A D- and 15N-rich micrometer-sized aggregate of organic matter in a xenolithic clast from the Zag ordinary chondrite

Yoko Kebukawa¹*, Motoo Ito², Michael E. Zolensky³, Zia Rahman⁴, Hiroki Suga⁵, Aiko Nakato⁶, Queenie H. S. Chan³†, Marc Fries³, Yasuo Takeichi⁷, Yoshio Takahashi⁸, Kazuhiko Mase⁷, and Kensei Kobayashi¹

*Corresponding author: kebukawa@ynu.ac.jp

¹Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
²Kochi Institute for Core Sample Research, JAMSTEC, B200 Monobe, Nankoku, Kochi 783-8502, Japan
³ARES, NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058, USA
⁴Jacobs, NASA Johnson Space Center, Houston, TX 77058, USA
⁵Department of Earth and Planetary Systems Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
⁶Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyoku, Kyoto 606-8502, Japan
⁷Institute of Materials Structure Science, High-Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
⁸Department of Earth and Planetary Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
†Current address: Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
Summary

The nature and origin of extraterrestrial organic matter are still under debate despite the significant progress in the analyses and experimental approaches in this field over the last five decades. Xenolithic clasts are often found in a wide variety of meteorite groups, some of which contain exotic organic matter (OM). The Zag meteorite is a thermally-metamorphosed H ordinary chondrite. It contains a primitive xenolithic clast that has been proposed to have originated from Ceres, which was accreted to the Zag host asteroid after metamorphism. The cm-sized clast contains abundant large carbon-rich (mostly organic) grains or aggregates up to 20 μm. Such large OM grains are unique among astromaterials with respect to the size. Here we report organic and isotope analyses of a large (~10 μm) aggregate of solid OM in the Zag clast. The X-ray micro-spectroscopic technique revealed that the OM has sp^2 bonded carbon with no other functional groups nor graphitic feature (1s-σ^* exciton), and thus it is distinguished from most of the OM in carbonaceous meteorites. The apparent absence of functional groups in the OM suggests that it is composed of hydrocarbon networks with less heteroatoms, and therefore the OM aggregate is similar to hydrogenated amorphous carbon (HAC). The OM aggregate has high D/H and ^{15}N/^{14}N ratios, suggesting that it originated in a very cold environment such as the interstellar medium or outer region of the solar nebula, while the OM is embedded in carbonate-bearing matrix resulting from aqueous activities. Thus the high D/H ratio must have survived the extensive late-stage aqueous processing. It is not in the case for OM in carbonaceous chondrites of which the D/H ratio was reduced by the alteration via the D-H exchange of water. It indicates that both the OM precursors and the water had high D/H ratios, similar to the water in Enceladus. Our results support the idea that the clast originated from Ceres, or at least, a hydrovolcanically active body similar to Ceres, and further imply that Ceres
originally formed in the outer Solar System and migrated to the main belt asteroid region21 as suggested by the “Grand tack” scenario22.

Xenolithic clasts are present in a wide variety of meteorite groups1-8. These clasts have been protected in host meteorites that are typically more metamorphosed and thus are physically strengthened by thermal annealing via heating processes occurring prior to the incorporation of the clasts. Hence, such clasts can contain primitive and fragile materials that would not have survived parent body alteration processes and atmospheric entry. The Zag meteorite is a H3-6 chondrite which fell in Morocco on August 1998, and is known to contain xenolithic, fluid inclusion-bearing halite crystals and a centimeter-sized carbonaceous chondrite-like clast1. These clasts and halite crystals in the Zag meteorite have been proposed to be materials from dwarf planet 1/Ceres in light of their mineralogy and the orbital dynamics of a possible parent body9,11. The Zag clast consists of saponite, serpentine, Ca-Fe-Mg carbonates, Fe-Ni sulfides, magnetite, halite, minor olivine and pyroxene, as well as abundant large OM grains or aggregates up to 20 μm (Fig. 1), all consistent with formation on a large, aqueously active, carbonaceous body, e.g., Ceres10,11,23. Ceres’ orbit crosses that of the proposed H chondrite parent body, asteroid 6/Hebe9,24. The current mean infall velocity of material transferred from Ceres to Hebe is approximately 1.20 to 1.38 km/s, although this transfer velocity could have been lower in the past9. This infall velocity is generally relatively low for transfer of material between inner Solar System bodies and thus survival of fragile material would be possible.
We analyzed the molecular structure and isotope chemistry of a focused ion beam (FIB) ultra-thin section obtained from an OM aggregate using scanning transmission X-ray microscopy (STXM) and nanoscale secondary ion mass spectrometry (NanoSIMS).

![Fig. 1: Backscattered electron (BSE) image of a polished thin section of the organic aggregate (dark) in the carbonaceous clast in the Zag meteorite.](image)

FIB section was subsampled from yellow region.

The FIB section obtained from the OM aggregate (Fig. 1) showed a large carbon-dominated area over 10 μm in width that corresponded to the OM aggregate (Fig. 2). A carbon X-ray absorption near edge structure (C-XANES) spectrum of the OM aggregate showed a peak at 284.8 eV that is assigned to \(sp^2 \) (aromatic) carbon (Fig. 2b,c in red). The surrounding matrix area showed a peak at 290.3 eV that is assigned to carbonates (CO₃) with some organic features at 284.8 eV, 286.3 eV (assigned to ketone [C=O]) and 288.5 eV (assigned to carboxyl/ester [(C=O)O]) (Fig. 2b,c in green). The C-XANES spectrum of the OM aggregate does not show
other peaks that are characteristic of insoluble organic matter (IOM) in primitive chondrites (e.g., C=O and (C=O)O indicating primitive OM in Murchison meteorite), nor that in the thermally-metamorphosed meteorites (e.g., 1s-σ* exciton at 291.7 eV indicating graphene structures in the Allende meteorite). The C-XANES of the OM aggregate most resembles sp²-rich hydrogenated amorphous carbon (HAC, also written as a-C:H) like material. No detectable nitrogen features were observed in N-XANES spectra of the OM aggregate, probably due to low concentration of nitrogen, while matrix showed a small peak at 401.0 eV that is tentatively assigned to amine or NH containing heterocycles (Fig. 2d). The 401.0 eV peak could be atmospheric N₂ which was either trapped in the inorganic phase or generated during X-ray exposure, but high δ¹⁵N (shown below) in the matrix area indicate the presence of indigenous nitrogen compounds.

Fig. 3 shows high spatial resolution secondary ion mass spectrometry (NanoSIMS) isotope δD, δ¹⁵N and ^12C/¹⁴N/¹⁶O images of the FIB section containing the OM aggregate (same section shown in Fig. 2). Hydrogen, nitrogen and carbon isotopic and elemental ratios of the OM aggregate and surrounding matrix are summarized in Table 1. The OM aggregate had a large δD and δ¹⁵N anomaly; δD = 2,370 ± 74 ‰ and δ¹⁵N = 696 ± 100 ‰ on average. The δ¹³C value was −43 ± 20 ‰ that was broadly consistent with the values of IOM from CR chondrites and the Bells meteorite (an unusual CM2 chondrite) within analytical error. Two isotopic hot spots were observed; one is D- and ^¹⁵N-rich (δD = 4,200 ± 550 ‰ and δ¹⁵N = 3,413 ± 1,070 ‰), and the other is D-rich (δD = 4,500 ± 900 ‰) and less ^¹⁵N-rich (724 ± 780 ‰) (Fig. 3e,f). These enrichments of the heavy isotopes suggest that the OM or its precursors formed by low-temperature chemistry in molecular clouds or the outer protosolar disk. The origin of the
isotope heterogeneities (hot spots) in the OM aggregate in the Zag clast is puzzling since no molecular heterogeneity was observed between the hot spots and the average OM area (Fig. 2c).

N-XANES spectra and NanoSIMS 12C14N/16O images of the Zag clast FIB section showed a relatively high concentration of nitrogen in the matrix region. A rough estimation by NanoSIMS for N/C elemental ratio of matrix was 0.036 ± 0.006 while N/C ratio of OM aggregate was 0.022 ± 0.003. The majority of carbon in the matrix comes from carbonates, therefore the N/C$_{OM}$ ratio of the matrix would have been higher.

Fig. 2: Scanning transmission X-ray microscopy (STXM) analyses of a focused ion beam (FIB) section containing the organic matter (OM) aggregate in the Zag clast. (a) Carbon-map indicates the section is dominated by carbon. The location of the δD image (Fig. 3) is indicated by red dots. (b) Composition map derived from C-XANES of OM (red) and matrix (green). (c) Carbon X-ray absorption near-edge structure (C-XANES) of OM aggregate revealed that it is hydrogenated amorphous carbon (HAC)-like material dominated by sp^2 carbon (284.8
eV) while the surrounding matrix is mainly carbonates (290.3 eV) with some OM at 286.3 eV that is assigned to ketone (C=O) and 288.5 eV that is assigned to carboxyl/ester [(C=O)O].

The OM aggregate does not show detectable N-XANES features while matrix shows a peak at 401.0 eV which is assigned to amine or NH in heterocycles. The C- and N-XANES obtained from isotope hot spots (HS, see Fig. 3) are also shown.

Fig. 3: NanoSIMS isotope images of the FIB section containing the organic matter (OM) aggregate in the Zag clast (same section with Fig. 2). (a) δ^D image (the location is indicated in red dots in Fig. 2a), (b) $\delta^{15}N$ image and (c) $^{12}C^{14}N/^{16}O$ ratio image. Isotopic hot spots are indicated by circles.
Table 1: Hydrogen, nitrogen and carbon isotopic and elemental ratios of organic matter (OM) aggregate and matrix of the Zag clast measured by NanoSIMS.

<table>
<thead>
<tr>
<th></th>
<th>δD ‰</th>
<th>δ15N ‰</th>
<th>δ13C ‰</th>
<th>H/C</th>
<th>N/C</th>
<th>O/C</th>
<th>O/C a</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM aggregate</td>
<td>2,370±74</td>
<td>696±100</td>
<td>−43±20</td>
<td>0.60±0.03</td>
<td>0.022±0.003</td>
<td>0.15±0.02</td>
<td>~0.06-0.07</td>
</tr>
<tr>
<td>Hot spot #1</td>
<td>4,200±550</td>
<td>3,413±1,070</td>
<td>0.41±0.02</td>
<td>0.032±0.006</td>
<td>0.16±0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot spot #2</td>
<td>4,500±900</td>
<td>724±780</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix</td>
<td>−</td>
<td>301±98</td>
<td>10±41</td>
<td>0.036±0.001</td>
<td></td>
<td></td>
<td>~1.4-1.6</td>
</tr>
</tbody>
</table>

a Estimated by C,N,O K-edge X-ray absorption spectra.

The large, micrometer-sized OM grains/aggregates are abundant in the Zag clast but are rare in other meteorites - a very few are known in CR chondrites. The OM aggregate in the Zag clast studied here is somewhat similar to ultracarbonaceous Antarctic micrometeorites (UCAMM) that are considered as cometary materials, with respect to the size and the high concentrations of heavy isotopes (D and 15N). However, C- and N-XANES analyses of UCAMM indicated the presence of O- and N-bearing functional groups, e.g., C=O, (C=O)O, C=N, and NHx(C=O), that is not the case for the OM aggregate in the Zag clast. Cometary OM (CHON particles from comet Halley and returned samples from comet 81P/Wild 2) has higher H, N and O contents, compared to the OM aggregates. The C-XANES spectra of comet 81P/Wild2 particles, as well as anhydrous and hydrated chondritic interplanetary dust particles and chondritic micrometeorites (some of which probably originated from comets) also show O-bearing functional groups (e.g., C=O at ~286.5 eV, (C=O)O at ~288.5 eV). The C-XANES spectrum of the OM aggregate does not resemble IOM in primitive CI/CM/CR chondrites that shows C=O at ~286.5 eV, (C=O)O at ~288.5 eV and sometime aliphatic carbon at ~287.5 eV. Even the C-XANES spectra of the IOM from thermally-
metamorphosed chondrites (e.g., CV and CO chondrites and ordinary chondrites) have a 288.5 eV peak, in addition to 1s-σ* exciton at 291.7 eV indicating graphene structures, this is not the case for the OM aggregate. A rough estimation for the O/C elemental ratio of the OM aggregate from C,N,O X-ray absorption spectra is 0.06 to 0.07 (the method is reported elsewhere), that is lower than IOM extracted from CV, CO and ordinary chondrites. The O/C ratio obtained by NanoSIMS was 0.15, which can be attributed to uncertainty of O/C ratio obtained by NanoSIMS.

C-XANES spectra of “aromatic” nanoglobules in chondrites reported by De Gregorio et al. are similar to the OM aggregate in the Zag clast. In their study, some aromatic nanoglobules tend to have higher δ¹⁵N values than IOM-like nanoglobules, although the correlation between molecular structure and δ¹⁵N was rather ambiguous. The OM aggregate has isotopic heterogeneities without molecular structure heterogeneities, and it indicates that the OM aggregate consists of materials with different origins but which subsequently experienced similar chemical evolution pathways. Note that we also found a globular OM grain in the Zag clast (Extended Data Figure 1) but larger (~5 μm) than typical nanoglobules (<1 μm).

The high D/H and δ¹⁵N/¹⁴N ratios suggest that the OM aggregate originated in a very cold environment such as the interstellar medium or the outer region of the solar nebula. The OM aggregate is in close proximity to the aqueously altered matrix, which indicates that the OM aggregate was processed by the same aqueous event as the surrounding matrix. The low temperature and extended period of the aqueous event could have reduced substituted functional groups of the OM structure.

In the case of carbonaceous chondrites, significant decreases in D/H ratio of OM are accompanied by aqueous alteration mostly due to D-H exchange with D-poor water, e.g., the δD
The surrounding matrix contains N-rich compounds possibly in the form of amine or heterocycles. These N-bearing compounds would not share the same origin with the OM aggregate since the $\delta^{15}N$ value of the OM is $\sim700 \pm 100$ ‰ while the matrix is $\sim300 \pm 100$ ‰. IOM in carbonaceous chondrites is known to release ammonia up to $10 \mu g/mg$ via hydrothermal processing at 300–400 °C, but the $\delta^{15}N$ of the released fractions are higher than the original IOM43. In any case, N-rich compounds and carbonates in the matrix of the Zag clast is consistent with recent observation of ammoniated phyllosilicates and carbonates in the regolith of Ceres21,23,44. The recent discovery of ammoniated phyllosilicates on the surface of Ceres implies that material from the outer Solar System was incorporated into Ceres, either during its formation at great heliocentric distance or by incorporation of material transported into the main asteroid belt21. This is consistent with the high D/H and $^{15}N/^{14}N$ ratios of the OM aggregate as well as the observed extensive parent body aqueous alteration involving D-rich water. Our results further support the idea that Ceres originated in the outer region of the Solar System, then migrated
inward to the main belt region scattered by migrations of Jupiter and Saturn as required by the “Grand Tack” scenario21,22. Ceres could have originated as a salty ocean world similar to Enceladus45 and was subsequently transported to the main belt region where the icy ocean sublimated to leave behind salts, carbonates, clays and organic matter.

Acknowledgements

This work is supported by the Astrobiology Center Program of National Institutes of Natural Sciences (NINS) (Grant Number AB281004), and the NASA Hayabusa2 Participating Scientist Program (MEZ).
Methods

Sample preparation using a focused ion beam (FIB)

The OM aggregate was selected from a polished thin section of the xenolithic clast in the Zag meteorite using imaging from a JEOL 7600F field emission gun scanning electron microscope (FEG-SEM) at NASA/JSC. Approximately 100 nm-thick sections were subsampled from the OM aggregate in the Zag clast using a Quanta 3d FEG focused ion beam (FIB) instrument at NASA/JSC.

Scanning-Transmission X-ray Microscopy (STXM)

Carbon, nitrogen and oxygen X-ray absorption near edge structure (C,N,O-XANES) micro-spectroscopy was performed using the scanning-transmission X-ray microscopes (STXM) at BL13A of the Photon Factory, High Energy Accelerator Research Organization (KEK)46,47. The carbon map was obtained by acquiring pairs of images below and on the carbon K-edge, at 280 and 292 eV, respectively, and taking the $-\ln(I_{292}/I_{280})$ for each pixel. The C-XANES spectra were acquired with the energy step sizes (ΔE) of 0.1 eV in 283–295.5 eV region, 0.5 eV in 280–283 eV and 295.5–301.0 eV regions, and 1 eV in 301–310 eV region. For N-XANES, ΔE was 0.2 eV in 395–406 eV region, 0.5 eV in 385–395 eV and 406–410 eV regions, and 2 eV in 410–430 eV region. For O-XANES, ΔE was 0.2 eV in 530–540 eV region, 1 eV in 520–530 eV and 540–560 eV regions, and 2 eV in 560–580 eV region. The acquisition time per energy step was 5 to 10 ms.

NanoSIMS ion microprobe
H, C and N isotope imaging measurements of the Zag clast FIB section were carried out with the JAMSTEC NanoSIMS 50L. Detailed measurement conditions are described elsewhere48,49. Briefly, a focused Cs+ primary ion beam of 0.8 to 4 pA was rastered over 25 µm x 25 µm areas on the sample and a standard material (1-hydroxybenzotriazole hydrate; C\textsubscript{6}H\textsubscript{5}N\textsubscript{3}O\cdot xH\textsubscript{2}O, calculated as x=1). The spatial resolution was estimated to be ~100 nm for C and N isotope images, and ~200 nm for H isotope image. Each run repeatedly scanned (10 to 20 times) over the same area. Individual images consist of 256 x 256 pixels with acquisition time of 6,000 µs/pixel (393 sec/frame) for C and N isotope images, and of 5,000 µs/pixel (328 sec/frame) for H isotope image. Each measurement was started after stabilization of the secondary ion intensities following a pre-sputtering procedure of approximately 1–3 min. The sample was coated with a 10 nm Au thin film to mitigate electrostatic charge on the surface. During the analysis, the mass peaks were centered automatically every 5 cycles.

References

9 Fries, M., Messenger, S., Steele, A. & Zolensky, M. Do We Already have Samples of Ceres? H Chondrite Halites and the Ceres-Hebe Link. 76th Annual Meeting of the Meteoritical Society, Abstract #5266 (2013).

Extended Data Figure 1: Backscattered electron images (BEI) of organic grains/aggregates (black) in the clast in the Zag clast.
Extended Data Figure 2: **Images of before and during sample preparation.** (a) Backscatter electron image of the clast from the Zag meteorite. The OM aggregate analyzed here is shown in red squares. (b) Backscatter electron image of the focused ion beam (FIB) section from the OM aggregate in the Zag clast during the FIB milling process.
Extended Data Figure 3: **STXM elemental map of the FIB section including the OM aggregates in the Zag clast.** (a) C-map: $-\ln(I_{292}/I_{280})$, (b) N-map: $-\ln(I_{405}/I_{395})$, (c) O-map: $-\ln(I_{539}/I_{525})$, (d) Fe-map: $-\ln(I_{709}/I_{705})$, and (e) Ca-map: $-\ln(I_{349}/I_{345})$.
Extended Data Figure 4: **O-XANES spectra of the Zag clast.** The OM aggregate is shown in red, and surrounding matrix is in green.