-1(A and B) and SMAP-E and added to the 97 

suits of SMAP products. The availability of finer scale product is limited by Sentinel swath 98 

width coverage.  99 

Prior to the launch of the SMAP mission, several efforts were underway to downscale coarse 100 

resolution MW SSM data to operational scales. One such approach was to employ visible and 101 

thermal infrared (TIR) imagery to downscale (or disaggregate) the low resolution MW data. 102 

Shorter wavelengths in the visible or infrared range can deduce SM through its relationship 103 

between evapotranspiration (ET) and SM over a wide range of vegetation canopies (Anderson et 104 

al., 2007). Several methods have been developed involving the use of finer resolution visible and 105 

TIR imagery. Such approaches are based on the apparent triangle/trapezoidal pattern relationship 106 

between land surface temperatures (LST) and vegetation indices (VI) linked with underlying 107 

moisture content (Carlson, 2007; Carlson et al., 1981). Multiple variants of the triangle approach 108 

have been studied and applied either directly as polynomial fitting (Chauhan et al., 2003; 109 
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Knipper et al., 2017; Piles et al., 2016, 2011; Sanchez-Ruiz et al., 2014) or indirectly as 110 

evaporative fraction (Kim and Hogue, 2012; Merlin et al., 2012, 2008).  111 

A variant of the triangle approach that is relatively more theoretically and physically-based 112 

than polynomial fitting was proposed by Merlin et al., (2010,2013, 2012) which relates the soil 113 

evaporative efficiency (SEE) to surface moisture content. SEE can be defined as a ratio of actual 114 

to potential soil evaporation (Fang and Lakshmi, 2014; Merlin et al., 2010). These authors used 115 

finer resolution MODIS VI, LST and surface albedo to compute SEE based on the triangle 116 

approach to generate a downscaled SMOS SSM product up to 1-km resolution in southern 117 

Australia (Merlin et al., 2012). Multiple recent studies have used the SEE-based algorithm to 118 

downscale SSM from AMSR-E, SMOS and SMAP with some success, albite over limited spatial 119 

domains: Chan et al., (2017); Colliander et al., (2017); Djamai et al., (2015); Malbéteau et al., 120 

(2016); Molero et al., (2016), and Mishra et al., (2017). A comparative study of multiple 121 

disaggregation schemes by Kim and Hogue, (2012) in the semi-arid climatic conditions of the 122 

Western United States indicated that the SEE-based disaggregation technique performed better 123 

than the empirical polynomial fitting approach. One of the limitations of the visible 124 

(VIS)/infrared (IR) based disaggregation is the lower cloud penetration capabilities of such 125 

bands, resulting in data gaps under cloudy conditions. Multiple other downscaling algorithms 126 

exist and an excellent review of SSM downscaling approaches is presented by Peng et al., 127 

(2017).  128 

In this study, the SEE-based algorithm from Merlin et al., (2012) was used to disaggregate 129 

the SMAP radiometer SSM product over CONUS and compared to the available higher 130 

resolution SMAP SSM products and to in situ data. The purposes of the study are twofold: first 131 

to evaluate the higher resolution (3- and 9-km) SMAP SSM against a popular TIR-based 132 
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downscaling scheme thus comparing the SMAP interpolations against a more physical method; 133 

and second to evaluate finer resolution products from SMAP and TIR-based against in situ 134 

observations across the CONUS encompassing a variety of ecosystem and climate conditions. In 135 

this study the SEE was computed directly from surface actual evaporation and potential surface 136 

evaporation data. The TIR-based Atmospheric Land Exchange Inverse (ALEXI) model 137 

(Anderson et al., 1997, 2011) was used to obtain actual surface soil evaporation. Potential 138 

surface evaporation, defined here as the atmospheric demand, is computed using Hamon PET 139 

(Hamon, 1963) and is independent of the underlying soil and plant characteristics and therefore, 140 

acts as a proxy for potential surface evaporation.  141 

The disaggregation of the SMAP radiometer SSM estimates was performed over CONUS 142 

from Apr. 2015 – Nov. 2016 at 9 and 3-km spatial resolutions. The specific objectives of this 143 

study are: (a) to apply the TIR-driven disaggregation algorithm to downscale coarse scale SMAP 144 

radiometer SSM to finer scale (9 and 3-km) SSM; (b) to evaluate the SEE disaggregation method 145 

over a large spatial domain encompassing multiple ecosystems; (c) to evaluate the TIR driven 146 

disaggregation scheme against the SMAP SSM products at corresponding spatial scales (9 km 147 

and 3 km); and (d) to evaluate and intercompare the SMAP products and TIR-Downscaled SSM 148 

against in situ SSM observations across the CONUS. Evaluation of the 3-km product can serve 149 

to inform current efforts in combining active and passive radars to achieve finer resolution SM 150 

products.   151 

 152 

3. Data Description 153 

3.1 SMAP Soil Moisture Data 154 
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The coarse resolution L-band MW SSM product from SMAP-Passive (SMAP-P) was used as 155 

an input to the disaggregation algorithm. Whereas the intermediate [9-km SMAP-Active/Passive 156 

(AP) and SMAP-Enhanced (E)] and fine [3-km SMAP-Active (A)] SSM products from the 157 

SMAP mission were used for comparison and evaluation purposes. The Active radar (SMAP-A) 158 

and SMAP-AP products are available from April 2015 to July 2015 (88 days), while the SMAP-159 

P and SMAP-E SSM products are available from March 2015 to present. The Level-3 daily 160 

SMAP products are projected over fixed ease-grid at 36-km (Passive), 9-km (Active/Passive & 161 

Enhanced) and 3-km (Active) resolutions. The 1,000-km wide swath allows SMAP 2-3 day 162 

global revisit. 163 

3.2 ALEXI Surface Evaporation 164 

The ALEXI model is an energy balance model that utilizes time differential rise in morning 165 

LST data from Geostationary Operational Environmental Satellites (GOES) to retrieve actual 166 

evapotranspiration (ET) (Anderson et al., 2007; Hain et al., 2012). The land-surface 167 

representation in ALEXI model is a two-source model that estimates the partitioning of surface 168 

evaporation and plant transpiration from the total system ET. Although the model is processed at 169 

a daily time step, direct retrievals of ALEXI surface evaporation are available only on 170 

substantially cloud-free locations within a GOES satellite’s field-of-view (Hain et al., 2011; 171 

Mishra et al., 2013). 172 

A continental scale implementation of the TIR-based ALEXI model was used in this study. 173 

The ALEXI model operates at 0.040 (4.7-km approx.) spatial resolution over CONUS. The 4.7-174 

km ALEXI product is ideal for this study since its resolution falls neatly between the 3-km and 175 

9-km SMAP products. The gridded surface evaporation from ALEXI was resampled to 3 and 9-176 
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km consistent with the SMAP resolution using the nearest neighbor technique. The ALEXI 177 

model errors typically ranges from 15-20% at the 4-km scale and 5-10% on the field-scale 178 

compared to flux tower observations (Anderson et al., 2011).   179 

3.3 NRCS SCAN Observations 180 

Ground-based observations of surface volumetric SM were available from Natural Resources 181 

Conservation Services Soil Climate Analysis Network (SCAN) sites. A total of 228 active SCAN 182 

sites are present in the study area; however, not all stations reported surface SM data over the 183 

study period. SCAN stations periodically monitor multiple meteorological parameters such as 184 

precipitation, air temperature, relative humidity, etc. along with SM and temperature at various 185 

depths at near real time with hourly and/or daily sampled time steps. This study utilizes the SM 186 

measurement from the top 2 inches (~5 cm) acquired using a Hydra Probe instrument (Schaefer 187 

et al., 2007). The SCAN sites, despite having low density compared to the gridded 3 to 36 km 188 

footprints of satellite-derived SM datasets, cover a wide range of soil and climatic conditions 189 

across the CONUS. Figure 1 shows the location of all the active sites used in this study within 190 

the CONUS.  191 

3.4 Ancillary Datasets 192 

 In addition to above mentioned data, gridded daily air temperature and SSM data from a 193 

LSM were also used in this study. The North America Land Data Assimilation System 194 

[NLDAS2; (Xia et al., 2012)] air temperature forcing data at 0.125o resolution was used to 195 

compute Hamon PET, while the SSM product was also used in this study to further evaluate the 196 

performance of remotely sensed SSM products. Terrain adjustment of coarse resolution 197 

temperature data was performed using a 30-m digital elevation map [GTOPO30 digital elevation 198 
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model, (Miliaresis and Argialas, 1999)] with a constant lapse rate for the study region. The 199 

GTOPO30 elevation map for the CONUS was obtained from the U.S. Geological Survey’s 200 

EROS Data Center. The coarse resolution SSM data from NLDAS2 were resampled using 201 

nearest neighbor scheme to match the respective remotely sensed SSM resolution. Table-1 202 

summarizes the various datasets used in this study.  203 

 204 

 205 
Figure 1: Continental United States with active NRCS SCAN site locations 206 

 207 

Table 1: A summary of data sources used in the study with their description and temporal ranges used. 208 

Data 

Source 

Description Spatial 

Resolution 

Temporal 

Resolution 

Data period No. of 

days 
SMAP - A Active Radar only 

SM 

3-km 2-3 days Apr 2015 – Jul 

2015 
88 

SMAP-P Passive Radiometer 

only SM 

36-km 2-3 days Apr 2015 – Nov 

2016 
607 

SMAP-AP Merged active-

passive SM 

9-km 2-3 days Apr 2015 – Jul 

2015 
84 

SMAP-E Enhanced SM 

product   

9-km 2-3 days Apr 2015 – Nov 

2016 
607 

SCAN In-situ SM 

observations 

Point data 

(182 stations) 

Hourly and 

daily means 

Apr 2015 – Nov 

2016 
607 

ALEXI TIR-based model 

surface Evaporation 

4.7–km Daily Apr 2015 – Nov 

2016 
607 

 209 
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4. Methodology 210 

4.1 Surface SM Disaggregation 211 

With the early mission malfunctioning of the SMAP radar, the search for effective 212 

alternatives is of high priority within the agricultural and hydro-meteorological communities 213 

(Chen et al., 2017). A semi-empirical, physically based disaggregation scheme introduced by 214 

Merlin et al. (2012, 2013, 2008), called DISaggregation based on Physical And Theoretical scale 215 

CHange (DISPATCH), was used in this study. The disaggregation approach is depended on 216 

underlying SEE, which is a model used to map surface evaporative fluxes to the moisture content 217 

at finer scales. Its basic premise is that the SEE is scale invariant and related to surface SM. As 218 

pertinent to this study we re-present the equation of the scheme that reflects the fundamental 219 

theoretical basis of the algorithm: 220 

𝑆𝑆𝑀𝐻𝑅 =  𝑆𝑀𝐿𝑅 + 𝑀𝐿𝑅[𝑆𝐸𝐸𝐿𝑅 − 〈𝑆𝐸𝐸𝐻𝑅〉𝐿𝑅]                                       (1) 221 

Here, HR and LR refer to high and low resolution variables, respectively. The SEE is computed 222 

initially at the native ALEXI higher resolution (0.04o) and then resampled to lower resolutions. 223 

M is the partial derivative function that relates SEE to the underlying SM content. 〈𝑆𝐸𝐸𝐻𝑅〉𝐿𝑅 is 224 

high resolution SEE aggregated to low resolution MW scale.   225 

Multiple models have been proposed in the past that describe the relationship between SEE 226 

and surface moisture content. In earlier studies, Merlin et al., (2012, 2008) employed variants of 227 

non-linear relationships by Lee and Pielke (1992); Noilhan and Planton (1989); Komatsu (2003). 228 

A comparative study by Merlin et al. (2010b) suggests that the non-linear model by Noilhan and 229 

Planton (1989) was superior to the other non-linear models. Recent studies by authors such as 230 

Merlin et al. (2013, 2015) and  Djamai et al. (2015) showed that a linear model performed better 231 
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than earlier proposed non-linear methods over relatively dry climatic conditions of South 232 

Australia and Spain. In this study, we originally applied both linear and non-linear models for 233 

disaggregation. However, the continental scale of the study area and contrasting climatic 234 

conditions resulted in very similar overall statistics over CONUS. In the majority of instances the 235 

f-test with 95% confidence interval showed no statistical difference between the statistics of the 236 

two models averaged over CONUS. Therefore for simplicity only the non-linear model is 237 

discussed in this study. The  non-linear model suggested by Noilhan and Planton, (1989) is given 238 

as:  239 

𝑀𝐿𝑅 =  
𝑆𝑆𝑀𝐿𝑅

𝑐𝑜𝑠−1(1 − 2𝑆𝐸𝐸𝐿𝑅)√𝑆𝐸𝐸𝐿𝑅(1 − 𝑆𝐸𝐸𝐿𝑅)
                                 (2) 240 

4.1.1 Modified SEE computation 241 

SEE can be defined as a normalized surface evaporation. In the original DisPATCH model, 242 

the SEE is computed based on the triangle approach using MODIS LST, VI and surface albedo. 243 

However in this study, the SEE was computed directly from the ALEXI actual surface 244 

evaporation and computed potential surface evaporation:  245 

𝑆𝐸𝐸 =  
𝐸𝑠

𝑃𝐸𝑠
                                                                       (3) 246 

Here, 𝐸𝑠 𝑎𝑛𝑑 𝑃𝐸𝑠 refers to actual surface evaporation and potential surface evaporation, 247 

respectively. The SEE is computed at spatial resolution corresponding to the resolution of actual 248 

evaporation data. The surface actual evaporation was obtained from the ALEXI model and the 249 

potential ET (PET) was estimated using the Hamon PET model (Hamon, 1963) as a proxy for 250 

𝑃𝐸𝑠. Hamon PET is solely dependent upon atmospheric demands that are completely decoupled 251 



13 

 

from the underlying soil and canopy characteristics. Therefore, the model can be used as a proxy 252 

of 𝑃𝐸𝑠. The Hamon PET is computed as: 253 

𝐻𝑃𝐸𝑇 = 𝐾. (35.755). 𝑁.
𝑒𝑠

𝑇 + 273.3
                                               (3) 254 

𝐾 is the proportionality constant used as 1, 𝑁 is the daylight hours in multiples of 12 and 𝑒𝑠 is 255 

the saturated vapor pressure at the given temperature 𝑇 (°𝐶) which is given as: 6.108 𝑒
17.26 𝑇

(237.3+𝑇), 256 

where 𝑇 is the mean daily temperature. The terrain-adjusted daily min/max temperatures from 257 

the NLDAS2 forcing data are used to compute daily mean temperatures. Terrain adjustment of 258 

the coarse resolution temperature data were performed using a 30 m digital elevation map of the 259 

region and a constant lapse rate of -6.5 K km-1 (Cosgrove, 2003).  260 

 261 

4.2 Evaluation Matrices  262 

The 2-3 day revisit cycles of the SMAP and cloud constraints on ALEXI make both 263 

datasets prone to data gaps at a daily time-step. Recent studies such as (Leng et al., 2017a, 264 

2017b) explored a gap filling algorithm based on canopy surface and aerodynamic coefficients 265 

obtained using satellite and meteorological data. Although this approach has shown promise, it 266 

requires ancillary data sets that were not otherwise used in this study (e.g. wind speed) and that 267 

could introduce further sources of error into the analyses. On the other hand, although SM 268 

content at the surface is the most variable across depth temporally (Brocca et al., 2010; Starks et 269 

al., 2003), recent studies by Penna et al., (2013) showed that the SM dynamics at shallow depths 270 

(~0-10 cm) are strongly correlated for temporal lags less than 5 days. Further, satellite data can 271 

be noisy at a daily time step; thus, temporal compositing can be used to reduce daily variability 272 

while retaining the temporal dynamics of the SSM (Anderson et al., 2011). Therefore, a 3-day 273 
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centered moving window compositing was performed to fill in some of the data gaps associated 274 

with remotely sensed SSM datasets.  275 

The data gaps in all three datasets restrict time series analysis, hence pair-wise spatial and 276 

temporal statistical comparisons were performed using traditional matrices such as: bias, root 277 

mean squared difference (RMSD) and correlation coefficient (r). It has been argued that the 278 

traditional RMSD can be overestimated if a bias exists either in model or reference dataset 279 

(Entekhabi et al., 2010b). Therefore, an unbiased estimation of RMSD (ubRMSD) is computed 280 

by removing the potential impact of bias in the error estimation. The ubRMSD can be computed 281 

as: 282 

𝑢𝑏𝑅𝑀𝑆𝐷 =   √𝐸{[(𝜃𝑒𝑠𝑡 − 𝐸[𝜃𝑒𝑠𝑡]) − (𝜃𝑟𝑒𝑓 − 𝐸[𝜃𝑟𝑒𝑓])]2}                                (5) 283 

where, E[:] is the expectation operator, 𝜃𝑒𝑠𝑡 𝑎𝑛𝑑 𝜃𝑟𝑒𝑓 are SM values estimated and reference (or 284 

observed), respectively.  285 

As there is a spatial mismatch involved in comparing gridded SSM estimations with in-286 

situ observations, sampling errors can occur (Peng et al., 2017). Multiple upscaling algorithms 287 

have been suggested for sparse in-situ monitoring stations to minimize the impact of sampling 288 

error; however, these methods typically require a dense network of such stations in addition to an 289 

independent a-priori error characterization (Crow et al., 2012). One possible alternative is the 290 

computation of gain statistics. Merlin et al., (2015) have proposed a performance matrix to 291 

compute relative gain in slope, correlation and biases to measure the overall improvement of 292 

downscaled SSM estimates over coarse resolution data with reference to a given set of point 293 

observations. The gain is the measure of improvement (or degradation) in the statistics obtained 294 

with fine scale and in-situ pair with respect to coarser scale and in-situ pair. The value of gain 295 
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can range from -1 to 1; with gain > 0 indicating a better correspondence of disaggregated SSM 296 

data than coarser scale with respect to in-situ observations and vice-versa. The gain in slope 297 

represents the improvement (or degradation) in efficiency of the disaggregated SSM to represent 298 

in-situ observations compared to original coarser scale SSM data. Similarly, the gain in bias and 299 

correlation represent the improvement (or degradation) of accuracy and precision, respectively.  300 

The relative gain in slope (𝐺𝐸𝑓𝑓: efficiency gain); gain in correlation coefficient (𝐺𝑃𝑟𝑒𝑐: precision 301 

gain); and gain in bias (𝐺𝐴𝑐𝑐: accuracy gain) are computed as: 302 

𝐺𝐸𝑓𝑓 =  
|1 − 𝑆𝐿𝑅| − |1 − 𝑆𝐻𝑅|

|1 − 𝑆𝐿𝑅| + |1 − 𝑆𝐻𝑅|
                                                     (4) 303 

𝐺𝑃𝑟𝑒𝑐 =  
|1 − 𝑅𝐿𝑅| − |1 − 𝑅𝐻𝑅|

|1 − 𝑅𝐿𝑅| + |1 − 𝑅𝐻𝑅|
                                                    (5) 304 

𝐺𝐴𝑐𝑐 =  
|𝐵𝐿𝑅| − |𝐵𝐻𝑅|

|𝐵𝐿𝑅| + |𝐵𝐻𝑅|
                                                                (6) 305 

 306 

Here LR refers to low resolution SSM statistics [S: slope; R: Correlation and B: Bias] against in-307 

situ observations whereas HR refers to the statistics of the high-resolution SSM against the in-308 

situ observations. The gains in slope, bias and correlations are partial gains, whereas overall gain 309 

(𝐺𝐷𝑜𝑤𝑛) can be represented as a  simple unweighted mean of the partial independent relative 310 

gains (Merlin et al., 2015). Relative gain statistics are advantageous over traditional statistics in 311 

that they measure the relative performance of two SSM datasets directly against the target data 312 

making it less sensitive to bias in the mean or in the variance. Relative gain also tends to reduce 313 

the uncertainties associated with the mismatch in spatial scales of in-situ and remotely sensed 314 

data (Merlin et al., 2015). 315 

5. Results 316 
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The TIR-downscaled SSM data were compared and validated against remotely sensed SMAP 317 

SSM products at corresponding resolutions along with in situ observations from SCAN sites 318 

across CONUS. The disaggregation scheme described in section 4.1 and 4.2 was applied to the 319 

coarse resolution SMAP radiometer SSM product over the CONUS and the disaggregated SSM 320 

estimates were compared spatially and temporally against the available and corresponding 321 

SMAP SSM products as well as SCAN site observations. The following section details the 322 

results of comparisons and validation, first among remotely sensed products and then with in situ 323 

observations. Figure 2 displays the composited SSM conditions from SMAP (P, A, AP, and E), 324 

as well as the TIR-downscaled (3- and 9-km scales) for a single day (Julian day 159) during the 325 

summer of 2015 over CONUS.  326 

 327 

 328 
Figure 2: SSM estimates from SMAP at coarse resolution Passive (36-km); Active (3-km); Active/Passive (9-km); 329 

and Enhanced product (9-km) compared with TIR-Downscaled SM data (3 and 9-km) on 8 June, 2015 for 330 
demonstration purpose. The white spaces indicate no data availability. 331 

 332 
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5.1 Spatial Analysis 333 

 SSM products from SMAP (A, AP & E) and TIR-downscaled data (9- and 3-km 334 

resolutions) were compared over the CONUS grids and the average statistics over the study 335 

period are shown in Figure 3. At 9-km resolution, the mean spatial correlation (r) between 336 

SMAP-AP and TIR-downscaled SM was 0.76 with an overall ubRMSD of 0.09 m3m-3 and a 337 

negative bias of -0.013 m3m-3. Compared with the SMAP-E SSM product, the TIR-Downscaled 338 

SSM showed average r of 0.90 with ubRMSD of 0.057 m3m-3 and bias of -0.01 m3m-3. The 339 

SMAP-AP and SMAP-E SSM had r of 0.84, ubRMSD of 0.09 m3m-3 and bias -0.003 m3m-3. The 340 

figure shows that the statistics between the SMAP-E and TIR 9-km products were relatively 341 

stable over the 19 month study period. 342 

A similar grid analysis of the SSM signals was performed between SMAP-A (3-km) and 343 

TIR-downscaled (3-km) SSM estimates and the results are also shown in Figure 3. The similarity 344 

of the 3-km SSM products (SMAP-A vs TIR-Downscaled) was considerably weaker relative to 345 

the 9-km products. The average r between the SMAP-A (active radar) SSM measurement and 346 

TIR-based 3-km downscaled SSM was 0.29. The ubRMSD was found to be 0.14 m3m-3 and bias 347 

was 0.008 m3m-3. The overall mean bias was close to zero (= 0.008 m3m-3) however the daily 348 

standard deviation (SD = 0.017 m3m-3) was double of the mean. It is noted that the statistics of 349 

the SMAP products where the active radar was employed are based on much smaller sample 350 

sizes (84-88 days) compared to the products without the active sensor and therefore it is difficult 351 

to make any concrete conclusions relative to these results. 352 
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 353 
Figure 3: A daily time series of spatial correlation (top); bias (middle) and coefficient of ubRMSD (bottom) at 9-km 354 
and 3-km spatial scales over CONUS between SMAP and TIR-Downscaled SSM products. 355 
 356 

5.2 Temporal Analysis 357 

Temporal analysis at each pixel is limited by the number of days the corresponding SSM 358 

products coincide. Figure 4 shows the map of statistics at 9-km resolution between SMAP-AP, E 359 

and TIR-Downscaled SSM products over CONUS. The overall mean temporal correlation 360 

between SMAP-E and TIR-downscaled SSM over CONUS (right panel) was found to be 0.87 361 

with ubRMSD of 0.03 m3m-3 and bias at -0.03 m3m-3. Comparison with SMAP-AP the TIR-362 

Downscaled SSM (middle panel) showed an overall r of 0.71, ubRMSD = 0.05 m3m-3 and bias 363 

of 0.065 m3m-3 temporally but for a sample size of only 84 days. The SMAP-AP compared with 364 

SMAP-E (left panel) showed r of 0.75 and ubRMSD of 0.04 m3m-3 with bias = 0.06 m3m-3 again 365 

with the smaller sample size.  366 
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 367 
 368 

 369 
Figure 4: Map of CONUS displaying statistics between SMAP-AP, E and TIR-downscaled SM at 9-km scale: 370 

correlation coefficient (top); Bias (middle) and ubRMSD (bottom) distribution across CONUS for the period of Apr-371 
June 2015 (left two panels); Apr 2015 - Nov-2016 (right panel) 372 

 373 

These results indicate that the 9-km TIR-downscaled SSM most strongly relates to the 374 

SMAP-E with high correlation and low ubRMSD values followed by the SMAP-AP SSM 375 

product.  Geographically, the figure demonstrates that the SMAP products correlate better among 376 

themselves as well as with the TIR SSM in the mid-west and western portions of CONUS than in 377 

the east and southeast with the exception of the pacific northwest where correlations were also 378 

low. This is particularly striking in the SMAP-E vs TIR analysis. In particular it is clear that the 379 

comparisons were poor in a band running from Maine along the Appalachian mountain chain 380 

into east Tennessee. This area is moderately-to-heavily forested often exhibiting steep slopes and 381 

thin soils overlaying limestone bedrock. It is an area where neither the radar nor ALEXI would 382 

be expected to perform well. 383 
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In terms of 3-km SSM products (SMAP-A vs TIR-Downscaled), r = 0.27, with an ubRMSD 384 

of 0.097 m3m-3 and bias 0.011 m3m-3. Figure 5 shows the map of temporal statistics between the 385 

two SSM products. Though it can be seen from Figure 5 that both the 3-km SSM products are 386 

still most similar in the West-Central United States (with r > 0.6 and ubRMSD < 0.07 m3m-3), 387 

yet the distinction is not as clear as in the 9-km products of similar time frame. The overall bias 388 

at the 3-km scale is lower than the 9-km products [0.011 vs 0.065 (with SMAP-AP) and 0.028 389 

(with SMAP-E) m3m-3], however the variance in bias across CONUS is 0.015 m3m-3 which is 2 390 

and 7 times higher compared to bias in SMAP-AP and SMAP-E, respectively. The higher 391 

variance in 3-km indicates a relatively greater spread and instability in results across CONUS 392 

despite the low overall mean bias. Again, it should be noted that these results are for a sample 393 

size of only 84 days while the 9-km results are based on a 19-month (607 days) sample size. 394 

 395 
Figure 5: Statistics between SMAP-A and TIR-Downscaled SM at 3-km scale over CONUS. 396 

 397 

5.3 Comparison with SCAN Observations 398 

The remotely sensed SSM estimates from SMAP (A, AP, E & P) along with TIR-399 

Downscaled (3 & 9-km) were compared with SCAN site in situ observations across CONUS. 400 

While comparing remotely sensed SSM to in situ observations, disparity of spatial scale as well 401 

as the sensing depths must be considered. Some authors prefer to remove the bias due to scale 402 
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difference before comparisons (Brocca et al., 2011); however, it is common practice to compare 403 

in situ observations without adjusting for scale even when only one observation per pixel is 404 

available (McCabe et al., 2005; Sahoo et al., 2008). In this study, remotely sensed SSM estimates 405 

are compared directly without bias correction or upscaling of in situ observations. Although, the 406 

absolute value of SSM varies spatially at much finer scales (~ few meters), the temporal 407 

dynamics are found to be highly correlated spatially, indicating that the temporal SSM dynamics 408 

can be compared between datasets of varied spatial scales (Seneviratne et al., 2010). In addition, 409 

the use of gain statistics can mitigate some of the scale disparity error (Merlin et al., 2015).    410 

A total of more than 180 SCAN sites over CONUS were active and provided daily 411 

summaries of SM and other meteorological observations (such as, soil temperature, humidity, 412 

etc.) during the study period. SSM observations ( 2 inch (~5cm) depth) were collected from 413 

SCAN sites for comparisons with remotely sensed SSM products. Table 2 shows the overall 414 

statistics of the remotely sensed SSM compared with the SCAN observations over CONUS. The 415 

overall correlation between SCAN observations and coarse resolution SMAP-P SSM data was 416 

0.54. Mean bias at all sites was -0.02 m3m-3 and ubRMSD of 0.06 m3m-3. The intermediate 417 

resolution SMAP-E was found to have similar statistics although the correlation was slightly 418 

lower (r = 0.49). The finer resolution SSM data from the active radar on the other hand, showed 419 

relatively less similarity with SCAN observations (r  = 0.16, ubRMSD = 0.077 m3m-3), although 420 

there is a slight improvement in overall bias compared to the coarser resolution SMAP-P and E 421 

estimates (0.008 vs -0.022 m3m-3). The SMAP-AP, a combination of passive and active, showed 422 

better agreement than SMAP-A but poorer agreement than SMAP-P. There is a slight disparity 423 

in sample size in case of SMAP-A & AP that should be taken into account while interpreting the 424 

results. The summary statistics with coincident data records are shown in appendix table A1.  425 
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 426 
 427 

Table 2: Summary statistics between remotely sensed SSM and SCAN observations across CONUS 428 

SM Product 
No. of 

sites 

No. of 

Days 
r 

Bias 

(m3m-3) 

ubRMSD 

(m3m-3) 
Slope 

SMAP – P 181 563 0.54 -0.021 0.062 0.47 

SMAP – A 156 54 0.16 0.008 0.077 0.19 

SMAP – AP 144 69 0.37 -0.006 0.069 0.49 

SMAP – E 182 570 0.49 -0.022 0.062 0.40 

TIR-Down (3k) 181 306 0.47 -0.019 0.064 0.42 

TIR-Down (9k) 180 300 0.47 -0.019 0.064 0.41 

 429 

The TIR-Downscaled SSM, when compared with SCAN observations, showed statistics 430 

similar to SMAP-P and -E products. It can be noticed that the statistics are identical for both the 431 

3-km and 9-km resolutions. The overall ubRMSD increased slightly from 0.062 to 0.064 (m3m-3) 432 

but there is an improvement in bias (-0.022 to -0.019 m3m-3) compared to the SMAP-P SSM 433 

estimate. In addition, there was a slight decline in r for the downscaled SSM to 0.47 compared to 434 

0.49 for the SMAP-E, but better than the 0.37 exhibited by the SMAP-AP (albeit with a much 435 

smaller sample size). Interestingly, the correlations of both the SMAP and TIR relatively finer 436 

scale products were less than that of the coarser SMAP-P product itself.  437 

The overall results indicate that the downscaled SSM products, either SMAP-E or TIR-438 

Downscaled, showed overall statistics similar to the coarse SMAP-P. In case of SMAP, the 439 

brightness temperature from the same source is being used with a similar algorithm to deduce 440 

passive and enhanced SSM products. The SMAP-E is merely an interpolation of the SMAP-P 441 

data. Therefore, similarities between the products are expected. The TIR-down, on the other 442 

hand uses TIR derived evaporative efficiency in addition to passive MW SSM to guide the 443 

disaggregation algorithm. Therefore, some similarities can be expected with passive MW under 444 

relatively homogenous landscapes. But for heterogeneous landscapes, the SEE based algorithm 445 
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is expected to provide physically based additional details on the underlying SSM state. This issue 446 

is further explored through the gain statistics discussed in the next section. 447 

5.3 Gain Statistics 448 

  As mentioned earlier in section 4.2, the scale mismatch between in situ observations and 449 

gridded remotely sensed SSM data can induce sampling error; therefore, gain statistics were 450 

computed at coincident dates between coarse and finer resolution SSM data simultaneously 451 

against in situ observations. Figures 6 display the map of gain statistics across CONUS of 452 

various remotely sensed SSM products. The overall gains in SMAP-AP are observed in the 453 

extremes of both directions. Less than half (37.8%) of the total SCAN sites observed positive 454 

gains in bias, slope and correlations in SMAP-AP data (Figure 7). On the other hand, more than 455 

50% of SCAN sites observed positive gains in both SMAP-E and TIR-Downscaled SSM 456 

estimates for all the cases. Although at the majority of sites the SSM quality was improved with 457 

SMAP-E data, the number of sites with positive gains is even higher with TIR-Downscaled (9-458 

km) compared to SMAP-E in all cases, but most particularly in the precision statistic. In 459 

particular, the area where the SMAP-E and TIR products were questionable (Appalachia) shows 460 

more positive gains in the TIR-downscaled SSM than in the SMAP-E. 461 

At 3-km resolution, the relative overall gains in disaggregating passive MW SSM 462 

estimates from SMAP-A and TIR-Downscaled (3-km) compared to SCAN observations are 463 

shown in Figure 6 (right). The figure is notable for the preponderance of sites showing a negative 464 

overall gain, mostly concentrated in the western U.S. as well as the Mississippi River valley. On 465 

the other hand, the TIR-Downscaled SSM exhibited many positive gains, although most of the 466 

overall gains were small –i.e., within ±0.1 (>91%). In all cases (efficiency; precision; and 467 
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accuracy), the percent of sites with positive gains in TIR-Down (3-km) is higher than the SMAP-468 

A by a factor of nearly 3 (Figure 8).  469 

Figure 7 also shows the percent of sites with positive gains with SSM data at 9-km 470 

resolution compared to coarse resolution passive MW and SCAN point observations. The results 471 

from gain statistics suggest that there is a clear improvement in representation of SSM at the 472 

intermediate scale with SMAP-E data compared to the SMAP-AP product. More than half of the 473 

locations with positive gains indicate that the intermediate scale SM from SMAP-E is of superior 474 

quality to the coarse resolution passive MW against in situ observations. The TIR-based SM at 475 

both scales (3 and 9-km resolution) appears to slightly better represent the SM conditions at 476 

higher resolution compared to other products with the maximum number of sites having positive 477 

gains. Again, however, Figure 6 indicates that the magnitude of the gains is modest (≈10%) and 478 

the difference between the SMAP-E and TIR-Downscaled products is very small in most cases. 479 

 480 
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 481 
Figure 6: Overall gain statistics between NRCS SCAN observations relative to SMAP-E/SMAP-AP and TIR-Down 482 
SSM at 9-km scale (right) and SMAP-A and TIR-Down at 3-km (Right). [SMAP-A and SMAP-AP gains are based 483 

on 3 months data while SMAP-E as well as TIR-Downscaled (3 & 9-km) are based on 19 months] 484 

 485 

 486 

Figure 7: Percent of SCAN sites with positive gain in moving from coarse to finer resolution against SCAN in-487 
situ observations. 488 

 489 

 490 

5.4 Effect of Vegetation Cover 491 
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It has been argued that the MW SSM signals are attenuated by thick vegetation cover, 492 

especially with higher frequency bands like C- and X- (Albergel et al., 2011; Brocca et al., 493 

2011). With L-band radars, like that of SMAP, the sensitivity to vegetation cover is 494 

comparatively reduced, yet errors are still higher over vegetated land surfaces compared to bare 495 

soils (Konings et al., 2017). With the ALEXI model, sensitivities decrease as surface moisture 496 

content reaches either the wilting point or field capacity (Hain et al., 2011). The partitioning of 497 

system (canopy + surface) energy fluxes to surface evaporation in the ALEXI model is limited 498 

by the fraction of vegetation cover. The vegetation effects of both the SMAP and ALEXI 499 

products could, in part, explain the spatial disparities identified in the east (and far west) and the 500 

more central/western states (Figures 4 and 5). In this section, we analyze the effect of vegetation 501 

cover on coarse and disaggregated SSM using an independent third SSM source, NLDAS2 (Xia 502 

et al., 2012) (Mosaic of Noah and Variable Infiltration Capacity (VIC) LSMs). The analysis does 503 

not assume that the LSMs are accurate; models may have their own biases and errors associated 504 

with them. The assumption is that the physically-derived SSM from LSM models will not have 505 

any vegetative effects associated. The analyses performed using LSM are only to assess the 506 

relative dynamics of both remotely sensed SSM products under various vegetative scenarios 507 

against a common independent data source. Due to limited data availability resulting in small 508 

sample sizes, as well as their relatively poor performance in the previous analyses, the SMAP-A 509 

and -AP products are omitted from this analysis. Also, since SCAN sites are located in 510 

agricultural regions, the vegetation cover typically does not go beyond 65-70% and hence cannot 511 

be used to assess the complete extent of vegetative impacts.     512 

Figure 8 shows the annual mean fraction of vegetation cover derived using MODIS LAI 513 

(Myneni et al., 2002) over CONUS for the year 2016. In most of the central and western part of 514 
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CONUS, mean vegetation cover is less than 40%, thus the surface conditions are readily 515 

accessible through both MW and TIR based sensing platforms. The frequency distribution of the 516 

statistical comparison between SMAP-E and TIR-Downscaled (9-km) SSM as a function of 517 

mean fractional vegetation cover is shown in Figure 9. The figure clearly indicates the effect of 518 

vegetation cover on the statistical relationship between the two soil moisture products. With 519 

vegetation cover less than 40%, both SM products seems to be strongly related with r > 0.75 520 

(bias nearly 0.0 m3m-3 and ubRMSD < 0.03 m3m-3). However, a sharp decline in correlation with 521 

a simultaneous steep rise in bias and ubRMSD was observed with vegetation cover beyond 70%. 522 

For vegetation cover between 40 and 70%, the correlation drops but the fall is relatively less 523 

steep compared to vegetation cover of greater than 70%. 524 

 525 

Figure 8: Fraction of Vegetation Cover over CONUS 526 

 527 

 528 
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 529 
Figure 9. Comparison of SMAP-E and TIR-Downscaled SSM Products as a function of fractional 530 

vegetation cover (9-km) 531 

 532 

Figure 9 shows the effects of vegetation cover on remotely sensed SSM products; however, 533 

the analysis does not illustrate the effects of vegetation on individual datasets. Therefore, the 534 

NLDAS2 SSM product was used as an independent source to assess the vegetative effect on the 535 

individual remotely sensed SSM products. Figure 10 shows the statistical comparison between 536 

the two remotely sensed SSM products against NLDAS2 SM data as a function of vegetation 537 

cover. Not surprisingly, both SMAP-E and TIR-Down SSM data showed similar responses to the 538 

NLDAS2 SSM product as a function of vegetation cover. The correlation tends to be higher (r > 539 

0.5) under 10-40% vegetation cover with a general decreasing trend thereafter. Similarly, biases 540 

tend to be lower (< 0.05 m3m-3) for vegetation cover less than 40% and increase with higher 541 

vegetation cover. The overall ubRMSD for SMAP-E is 0.044 (m3m-3) and for TIR-down is 0.047 542 
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(m3m-3) compared to NLDAS2, also showing a relatively lower values with sparse vegetation 543 

and higher ubRMSD with higher vegetation cover. Overall, the two products performed similarly 544 

indicating that both remotely sensed SSM estimates relationship with NLDAS2 is strong under 545 

low vegetation and it diminished as vegetation cover increases, particularly around 70%.  546 

As mentioned earlier, since both products begin with the same basic source (the native 547 

SMAP MW data) some similarity in behavior is to be expected; rather it is the downscaling 548 

methods (IFOV interpolation vs TIR-based) that are being compared. These results indicate that 549 

the two methods produce very similar results when compared to both in situ data and an 550 

independent gridded source. Further, there is a discrepancy in the SSM layer depth definition of 551 

the NLDAS2 product. NLDAS2 had surface SM defined as mean moisture content between 0-10 552 

cm depth whereas MW and TIR-Downscaled SSM are estimates of typically < 5 cm depth.   553 

 554 

 555 
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 Figure 10.  Results of statistical comparison between NLDAS2 vs SMAP-E (right-panel) and NLDAS vs 556 
TIR-Downscaled (left-panel) SSM over CONUS as a function of fractional vegetation cover. 557 

 558 

Overall, the results of the present study are similar to those recently reported in the 559 

literature at varying spatial scales and locations: Chen et al., (2017) -- r: -0.3-0.72, RMSD: 0.06-560 

0.27; Malbéteau et al., (2016) -- r: 0.70-0.94, RMSD: 0.07-0.09; Merlin et al., (2015) -- r: -0.22-561 

0.64, RMSD:0.05-0.32; Molero et al., (2016) -- r: 0.35-0.47, ubRMSD:0.04-0.12; Colliander et 562 

al., (2017) -- r: 0.6(1-km) and 0.7(3-km); ubRMSD: 0.05(1-km) and 0.04(3-km). Most of these 563 

earlier studies are short term and site specific with multiple in situ observations possibly within a 564 

single pixel resolution and thus offer better representation of the SSM conditions. However, in 565 

this study single in situ observations per pixel were available but the approach was applied at the 566 

continental scale encompassing multiple climate and ecological regimes for a relatively longer 567 

time period. Despite these differences, the correlation and error results obtained are comparable 568 

to earlier studies.      569 

 570 

6 Potential Error Sources 571 

The accuracy of SEE based disaggregation model is dependent upon the accuracy of: (a) 572 

SEE estimation and (b) the relationship between SSM and SEE. SEE accuracy can be associated 573 

with ALEXI estimation of surface evaporation. As mentioned earlier, ALEXI estimates the total 574 

ET and then partitions between soil evaporation and canopy transpiration, which leads to errors 575 

in surface evaporation especially in areas of high vegetation cover (Figure 9 and 10). A brief 576 

ALEXI model description is presented in appendix A2. Further, the assumption behind using 577 

Hamon-PET as a proxy of surface potential evaporation, could further add to the error in SEE 578 
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estimation. Next, error in the use of the linear vs non-linear model to relate SEE with SSM is still 579 

unclear. Earlier studies [such as Merlin et al., (2010,2013, 2012)] used the non-linear approach, 580 

while later analyses [such as Merlin et al., (2015)] showed that the linear model performed better 581 

than non-linear in dry and arid conditions of Australia. However, recent studies by Djamai et al., 582 

(2015) and Mishra et al., (2017) suggested that the non-linear models are better suited for wet 583 

and humid climatic conditions than the linear model. Our analysis at continental scale showed no 584 

significant difference between the overall statistics from the two models. This study employed 585 

the non-linear model throughout CONUS including the dry domain in the western U.S. 586 

 587 

Conclusions 588 

This study investigated the effectiveness of the SMAP downscaled products against the soil 589 

evaporative based disaggregation scheme over CONUS compared to in situ data from 180+ 590 

USDA observation sites. The study evaluated the performance of the downscaled SSM and the 591 

SMAP SSM estimates at both 9- and 3-km spatial scales consistent with SMAP SSM products. 592 

Since both the 9- and 3-km downscaling were based on resampling of the ALEXI TIR data from 593 

its native 4.7-km resolution, perhaps not surprisingly, the statistics of the 3-km downscaled TIR 594 

data were similar as in the 9-km case. Clearly, the resampling did not materially affect the 595 

results. It should be noted that the results of SMAP-A and SMAP-AP comparisons are based on 596 

a sample size of only 3 months (84-88 days) while SMAP-E are based on 19 months (607 days) 597 

of data.  598 

The 3-km SMAP active radar product statistics were inferior to the other SSM products with 599 

the exception of bias (= 0.008 m3m-3). There was a considerable deterioration in the SMAP-A (3-600 
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km) product retrieved from the active radar compared to SCAN observations (r = 0.16 and 601 

ubRMSD = 0.14 m3m-3). The radar performed most poorly in the western U.S. The questionable 602 

results of the active radar addition, although based on a very small sample and with limited 603 

results from other studies available, nevertheless appear to bring the approach of merging active 604 

and passive estimation to downscale SSM into question. The success of such an approach is 605 

contingent upon the accuracy of active radar SSM estimates.  606 

The 9-km SMAP-E and TIR-Downscaled products offered only modest improvements to the 607 

coarse scale SMAP-P (36-km) SSM in terms of overall statistical comparison to the SCAN data. 608 

However, when viewed spatially, there were some improvements (≈10%) in some locations 609 

across CONUS, particularly in arid climates and in the Appalachian region. The TIR-610 

Downscaled SSM data correlated strongly with the SMAP-E SSM product both spatially and 611 

temporally. Since the SMAP-E is merely a statistical interpolation of the original SMAP-P data 612 

streams, the failure of the physically-based TIR downscaling scheme to improve upon it 613 

substantially is somewhat puzzling at this time. The failure of both the SMAP interpolation and 614 

SEE downscaling methods to significantly improve the overall coarse scale SMAP-P SSM 615 

estimates seems to indicate that the downscaling approach may not be substantially effective in 616 

improving the SSM quality at large spatio-temporal scales. Interestingly, previous studies by 617 

Malbéteau et al.,( 2016); Mishra et al., (2017); Molero et al., (2016) etc. have demonstrated the 618 

capability of the SEE method to significantly improve other MW SSM data such as AMSR-E 619 

and SMOS typically applied at smaller spatio-temporal scales. 620 

Although of limited value in the present study, the TIR-based disaggregation approach 621 

has potential for long-term agricultural and hydrological analysis of SSM data sets, particularly 622 
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from the X and C-band sensors. For hydro-meteorological and agricultural applications an 623 

intermediate spatial scale of 9-km or less is preferred to the coarse radiometer scale, and the 624 

disaggregation scheme has been found to be efficient in other studies. The gain statistics show 625 

that the highest number of SCAN site (~60%) locations with TIR-Down (9-km) data had  626 

positive overall gains compared to only 54% with SAMP-E. The results indicate that, although 627 

the overall statistics at CONUS scale are similar for the two SSM products, yet at the point scale 628 

there is a difference between the statistics with TIR-Downscaled data outperforming SMAP-E at 629 

nearly 6% more sites. Further, the scheme is found to be most efficient under low to moderately 630 

thick vegetation cover and therefore may supplement agricultural applications effectively. 631 

Although the TIR-Down SM was compared and validated at the 9-km scale, the effective 632 

resolution of the product was 4.7-km.  633 

 634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 
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Appendix 646 

A1. Summary statistics of remotely sensed SSM products against in-situ observations at 647 

SCAN sites with coincident dates.  648 

 649 

Table A1: Summary statistics at SCAN sites with coincident data points 650 
 No. of SCAN 

sites 

Average No. 

Days 

Correlation 

(r) 

Slope Bias ubRMSD 

Active 

113 21 

0.17 0.22 -0.03 0.089 

Passive 0.46 0.45 -0.014 0.052 

TIR-Down(3k) 0.46 0.48 -0.013 0.052 

Active/Passive 

136 27 

0.40 0.29 -0.005 0.063 

Passive 0.46 0.51 -0.014 0.051 

TIR-Down(9k) 0.45 0.51 -0.016 0.052 

Enhanced 

176 267 

0.54 0.44 -0.014 0.061 

Passive 0.55 0.45 -0.014 0.059 

TIR-Down(9k) 0.54 0.46 -0.016 0.061 

 651 

 652 

A2. ALEXI Model Description 653 

The Atmosphere-Land Exchange Inverse (ALEXI; Fig. A1) model was formulated as an 654 

extension to the two-source energy balance (TSEB) model of Norman et al. (1995), which 655 

addressed many of issues limiting surface energy flux monitoring from TIR remote sensing 656 

platforms. The two-source approximation treats the radiometric temperature (TRAD) of a 657 

vegetated surface as the ensemble average of the nominal temperature of the soil (Ts) and 658 

vegetation (Tc) components, partitioned by the fractional vegetation cover (f(θ)) apparent from 659 

the sensor view angle (θ): 660 

𝑇𝑅𝐴𝐷 ≈ {𝑓(𝜃)𝑇𝑐 + [1 − 𝑓[𝜃]]𝑇𝑠},     (1) 661 

where f(θ) is represented by: 662 

𝑓(𝜃) =  1 − exp (
−0.5 𝐿𝐴𝐼

cos 𝜃
).      (2) 663 

The TSEB separately balances the energy budgets for the soil and vegetation components of 664 
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the system, solving for total system fluxes of net radiation (RN), latent heat (LE, or ET in units of 665 

water flux), sensible heat (H) and ground heat conduction (G), such that RN = H + LE + G. 666 

For regional-scale applications, the TSEB has been coupled with an atmospheric boundary 667 

layer (ABL) model (McNaughton and Spriggs, 1986) to internally simulate land-atmosphere 668 

feedback (Anderson et al. 1997). In ALEXI, the TSEB is applied at two times during the 669 

morning ABL growth phase using TIR data obtained from a geostationary platform (e.g., GOES, 670 

Meteosat, MT-SAT) at 5-10 km resolution. The ABL component of ALEXI relates the rise in Ta 671 

in the mixed layer over the observation time interval to the time-integrated influx of H from the 672 

surface, thus providing energy closure for the TSEB land-surface component.  673 

 674 

Figure A1: Schematic of the ALEXI model (taken from Anderson et al., 2007) 675 

 676 

For operational applications, the coupling of the ABL within ALEXI is advantageous 677 

because it moves the upper boundary condition in temperature from the near-surface to the 678 

“blending height”, where conditions are more uniform at a spatial scale of a geostationary 679 

satellite thermal pixel and can be more accurately specified. Furthermore, as a result of this 680 

configuration ALEXI uses only time-differential temperature signals, thereby minimizing flux 681 
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errors due to absolute sensor calibration and atmospheric correction (Kustas et al., 2001).  The 682 

primary radiometric signal is the morning surface temperature rise, while the ABL model 683 

component uses only the general slope (lapse rate) of the atmospheric temperature profile 684 

(Anderson et al., 1997), which is more reliably analyzed from synoptic radiosonde data than is 685 

the absolute temperature reference. Further description of ALEXI and ancillary datasets needed 686 

for continental-scale applications are provided by Anderson et al., (1997) and Mecikalski et al., 687 

(1999).  688 
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