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Abstract

Head-up tilt (HUT) tests often are used in research to measure orthostatic intoler-
ance (OI) (inability to appropriately control blood pressure while upright) in clinical
populations and otherwise healthy individuals after interventions. Post-spaceflight
orthostatic intolerance is a well-known phenomenon, and countermeasures to its de-
velopment has been an active area of research at NASA. In the NASA HUT protocol,
subjects lie horizontally on an automatic tilt table for baseline measurements before
being raised to 80◦ head-up tilt for a defined period of time or until signs or symp-
toms of presyncope ensues (light-headedness, nausea, dizziness, sweating, weakness
or fainting). Multiple measures are collected to evaluate the cardiovascular system’s
ability to respond appropriately to the orthostatic challenge. However if the intended
duration of the HUT is short, the ability to detect changes in OI due to an intervention
or its prevention by a countermeasure may be limited by a small number of failures
to permit comparisons based on survival time alone. Thus, the time-trajectory of
the cardiovascular data becomes an important additional source of information. In
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particular, we will show how various measures of trajectory variability can effectively
augment survival analysis for the assessment of OI in a joint model when high cen-
soring rates are present.

Keywords: orthostatic intolerance, joint models, longitudinal, measurement error, space-
flight, surrogate measures
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1 Introduction

Cardiovascular deconditioning is a well-accepted consequence of spaceflight, with manifes-

tations including an increased incidence of orthostatic intolerance (OI) (i.e., an inability

to maintain appropriate blood pressure and cerebral blood flow in the upright posture),

after both short- (Buckey et al., 1996; Fritsch-Yelle et al., 1996) and long-duration mis-

sions (Meck et al., 2001; Lee et al., 2011). For US astronauts, post-spaceflight OI was first

observed in the Mercury program (Catterson et al., 1963) and was consequently noted in

subsequent space programs, from the early Gemini and Apollo missions to those involv-

ing the International Space Station (Lee et al., 2011). Although different methodologies

exist, OI has been assessed in the US space program since 1997, primarily using a proto-

col in which subjects are supine for a period of time and then moved to 80◦ head-up tilt

(HUT). In related research, HUTs have also been used to evaluate or compare prospec-

tive countermeasures to OI in ground studies that use either bed rest (Platts et al., 2009)

or pharmacologically-induced hypovolemia (Platts et al., 2009) to simulate some of the

cardiovascular effects seen in spaceflight.

In practice, the most often used and operationally-relevant HUT outcome for assessing

OI has been the amount of time a subject can remain upright without experiencing consid-

erable decrease in blood pressure or the event of presyncope (i.e., lightheadedness, dizziness,

nausea). However, subjects’ HUT survival times become censored at the intended length

of test; therefore censoring rates vary across studies. For example, one group of researchers

has run HUTs for more than two hours (Ramsdell et al., 2001), but shorter-duration tests

are more common. This is particularly the case for spaceflight studies conducted on the day

when the crew return to Earth, since there are a large number of investigators studying the

astronauts, and the availability of the crew to participate in testing is limited. In studies of
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Space Shuttle astronauts, the upright portion of the HUT was limited to 10 minutes, which

produced a high percentage of censored survival times following short-duration flight (e.g.,

73% in a recent study (Lee et al., 2011)). In this setting, using survival analysis alone may

fail to distinguish between groups of subjects, interventions, or countermeasures. Thus, it

would be highly desirable to make better use of the longitudinal cardiovascular information

typically obtained during HUTs (e.g., heart rate, blood pressure, stroke volume) to improve

inferential efficiency. In some NASA studies or as part of mission operations, summaries

of this ancillary data have been reported, but have not been used in a formal statistical

analysis to compare or evaluate countermeasures.

In practice, the amount of censoring observed in a study can guide the analytical ap-

proach. For example in a study where all subjects fail to complete the test, it could be

argued that survival time is the only necessary information regarding OI and the concur-

rent cardiovascular data is superfluous. Alternatively, if all subjects completed the HUT

to the intended test duration, all survival times would be censored and the longitudinal

cardiovascular data would be the only outcome that would vary. Often these type of data

are modeled with multivariate functional data analysis methods, as described in Ramsay

and Silverman (2005).

Here we consider the middle ground, where some tests go to completion and others are

cut off at presyncope. In this setting, an analysis based only on survival times does not

take full advantage of the information contained in the longitudinal cardiovascular data and

would thus be inefficient. We expect that a subject’s cardiovascular condition at the time of

a HUT would be directly related to the probability of experiencing presyncope that would

terminate the test, but we cannot measure a subject’s cardiovascular condition directly;

instead we approximate it with surrogate measures, derived from the time course of heart

rate, blood pressure, etc. during the HUT. Therefore, measurement error is introduced
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due to this latency. Furthermore, the very fact that the surrogate measures could be

observed at a particular time implies that the subject has not yet failed the test - a defining

characteristic of an internal or endogenous covariate.

Joint models for longitudinal and survival data can be used to model survival out-

comes that are related to endogenous, time-dependent covariates with measurement error

(Rizopoulos, 2014, 2012; Tsiatis and Davidian, 2004). Wu et al. (2011) provide a detailed

review of standard joint model formulations and approaches for inference. Typically, linear,

mixed effects models are fit to the observed longitudinal data to accommodate measurement

error and provide an estimate for their underlying true trajectories. When linear assump-

tions for the underlying trajectories are violated and the distribution of the longitudinal

data is unknown, semi-parametric approaches have been employed (Song et al., 2002; Ye

et al., 2008). However, a semiparametric approach may produce over-fitted models when

sample sizes are small. In some research settings, it may be of interest to additionally

investigate the relation between the true rate of change and time-to-event (Ye et al., 2008).

Typically, when fitting joint models, the time-to-event data is modeled with Cox propor-

tional hazards models. However, other methods for handling time-to-event data structures

(e.g., fully parametric models, recurrent events, or clustered data) have previously been

explored (Ratcliffe et al., 2004; Han et al., 2007).

This work was motivated by data collected during a single-arm 30-day bed rest study

in which 27 subjects were enrolled to perform HUTs pre- and post-bed rest; however,

8 subjects dropped out before the bed rest was completed and thus did not perform a

second HUT. For each of these 46 HUT sessions, survival times and eight cardiovascular

measures were recorded, the latter as 1-minute averages. Testing was terminated after 30

minutes if presyncope did not occur, resulting in a fairly high degree of censoring for HUT

pre-bed rest. In this data, we observed that the time histories of the cardiovascular data
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were considerably more erratic during post-bed rest HUTs, especially when survival times

were short. Since it is also well known that bed rest tends to increase OI (Meck et al.,

2009), we conjectured that a summary index of change in multivariate variability of the

cardiovascular, longitudinal data within HUTs, especially when combined with survival

times, would be an important predictor for comparing levels of OI between experimental

conditions (in this case pre- versus post-bed rest). Heart rate and blood pressure normally

vary across time but are relatively stable in subjects who are able to compensate for the

gravity-induced shift of blood to the lower body while standing. In contrast, subjects who

develop presyncope or syncope typically have greater variability in heart rate and blood

pressure while upright, with the magnitude and/or frequency of the oscillations increasing

as the duration of standing increases and decompensation ensues (Julu et al., 2003; Lipsitz

et al., 1997).

Note that the bed rest data arose from a partially repeated-measures design, since 19

subjects participated in HUTs both pre- and post-bed rest. In this sense, there are actually

two longitudinal time scales to consider - within and between the two HUTs for these 19

subjects. Therefore, our main objective is to develop a strategy for characterizing the

variability in the within-HUT longitudinal cadiovascular data that can be jointly modeled

with HUT time-to-event data. For this and similar data, joint models must also take

into account the larger-scale longitudinal character of the data imposed by the partially

repeated-measures design. For the joint model, we take a two-stage approach. First, we

model the trajectory of each individual’s variability summary index over time with median

regression pre- and post-bed rest. Next, instead of directly using fitted values from stage

one as covariates in a survival model, we jointly model the estimated rates of change

obtained from the median regression along with survival times to accommodate trend

model uncertainty, subject-specific random effects, and measurement error. We validate our
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proposed method through simulation to assess its performance in evaluating a hypothetical

countermeasure against OI.

Our secondary objective is to compare different methods of summarizing the behavior

of cardiovascular variables collected during HUT sessions and identify which sets of cardio-

vascular measures (e.g., heart rate, systolic, diastolic blood pressures) collected during a

HUT should be used to form variability indices that best relate to impending presyncope.

Finally, we apply our method to actual HUT data to make inference on the effect of bed

rest in the presence of a high degree of censoring using the optimal variability index. This

analysis may help NASA researchers effectively design HUT studies with limitations on

time and measurement devices available to identify effective countermeasures for bed rest

and ultimately help mitigate the effects of microgravity on astronauts returning to Earth.

The remaining sections of this paper are outlined as follows. In Section 2, we propose

our joint model and define a set of potential variability summary indices. In Section 3, we

conduct a simulation study to evaluate the performance of our method. In Section 4, we

apply our method to data collected during HUTs to identify variability indices that best

characterize the relation between a set of cardiovascular measures and presyncope before

and after bed rest. Finally in Section 5, we provide a brief discussion and concluding

remarks.

2 Methods

2.1 Subjects

Healthy men and women (normotensive, non-smokers of normal body weight) volunteered

to participate in 6◦ head-down bed rest studies at the General Clinical Research Center
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(GCRC) Satellite Flight Analogs Research Unit (FARU) at the University of Texas Medical

Branch (UTMB) in Galveston, TX. Subjects were screened using a modified Air Force Class

III physical as well as psychological tests to determine suitability for participation in the bed

rest study (Meck et al., 2009). Exclusion criteria included hypertension; electrocardiogram

(ECG) abnormalities; chronic medication usage that might complicate interpretation of

the results; recent sub-standard nutritional status; history of thyroid dysfunction or renal

stones; mental illness; gastroesophageal reflux; cardiovascular disease; musculoskeletal or

sensorimotor dysfunction; history of thrombosis; a body mass index outside of 20-30; and

abnormal blood or urine clinical values (Meck et al., 2009). Bed rest and test protocols

were reviewed and approved by the Institutional Review Boards of NASA Johnson Space

Center and the University of Texas Medical Branch (UTMB) as well as the UTMB GCRC

Science Advisory Committee. Subjects received verbal and written explanations of the bed

rest and test protocols prior to providing written informed consent.

2.2 Bed rest conditions

Pre-, in-, and post-bed rest conditions for subjects were maintained in a manner consistent

with the NASA standard protocols, as described previously (Meck et al., 2009). Subjects

were admitted to the FARU and remained ambulatory before the bed rest portion of the

study commenced. During this pre-bed rest period, subjects were acclimated to the diet and

wake-sleep times, and were familiarized with the in-bed rest procedures (e.g., movement

restrictions, eating, showering, bed pan use for urination and defecation). Within the

bed rest portion of the study, subjects assumed a posture of lying 6◦ head-down for 24

hours/day, while similar conditions of diet, sleep/wake times, etc. were maintained. During

the post-bed rest phase of the study, subjects were again ambulatory and remained in the

FARU, during which time post-bed rest data were collected. Subjects participated in a
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reconditioning program before they were discharged from the unit.

In this study, 27 healthy volunteers (17M, 10F) participated in a 30-day bed rest without

any countermeasures. These subjects performed HUTs five days before the start of the bed

rest period. Nineteen subjects also performed the post-bed rest HUT, which actually took

place on the last day of bed rest and was the first time that the subjects assumed an upright

posture since bed rest began. Eight subjects did not complete the 30-day bed rest and were

part of a longer study.

2.3 Tilt test

Upon arrival at the testing station, subjects were directed to lie supine upon an automated

tilt table. Prior to data collection, 2-dimensional echocardiography was used to obtain the

aortic annulus diameter from the parasternal long axis during supine rest. Subjects were

instrumented to measure ECG (Escort II, MDE, Arleta, CA), beat-to-beat blood pressure

in the finger (Finapres 2300 blood pressure monitor, Ohmeda, Englewood, CO), and blood

pressure each minute in the brachial artery (Dinamap XL Vital Signs Monitor, GE Medical

Systems Information Technologies, Milwaukee, WI). The hand utilized for the finger blood

pressure measurement was supported to the side using an arm board; the height of the

arm support was adjusted so that the finger remained approximately at heart level during

upright tilt. Six minutes of supine data were collected prior to tilting the subjects to 80◦

head-up tilt at a rate of approximately 10◦ per second. In this study, subjects remained

in the tilted position for 30 minutes or until symptoms of orthostatic hypotension (systolic

blood pressure below 70 mmHg, drop in heart rate > 20 beats/min) and/or presyncope

occurred (lightheadedness, dizziness, or nausea).

During both the supine and tilt periods, in addition to heart rate (HR), systolic blood

pressure (SBP ), and diastolic blood pressure (DBP ), ascending aortic blood velocity time
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integral was measured each beat using pulse wave Doppler measurements made at the

suprasternal notch using a 2 MHz probe (Biosound MyLab 30, Esoate, Indianapolis, IN).

Images from three cardiac cycles collected at a time corresponding to acquisition of heart

rate and blood pressure data were digitally recorded and stored for offline analysis. As-

cending aortic blood velocity time integral images were independently analyzed by two

sonographers (Meck et al., 2001). Stroke volume (SV ) was calculated as annulus diameter

× velocity time integral. Other calculated variables, all thought to reflect important aspects

of cardiovascular function during orthostasis were cardiac output (CO; CO = SV ×HR),

mean arterial pressure (MAP ; MAP = (SBP + 2 ∗DBP )/3), total peripheral resistance

(TPR; TPR = MAP/CO), and pulse pressure (PP ; PP = SBP − DBP ). For each

HUT, the data we analyzed consisted of time to presyncope (right-censored at 30 minutes)

and values of the above eight cardiovascular responses averaged over the last minute of the

supine period as well as over each minute of tilt.

2.4 Development of analysis methods

2.4.1 Motivation

Our approach is predicated on the assumption that there are aspects of the joint behavior

of the multivariate, cardiovascular data collecting during the observation window, which

provide more information about a subject’s state of OI when combined with survival time

than the survival time itself. This assumption was motivated by data observed in the HUT

study. For example, Figure 1 shows the time trajectories of HR, DBP , and MAP for

Subject 1 pre- and post-bed rest. In both cases, this subject completed the 30-minute

test (i.e., time-to-events were censored at 30 minutes), but note the increased variability in

DBP and MAP after bed rest as well as the increased jump in heart rate from the supine
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measurement (t = 0). Also, this subject’s heart rate is much higher after bed rest overall.

Presumably, all these effects are manifestations of increased OI after bed rest, which for

this subject would not be detectable in terms of survival time alone with a 30-minute test.

In such situations, we assume knowledge of the behavior of the cardiovascular data would

enable us to better distinguish between these two results.

Figure 1: Time traces of heart rate (HR), diastolic blood pressure (DBP ) and mean

arterial pressure (MAP ) pre- and post-bed rest (BR) for Subject (Sub) 1, who completed

both pre- and post-bed rest HUT sessions.

Figure 2 shows a similar plot for Subject 2, who completed the 30 minutes of HUT pre-

bed rest test, but failed to complete the post-bed rest test (survival time 9 minutes). Again,

there is considerably more variability in these cardiovascular measures for the post-bed rest

session.

Figures 1 and 2 and others like them (not shown) suggest that increased OI results

in not only shorter survival times, but also in more erratic behavior of the cardiovascular

trajectories. This led us to seek measures of multivariate variability of the cardiovascular

data that could be combined with survival time data in such a way as to allow valid inference
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Figure 2: Time traces of heart rate (HR), diastolic blood pressure (DBP ) and mean

arterial pressure (MAP ) pre- and post-bed rest (BR) for Subject (Sub) 2, who completed

the pre-bed rest session but failed the post-bed rest session in the 10th minute.

on the effect of bed rest on OI, even with a high percentage of censored outcomes.

2.4.2 Variability summary index

In this section, we propose multiple approaches for summarizing the joint variability of the

cardiovascular data in terms of their trajectory in an M -dimensional Euclidean coordinate

space, RM traced out by the vector-valued function Y (t) = (Y1(t), .., YM(t))′ over time.

Note that M is the number of cardiovascular measures taken at a particular time. In

general, the more “space” in RM this trajectory covers, the more variability. As an example,

Figure 3 shows the trajectories of HR and DBP for Subject 1 (M = 2). Note how the

trajectory in R2 takes up considerably more space post-bed rest than for pre-bed rest.
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Figure 3: Trace of heart rate (HR) vs diastolic blood pressure (DBP ) during HUT pre-

and post-bed rest (BR) for Subject 1 who completed both tests. Plotted numbers are times

(tk) of tilt in minutes. The supine time point is denoted by t = 0.

Motivated by the patterns in Figure 3, we propose three approaches to summarizing

the cumulative multivariate variability of Y (t) up to time tk in terms of an index Vk:

Approach 1: M th Root of Convex Hull Content

Vk = H
1/M
k , (1)

where Hk is the content of the convex hull formed by the points y(t1),y(t2), . . . ,y(tk) in

RM . Here, y(t1),y(t2), . . . ,y(tk) are M -dimensional vectors consisting of Y (t) at discrete,

common time points {t1, t2 . . . , tK} (see Supplementary Appendix I for details)

Approach 2: M th Root of Determinant of Covariance Matrix
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Vk = |Sk|1/M , (2)

where the sample covariance matrix Sk = 1/(k − 1)
∑k

r=1(y(tr) − ȳk)(y(tr) − ȳk)′ and

ȳk = 1/k
∑k

r=1 y(tr).

Approach 3: Path Length

Vk =
k∑

r=1

|y∗(tr)− y∗(tr−1)|, (3)

which is equal to the sum of the absolute differences between the observed M -dimensional

vectors of cardiovascular data at successive time points. In Equation (Eq.) 3, y∗ denotes a

vector of normalized components. Normalization is necessary to prevent change in one or a

few components from dominating the change in path length. We compute the normalized

value of a component as the ratio of its original value to the pre-bed rest average of that

component over all subjects in the supine position prior to tilt. Note, normalization in Eq.

1 and 2 is unnecessary since scaling any one of the components of y also scales the root

determinant or convex hull accordingly.

2.4.3 Model formulation

Suppose subjects perform HUTs for a scheduled maximum of T ∗ minutes, where we assume

T ∗ is the same for all experimental sessions indexed by j. In our application, j = 1 refers

to pre-bed rest and j = 2 refers to post-bed rest. Let vijk denote one of the summary index

measures, Vk, given by Eqs. 1, 2, or 3, evaluated for all observations of y(tr) up to time

point tk (k = 1, . . . , Kij) for the ith subject during the jth session. Here, tKij
is the last
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time at which Y (t) is observed. Then, the survival time Tij = tKij
if tKij

< T ∗; otherwise

Tij is censored at T ∗.

2.4.4 Survival model

We assumed that given the ith subject, the survival time distribution for the jth session

would follow a Weibull distribution with survival function

Sij(t) = P (Tij > t) = exp

{
−
(
t

θij

)pj}
. (4)

We chose to use a fully parametric survival model to support inference on the session effect

(in this case, bed rest), as well as for clinical assessment of OI, where it is desirable to

predict the median survival time from the cardiovascular history in censored cases. In the

above parameterization of the Weibull distribution (Mudholkar and Srivastava, 1993), θij is

the scale parameter and pj is known as the shape parameter. Here, we allow pj to depend

on the session, j, as well as other time-independent covariates Wj in a loglinear submodel

log pj = α′Wj.

2.4.5 Longitudinal model

Recall, our primary interest was to model the relation between survival and the rate of

change over time in the summary index, as opposed to modeling the summary index directly.

Let us first assume that vijk is an estimate of a continuous process V ∗ij(t) (t1 ≤ t ≤ Tij)

measured at the time points t = tk:

vijk = V ∗ij (tk) + eijk, (5)
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where eijk represents measurement error and v∗ijk is equivalent to V ∗ij(t) evaluated at time,

tk. In the study data, we observed a generally linear, positive relation between vijk and

time. At this stage, we could have modeled vijk directly with Eq. 5 in the joint model,

assuming normally distributed errors and random slopes, and set the random slopes as

the shared parameter between the within-HUT longitudinal and survival data following

Rizopoulos (2014). However, we conjectured these assumptions were too strong for the

study data. Thus, we assume V ∗ij(t) is approximately linear such that Bij, the average

slope of V ∗ij(t) over the interval [t1, Tij], is still a good single indicator of how fast V ∗ij(t)

(and hence cardiovascular instability) increases.

Rather than applying typical mixed model assumptions to Eq. 5 (e.g., normally dis-

tributed errors and random slopes), we used median regression for each combination of i

and j to obtain a slope bij as an estimate of Bij. Use of median regression avoids having to

specify a distributional model for eijk in Eq. 5 and also is robust to moderate departures

from linearity. To emphasize the higher relative importance of the variability trend in early

in a HUT, the median regression was run using weights proportional to 1/tk.

Now, we treat the slopes of these individual models, bij, as our observed measures

for each subject i at session j, and accommodate error introduced into these measures

from potential misspecification of the mean trajectory, as well as the distribution for the

summary index around the mean. Since two of the candidate dispersion measures (path

length and convex hull content) are non-decreasing, while the other measure (determinant)

should generally increase with only occasional slight decreases, we expect Bij to be positive.

Thus, given some session-dependent covariates Xj, this suggests the use of a log-linear

mixed model:

log bij = β′Xj + ai + eij (6)

where β is a coefficient vector, ai ∼ N(0, σ2
a), and eij ∼ N(0, σ2). It follows that conditional
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on the subject and session,

Bij ≡ E(bij) = exp(β′Xj + ai + σ2/2).

Note, Eq. 6 formalizes the between-HUT longitudinal component of the joint model by

accounting for repeated measures of subjects’ variability indices’ slopes pre- and post-bed

rest with a subject specific random intercept, ai.

2.4.6 Joint model

Given the formulation of the longitudinal and survival models, we now construct our joint

model under the assumption that cardiovascular response instability during a HUT would

increase at a faster rate for subjects with greater OI. Accordingly, we would expect to see

shorter survival times when Bij is large (see Supplementary Appendix II for an illustrative

example). We thus model θij inversely proportional to Bij:

θij =
Ko

Bij

= K/ exp(β′Xj + ai), (7)

where K = Ko exp(−σ2/2).

Note that Eq. 7 provides the link between the longitudinal and survival models through

the shared parameters β and σ2
a. Under the assumption that the two within-subject ob-

servations (j = 1, 2) are conditionally independent given ai, the contribution to the joint

likelihood for the ith subject has the form

Li =

∫ ( 2∏
j=1

pW (Tij, δij|K,α,β,Xj,Wj, ai)fz(zij|β,Xj, ai)

)
fa(ai)dai (8)

In this formulation, the parameters of interest are K,α,β, σ2
a and σ2, pW (·) is the

Weibull density (when δij = 0) or survival function (when δij = 1), fz(·) and fa(·) are
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normal densities, and zij = log(bij). For estimation, the integral in Eq. 8 is approximated

using 20-point (pt.) Hermitian Gaussian integration and maximization of the likelihood

is performed using the ml command in Stata 14 software (StataCorp, 2015). See the

Supplementary Material for a listing of Stata .ado files needed to implement the calculation

and maximization of the likelihood along with some example data.

3 Simulation

To test the performance of our joint model, we simulated multiple sets of data from a hy-

pothetical HUT experiment with two treatment arms (“treatment” and “control”), where

each subject performs a HUT pre- and post-bed rest. Details regarding data simulation and

parameter specification are found in Supplementary Appendix III. Briefly in six scenarios

(Table A-1), we generated 500 random sets of HUT data for 40 control and 40 treatment

subjects. The scenarios differed in terms of the amount of censoring (high and low) and

treatment efficacy (high, moderate, and none). Values of true effects that define the pa-

rameters K, α = (α0), β = (β0, β1, β2, β3)
′, σ2

a, and σ2 were motivated by characteristics

of the bed rest study data. Here, we included an effect for an intercept (β0), treatment

arm assignment (β1), evaluation time (β2), and their interaction (β3) (see Eq. 6). The

simulation study was evaluated in terms of bias, average standard error, Monte Carlo error

(Koehler et al., 2009), and 95% CI coverage probability for the estimated model param-

eters. Additionally, we assessed the power of test H0 : β3 = 0 (no treatment × bed rest

interaction) for our joint model versus power for a random-effects analysis of survival times

only. All estimation runs for the joint model were implemented with 20-pt. Hermitian

Gaussian integration.

18



4 Data analysis

4.1 Cardiovascular subset selection

In this section, we compared different methods of summarizing the variability of cardiovas-

cular variables collected as part of the study data and identify which subsets of cardiovas-

cular measures should be used to form the variability indices that best relate to impending

presyncope. Recall candidate cardiovascular variables included heart rate (HR), dias-

tolic blood pressure (DBP ), systolic blood pressure (SBP ), mean arterial blood pressure

(MAP ), total peripheral resistance (TPR), stroke volume (SV ), cardiac output (CO) and

pulse pressure (PP ). In constructing each of the three variability indices, we always in-

cluded HR because a rapid increase in HR is by far the most important single indicator

of impending presyncope, at which time a HUT is terminated. Furthermore, due to the

relatively small sample size (N = 27), we evaluated the three variability indices (Eqs. 1-3)

formed from subsets of three or less dimensions. We assumed that with this data, calcula-

tion of variability indices with more than three dimensions would likely result in over-fitting

and produce unreliable results.

For each combination of variability index and subset of cardiovascular variables, we

fit our joint model (a) with the full data (30-minute HUT) and (b) using only the first 10

minutes of the data to simulate the hypothetical scenario where censoring is heavy. For each

censoring time, we aimed to compare combinations of variability index and cardiovascular

subset on their ability to detect the effect of an experimental condition (in this case, bed

rest) on OI. Accordingly we chose the p-value based on the test statistic for the overall

effect of bed rest as the comparison criterion. P -values were obtained using permutation

tests (see Supplementary Appendix IV for details).
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4.2 Survival prediction

Recall that the premise of our joint model is to take advantage of information contained

in the variability of longitudinal data collected during a HUT to provide more insight

into the effect of an experimental treatment or condition than survival times alone. In

particular, researchers may be interested in predicting the conditional distribution of HUT

survival times, when high amounts of censoring occurs within a study. Using the estimated

parameters from our joint model, predicted survival plots can be generated as follows:

Given that subject i survived the HUT for t0 minutes in the jth test session, the model-

based conditional probability that this subject would still be surviving at time t > t0

is

S(t|t0) = exp{(t0/θij)p − (t/θij)
p}, (9)

where θij is given in Eq. 7. After fitting the model, we can predict this probability with

Ŝ(t|t0), obtained by evaluating Eq. 9 with predicted values θ̂ij and p̂ substituted for θij

and p. Values of θ̂ij are calculated using Eq. 7, where the predicted values of β and the

best linear unbiased predictors of the ai are obtained from the mixed-effects submodel

log bij = β′Xj + ai + εij (Bates and Pinheiro, 1998). Values of p̂ can be obtained directly

from the model fit.

4.3 Goodness of fit

The values θ̂ij and p̂ can also be used to obtain a measure of goodness of fit for the joint

model by comparing the proportion of surviving subjects, fj, in session j at time t0 to the

average value of the unconditional predicted survival probability for the ith subject in the

jth HUT session at time t0, Ŝij, given by

Ŝij = exp{(t0/θ̂ij)p̂} (10)
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Note that in Eq. 10, θ̂ij can be calculated after estimating the model, regardless of whether

the ith subject actually had survived up to time t0.

5 Results

5.1 Descriptive results

In the study data with HUTs set at 30 minutes, median failure times were 17 and 9 minutes

for pre- and post-bed rest sessions, respectively. Table 1 shows the number of subjects who

performed HUTs pre- and post-bed rest as well the number who survived or failed the

test. Additionally, Supplementary Table A-2 reports the times to event for each of the 27

subjects pre- and post-bed rest.

Table 1: Number of subjects who performed HUTs pre- and post-bed rest (BR) as well the

number who survived or failed the test

Fail Pre-BR Post-BR Total

No 11 1 12

Yes 16 18 34

Total 27 19 46

Table 2 shows descriptive statistics for the last measurement collected during pre- (strat-

ified by failure) and post-bed rest HUTs for all eight cardiovascular variables. Note that

post-bed rest measures for all subjects were combined, as only one subject was able to

complete the HUT is this session.
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Table 2: Descriptive statistics for study subjects’ last measurements during the HUT; SD

represents standard deviation.

HR DBP SBP MAP TPR SV CO PP

Pre-Bed Rest, No Fail (N=11)

Mean 115.6 72.1 117.6 87.3 30.7 26.4 3.1 45.5

SD 13.0 8.7 13.3 9.8 10.3 8.9 1.1 7.7

Pre-Bed Rest, Fail (N=16)

Mean 106.6 55.1 84.0 64.8 26.4 26.0 2.7 28.9

SD 21.7 15.4 22.1 17.2 11.1 5.6 0.6 10.9

Post-Bed Rest (N=19)

Mean 127.2 54.8 83.8 64.5 26.9 19.1 2.5 29.0

SD 31.4 13.2 23.1 15.5 7.6 4.8 0.7 15.6
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5.2 Comparison of subsets of cardiovascular variables and vari-

ability indices

For 10- and 30-minute HUTs, the top 10 combinations of cardiovascular measure subsets

and variability index are shown in Table 3, ranked by p-values for testing the effect of bed

rest. We reiterate that only subsets including HR were evaluated, as others were clearly

more poorly performing. The most salient feature of Table 3 is that only one path length

variability index appeared among the top 10 in either length of HUT. Furthermore, the

variability index (Vk) based on convex hull content appeared in 9 of the 10 entries for

30-minute HUTs, and in 5 of 10 for 10-minute HUTs. Four determinant-based indices

also appeared in the top 10, 10-minute results. It is also evident that the cardiovascular

measurements describing aspects of blood pressure (DBP , SBP , MAP , and PP ), were by

far the most commonly appearing in these two lists. Due to collinearity of these measures,

all six 3-dimensional subsets comprised of HR and any two of the blood pressure measures

give the same results for convex hull and determinant variability indices so that only the one

with HR, DBP , and SBP is actually shown in Table 3. Given the relatively small HUT

maximum time of 10 minutes with observations recorded only once per minute, it is not

surprising that 2-dimensional versions of Vk dominated the 10-minute list (8 of 10 cases);

whereas 2- and 3-dimensional versions of Vk appeared five times each in the 30-minute list.

5.3 Survival prediction

Figure 4 shows the predicted conditional survival functions (Eq. 10) 10 minutes into HUTs

(pre- and post-bed rest) for Subject 9. Both survival times for this subject would have been

censored had the test stopped at 10 minutes. For this illustration, we fit the joint model

using the variability index V ∗, the convex hull area encompassed by the joint trajectories
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Table 3: Results of the comparison of subsets of cardiovascular variables and variability

indices. N represents the number of runs that converged out of 500, Test Limit is the length

of the HUT in minutes, pKS is the p-value for the KS-test comparing the empirical null

distribution of the test statistic for H0 : β3 = 0 to the generalized gamma approximation,

and p is the p-value from the generalized gamma distribution derived from the permutation

test (See Supplementary Appendix IV for details)

Summary Index Measures Test Limit N pKS p

Convex Hull HR, DBP 10 398 0.892 1.9E-6

Determinant HR, DBP 10 466 0.400 2.8E-6

Convex Hull HR, DBP , SBP 10 470 0.866 8.9E-6

Convex Hull HR, PP 10 47 0.407 2.9E-5

Determinant HR, PP 10 242 0.512 3.4E-5

Determinant HR, SBP 10 162 0.362 5.8E-5

Convex Hull HR, SV , PP 10 487 0.954 6.4E-5

Path Length HR, MAP 10 23 0.231 8.6E-5

Determinant HR, MAP 10 456 0.335 1.2E-4

Convex Hull HR, MAP 10 150 0.543 1.3E-4

Convex Hull HR, PP 30 483 0.894 8.3E-7

Convex Hull HR, SBP 30 481 0.763 2.4E-6

Convex Hull HR, TPR, PP 30 498 0.820 5.9E-6

Convex Hull HR, SV , PP 30 499 0.808 6.4E-6

Convex Hull HR, DBP 30 478 0.895 8.8E-6

Convex Hull HR, CO, PP 30 464 0.988 1.9E-5

Convex Hull HR, MAP 30 498 0.998 1.9E-5

Convex Hull HR, SV 30 496 0.945 4.2E-5

Convex Hull HR, SBP , SBP 30 499 0.735 5.2E-5

Path Length HR, DBP , SBP 30 49 0.157 7.8E-5
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Figure 4: Conditional survival probability for Subject 1 after a 30-minute HUT.

of HR and DBP , which was identified as the best-performing variability index in Table

3 for 10-minute HUTs. For the sake of simplicity of this demonstration, we assumed the

model has estimated a common value of p for both HUT sessions. Clearly after 10 minutes,

the two censored survival times by themselves tell us nothing about how bed rest affected

this subject. However, after fitting the joint model and using Eq. 10, we can see that the

predicted pre-and post- bed rest survival functions are actually quite different. In particular

from these curves, it can be seen that the estimated median conditional survival times were

approximately 29 minutes and 16 minutes for pre- and post-bed rest, respectively. In other

words, had the test been stopped at 10 minutes with this subject still tolerating the tilt both

pre- and post-bed rest, one could still find evidence that bed rest substantially increased

this subject’s state of OI.
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Figure 5: Goodness of fit plot. Average (Ave.) value of Ŝij (Eq. 10) estimated by the joint

model (JM) and the Kaplan-Meier estimate of the survival functions pre- and post-bed rest

(BR).

5.4 Goodness of fit

Using the study data, we repeatedly fitted the joint model with V ∗ as the variability

index and data at different censoring times t0 = 10, 15, 20, 25, and 30 minutes and then

calculated the Ŝij after each model fit (Eq. 10). Figure 5 shows the average value of Ŝij

and the Kaplan-Meier estimate of the survival functions pre- and post-bed rest. Note that

in this plot, the discrepancies between the two estimates are fairly small compared to the

range of values they span, suggesting negligible systematic estimation bias.

5.5 Simulation

Results of the six simulation scenarios are presented in Table 4. Convergence rates for

maximum-likelihood estimation of the joint model ranged from 475/500 to 486/500. Es-

timation of σ2, the within-subject variance of log(bij) were consistent with average esti-
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mates of log σ = −0.71 ranging from −0.64 to −0.72 for the six scenarios. On the other

hand, estimates of σ2
a, the between-subject variance were somewhat biased downwards,

with log σa = −0.36 and average estimates thereof ranging from −0.49 to −0.41. Of the six

fixed model parameters, the one of most interest is β3, which quantifies the interaction ef-

fect between treatment and bed rest. For the four non-null scenarios, estimates of β3 were

somewhat biased towards zero, with biases ranging from 9% (30-minute HUTs) to 25%

(10-minute HUTs). However for all six scenarios, coverage of the 95% two-sided confidence

interval for β3 was close to nominal (i.e. 95%), ranging from 90 to 96%. Comparisons

of power of the test of H0 : β3 = 0 versus H1 : β3 < 0 between our joint model using

the cardiovascular information and an analysis of only survival time data with a Weibull

lognormal frailty model resulted in substantially higher power with the joint model for

the four scenarios where H0 did not hold. Both methods provided power of close to the

nominal alpha level (0.05) for the last two scenarios under which H0 was true (Table 4).

All simulation results are shown in more detail in Supplementary Appendix III.

6 Discussion

We developed a joint model for survival and two time scales of longitudinal data to make

inference about treatment effects in the setting of HUTs during which concurrent, multi-

variate cardiovascular data are collected. The main feature of our model is that it exploited

the rate of change of the cardiovascular data’s variability within HUTs, manifested in three

proposed variability indices, which represent the within-HUT longitudinal data in a way

that can be directly related to survival time distributional parameters. Our method accom-

modates repeated-measures survival data, does not make any strict assumptions regarding

the distribution of the rate of change of the variability index, and accounts for trend model
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Table 4: Results of power comparison. N represents the number of runs that converged out

of 500, PowerJM represents power of test of β3 = 0 using the joint model and, and PowerS

represents power using the survival model.

Set N PowerJM PowerS

1 484 0.508 0.298

2 486 0.887 0.574

3 477 0.233 0.155

4 487 0.869 0.466

5 486 0.043 0.064

6 475 0.040 0.051

uncertainty and measurement error. Through simulation, we demonstrate the effectiveness

of our model compared to traditional survival methods aimed at evaluating a hypothetical

countermeasure against OI. In our application, we propose the most informative combina-

tion of cardiovascular data and variability index to assess the effect of bed rest on a HUT.

Additionally, we provide a strategy for constructing dynamic prediction plots that can be

used to estimate survival in a HUT in the presence of highly censored data.

Previous observations from HUT studies have suggested that large oscillations in heart

rate and blood pressure while standing are indicative of an inability of the cardiovascular

system to fully compensate for the stress associated with standing and that syncope will

ensue if the upright posture is maintained (Lipsitz et al., 1997; Julu et al., 2003). In our

study, we have additionally observed that typically, large jumps in the variability index early

in a HUT were more predictive of presyncope. Thus, we weighted the median regression

models inversely with time when estimating the slopes of the variability indices.
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We assume that a reduced ability to tolerate the HUT due to greater OI in a subject

would be manifested in increases of all three versions of the variability index. However,

there are differences in the way these versions change with time as a HUT proceeds. The

cumulative path length is strictly increasing and ignores direction. Thus, long excursions

in RM are penalized whether they exhibit a trend in some direction or whether they are

oscillatory around some common point. The M th root determinant is generally increasing,

but can decrease if a new point is near the mean of the previous points. In this case, the

new point is “rewarded” in the sense that the updated value of the variability index is

lower. The M th root convex hull content is dependent on direction and is non-decreasing

in time. However, this index is unchanged for new points in the interior of the previous

convex hull and only increases if a new point is outside the previous hull. Thus, in a sense,

excursions within the scope of previous values are not penalized.

Our study is limited in that we were unable to explore larger dimensions for the vari-

ability indices due to the limited number of subjects and dependency among covariates.

For example, the blood pressure measures (DBP , SBP , MAP , PP ) form a linearly de-

pendent group of rank two. Therefore, all pairwise combinations of these measures would

produce identical values for the convex hull and determinant variability indices, and us-

ing three or more of these measures would result in indices equal to zero. However since

the calculation of the variability index is performed prior to model estimation, exploring

larger dimension spaces would not affect computation time for the joint model estimation.

While our approach seemingly takes the form of a dimension reduction technique for the

multivariate, within-HUT longitudinal data, we emphasize that including superfluous, but

erratic covariates in the variability index may overshadow the underlying relations. Thus

when determining the best combination of covariates within a variability index, we recom-

mend using the convex hull or determinant, as the path length is sensitive to subjective
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or arbitrary normalization factors which may exacerbate the effect of uninfluential covari-

ates’ inclusion. Furthermore in our simulation study, the joint model’s estimation was

most sensitive to initialization with path length as the longitudinal outcome, often fail-

ing to converge. Another limitation is that we estimate the slope of the variability index

separately for each individual outside of our joint model’s estimation. While this has its

advantages computationally, the two-stage approach may potentially bias model estimates

(Lawrence Gould et al., 2015). As a result, our joint model contains two sources of er-

ror: (1) approximating a subject’s “cardiovascular condition” with surrogate measures and

(2) possibly mis-specifying not only the mean trajectory, but also the distribution for the

summary index around the mean.

Our method is applicable to settings in which data are collected more frequently, how-

ever in our application, we were limited to cardiovascular measures measured only once

per minute. In studies where the cardiovascular data is measured at higher frequency

within HUTs, one could incorporate higher-dimensional data into variability indices and

then model their trajectories parametrically or semi-parametrically.

While the focus of this work was to capture the essential information contained in

the multivariate trajectories of cardiovascular measures into summary variability indices

that could be used to evaluate the effect of experimental conditions on OI, future studies

also could take advantage of this methodology to investigate clinical populations, such as

postural orthostatic tachardia syndrome and acute autonomic failure patients.

SUPPLEMENTARY MATERIAL

Supplementary Appendix I Description of convex hull. Contained in Supplementary

Material pdf.
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Supplementary Appendix II Heuristic example of relation between slope of variability

indices and survival time. Contained in Supplementary Material pdf.

Supplementary Appendix III Full description of how data were simulated. Contained

in Supplementary Material pdf.

Supplementary Appendix IV Description of how p-values were obtained for bed rest

study application. Contained in Supplementary Material pdf.

Tutorial This tutorial uses an example data set to illustrate the estimation of our joint

model using Stata software. Contained in HUT Tutorial Word document.

Code Code to run joint model. Stata files - ott.ado, ottlik.ado, gausshermite5.dta, gaussh-

ermite10.dta, gausshermite15.dta, and gausshermite20.dta

Example Data File contained example data for tutorial. Stata file - ott testdata.dta

7 BibTeX

References

Bates, D. M. and J. C. Pinheiro (1998). Computational methods for multilevel modelling.

University of Wisconsin, Madison, WI , 1–29.

Buckey, J., L. D. Lane, B. D. Levine, D. E. Watenpaugh, S. Wright, W. Moore, F. Gaffney,

and C. Blomqvist (1996). Orthostatic intolerance after spaceflight. Journal of Applied

Physiology 81 (1), 7–18.

31



Catterson, A. D., H. A. McCutcheon, M. H. A, and R. A. Pollard (1963). Aeromedi-

cal observations. Mercury Project Summary. http://www.hq.nasa.gov/office/pao/

History/SP-45/ch18.htm. Accessed: 2016-08-01.

Fritsch-Yelle, J. M., P. A. Whitson, R. L. Bondar, and T. E. Brown (1996). Subnormal

norepinephrine release relates to presyncope in astronauts after spaceflight. Journal of

Applied Physiology 81 (5), 2134–2141.

Han, J., E. H. Slate, and E. A. Peña (2007). Parametric latent class joint model for a

longitudinal biomarker and recurrent events. Statistics in Medicine 26 (29), 5285–5302.

Julu, P., V. Cooper, S. Hansen, and R. Hainsworth (2003). Cardiovascular regulation in

the period preceding vasovagal syncope in conscious humans. The Journal of Physiol-

ogy 549 (1), 299–311.

Koehler, E., E. Brown, and S. J.-P. Haneuse (2009). On the assessment of Monte Carlo

error in simulation-based statistical analyses. The American Statistician 63 (2), 155–162.

Lawrence Gould, A., M. E. Boye, M. J. Crowther, J. G. Ibrahim, G. Quartey, S. Micallef,

and F. Y. Bois (2015). Joint modeling of survival and longitudinal non-survival data:

Current methods and issues. Report of the DIA Bayesian joint modeling working group.

Statistics in Medicine 34 (14), 2181–2195.

Lee, S., A. H. Feiveson, M. B. Stenger, S. P. Stein, and S. H. Platts (2011). Orthostatic

hypotension after long-duration space flight: NASA’s experiences from the International

Space Station. Medical Science Sports Exercise.

Lipsitz, L. A., R. Morin, M. Gagnon, D. Kiely, and A. Medina (1997). Vasomotor insta-

32



bility preceding tilt-induced syncope: Does respiration play a role? Journal of Applied

Physiology 83 (2), 383–390.

Meck, J. V., S. A. Dreyer, and L. E. Warren (2009). Long-duration head-down bed rest:

Project overview, vital signs, and fluid balance. Aviation, Space, and Environmental

Medicine 80 (Supplement 1), A1–A8.

Meck, J. V., C. J. Reyes, S. A. Perez, A. L. Goldberger, and M. G. Ziegler (2001). Marked

exacerbation of orthostatic intolerance after long-vs. short-duration spaceflight in veteran

astronauts. Psychosomatic Medicine 63 (6), 865–873.

Mudholkar, G. S. and D. K. Srivastava (1993). Exponentiated weibull family for analyzing

bathtub failure-rate data. IEEE Transactions on Reliability 42 (2), 299–302.

Platts, S. H., D. S. Martin, M. B. Stenger, S. A. Perez, L. C. Ribeiro, R. Summers, and

J. V. Meck (2009). Cardiovascular adaptations to long-duration head-down bed rest.

Aviation, Space, and Environmental Medicine 80 (Supplement 1), A29–A36.

Platts, S. H., J. A. Tuxhorn, L. C. Ribeiro, M. B. Stenger, S. Lee, and J. V. Meck (2009).

Compression garments as countermeasures to orthostatic intolerance. Aviation, space,

and environmental medicine 80 (5), 437–442.

Ramsay, J. O. and B. W. Silverman (2005). Functional data analysis. New York: Springer.

Ramsdell, C. D., T. J. Mullen, G. H. Sundby, S. Rostoft, N. Sheynberg, N. Aljuri, M. Maa,

R. Mukkamala, D. Sherman, K. Toska, et al. (2001). Midodrine prevents orthostatic

intolerance associated with simulated spaceflight. Journal of Applied Physiology 90 (6),

2245–2248.

33



Ratcliffe, S. J., W. Guo, and T. R. Ten Have (2004). Joint modeling of longitudinal and

survival data via a common frailty. Biometrics 60 (4), 892–899.

Rizopoulos, D. (2012). Joint models for longitudinal and time-to-event data: With appli-

cations in R. Boca Raton: CRC Press.

Rizopoulos, D. (2014). The R package JMbayes for fitting joint models for longitudinal

and time-to-event data using MCMC. arXiv preprint arXiv:1404.7625 .

Song, X., M. Davidian, and A. A. Tsiatis (2002). A semiparametric likelihood approach to

joint modeling of longitudinal and time-to-event data. Biometrics 58 (4), 742–753.

StataCorp (2015, College Station, TX: StataCorp LP). Stata statistical software: Release

14.

Tsiatis, A. A. and M. Davidian (2004). Joint modeling of longitudinal and time-to-event

data: An overview. Statistica Sinica, 809–834.

Wu, L., W. Liu, G. Y. Yi, and Y. Huang (2011). Analysis of longitudinal and survival data:

joint modeling, inference methods, and issues. Journal of Probability and Statistics 2012.

Ye, W., X. Lin, and J. M. Taylor (2008). Semiparametric modeling of longitudinal mea-

surements and time-to-event data–a two-stage regression calibration approach. Biomet-

rics 64 (4), 1238–1246.

34


