National Aeronautics and Space Administration

ORSAT Modelling and Assessment

Chris Ostrom* & Chris Sanchez×

*HX5 ×ERC NASA Orbital Debris Program Office

4th International Workshop on Space Debris Reentry, Darmstadt, 1 March 2018

Outline

ORSAT Models

- Aerodynamics
- Aerothermodynamics
- Trajectory
- Heat transfer & conduction
- Casualty Area
- Risk calculation

ORSAT Assessment Workflow

- Fragment list
- Input generation
- Input visualization
- Running ORSAT
- Reconciling independent analyses
- Conclusions and Future Work

ORSAT Overview

- ORSAT has six modules (trajectory, atmosphere, aerodynamics, aerothermodynamics, thermal, debris casualty area/risk)
- Basic method of input is to obtain trajectory data at entry interface and component data (dimensions, mass, & material) before starting analysis
- Central theme is that integrated heat load or absorbed heat is computed over time during entry; when this value exceeds material heat of ablation, object is considered to demise
- If object survives, ORSAT predicts debris casualty area and risk to humans on ground
- Parent body breakup altitude is assumed (normally 78 km based on Aerospace observations) but can be varied

ORSAT Overview (Cont'd.)

- Aerothermal, ablation-only code
- Conventional material models
 - Currently no charring, cracking, or pyrolysis modules

ORSAT Overview (Cont'd.)

- Hierarchy of components is critical to input
- Components are modelled using a set of 10 shape primitives and 80+ aerospace materials
- Key output in ORSAT analysis is plot of demise altitude vs. downrange of all components
- Sample plot of sample spacecraft component demise altitudes shown in next slides
- For targeted entry, ORSAT can provide ground track of latitude vs. longitude

Preprocessing

- Automatic generation of ORSAT input file from parts list
- Color coding by 'demise score'
- Non-standard materials easily incorporated

🔯 🗄 🐬 🖑 - =		Fragments6_2 - Excel										– 8 ×	
FLE HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW DEVELOPER Ostrom, Christopher L. (JSC-XIIII)/Jacobs Technoly											Technology	/, Inc.] * 🔍	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ext & Center ~ 5₀ Number 5₀ + 00 Formatir	onal Format as ing + Table +	Normal Check Cell	Bad Explan	Good atory Inpu Styles	d t	Neutral Linked Cell	Calculation × Note ₹	Insert Delete Forma Cells	t ∑ AutoSun Fill ▼ Clear ▼	Sort & Find & Filter * Select *		~
C9 • : 🗙 🗸 f_x GaAs													~
A	ВС	D E	F	G H	i i	ј к	: L I	M N O	P Q	R S	T U	v	W
1 Name	Aero Mass Material Typ	ody Therm ype Mass	nal Diameter/ Width Lo	ength Hei	ght Thickness	Nodes Quant	tity Fragment	Generate *.IN F	ile Read DAS CSV				
2 Humphrey	11.976 Aluminum (generic) Box	ox 11.9	976 0.200	0.300 0.	200 0.016	23	1	Height is required for	r boxes and flat plates (othe	erwise ignored)			
3 Battery Box	0.500 Aluminum (generic) Box	ox 1.5	511 0.090	0.120 0.	060 0.019	29	1						
4 Battery	0.048 Stainless Steel (generic) Cyl	ylinder 0.0	048 0.019	0.065	0.002	2	15						
5 Telescope	1.000 Aluminum 7075-T6 Cyl	ylinder 1.0	000 0.080	0.150	0.011	16	2						
6 Lens	0.110 ULE Glass (Corning 7971) Flat	at Plate 0.0	000 0.080	0.080		1	2						
7 Electronics radiator	0.043 Steel AISI 304 Box	ox 0.0	043 0.050	0.050 0.	002 0.001	1	1						
8 Motherboard	0.200 Fiberglass Flat	at Plate 0.0	000 0.150	0.200		1	3						
9 Solar Cell 1	0.100 GaAs	at Plate 0.0	000 0.200	0.300		1	1						
10 Solar Cell 2	0.067 GaAs Flat	at Plate 0.0	000 0.200	0.200		1	1						
11 Solar Cell 3	0.050 GaAs Flat	at Plate 0.0	000 0.100	0.300		1	1						
12 Rxn Wheel	0.100 Lead Element Cyl	ylinder 0.1	100 0.076	0.025	0.001	2	4						
13 Coolant Tank	0.080 Aluminum 6061-T6 Spl	phere 0.0	080 0.095		0.001	1	1						
14 Coolant	0.500 Water Spł	phere 0.0	000 0.090				1						
15 Cold Gas Tank	0.600 Stainless Steel (generic) Sph	phere 0.6	600 0.095		0.003	4	2						
16 Piping	0.068 Aluminum (generic) Cyl	ylinder 0.0	068 0.020	0.100	0.006	8	4						

Input Visualization

 New visualization tool allows us to see what ORSAT thinks each object looks like (in piece-by-piece view):

Running ORSAT

• Standard initial conditions are used to begin simulation

- 0.1-deg. FPA at 122 km reentry interface
- 78 km breakup altitude for parent objects

• Objects propagated until demise or ground impact

 Fragments that show low-altitude demise, or high total thermal load typically re-run, varying initial conditions to determine most likely outcome

Independent Analyses

• Each ORSAT project is assessed by two analysts

- End-to-end independent analysis to ensure most accurate outcome

• Results are compared, differences reconciled, and finalized

- Modelling assumptions challenged and defended
- Analyzed geometry examined for similarity to as-built components
- Any differences and rationale are archived for future review and reference

Demise Altitude vs. Downrange for Example Spacecraft

Demise Altitude (km)

Future Work

ORSAT and DAS updates

- Updated NS 8719.14, Process for Limiting Orbital Debris
 - Currently under revision by NASA
- Increased automation of ORSAT process
 - Develop database of sample object reentries to estimate likelihood of survival prior to any analysis
- Probabilistic risk assessment and Parametric Studies

Future Work (Cont'd.)

- Adding new aerospace materials to database
- Continue Latitude Bias research
 - Distribution of FPA at entry interface
- New CFRP and GFRP model development
 - Supported by plasma and arcjet testing in 2018
- Characterizing high-altitude pyrolysis effects

National Aeronautics and Space Administration

