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TECHNICAL MEMORANDUM

MULTILAYER INSULATION ASCENT VENTING MODEL

1.  INTRODUCTION

	 This Technical Memorandum (TM) describes the multilayer insulation (MLI) ascent vent-
ing model, a new predictive mathematical modeling capability allowing estimation of the thermal 
and venting performance of flight cryogenic storage tank MLI systems.

	 Future space missions will include vehicles using chemical or nuclear thermal propulsion. 
These propulsion technologies utilize liquid hydrogen (LH2), liquid oxygen, and liquid methane  
as propellants. These cryogens must be stored beginning at Earth launch and throughout flight 
until needed for engine operation. Storage times will vary from several hours to many months,  
depending on when propulsion is required.

	 During a typical space flight, the cryogen storage tanks will be subjected to warm and 
cold environments. Most of these environments are warmer than the cryogenic propellants, so the 
resulting environmental heat loads must be removed from the stored liquids or intercepted before 
they reach the stored liquids in order to reduce or eliminate propellant losses. The tank insulation 
system helps by deflecting a portion of the environmental heat loads.

	 Detailed knowledge of expected performance of cryogenic propellant storage tank MLI is 
essential for the development of efficient tank insulation designs and accurate estimation of cryo-
genic propellant quantities for flight. Excellent predictive tools are available for application  
to orbital and transit environments and such heat loads are well understood.

	 The thermal and venting transient experienced by tank-applied MLI in the Earth-to-orbit 
environment is very dynamic and not well characterized. Until now, an accurate and reliable predic-
tive tool for this problem has been lacking. A new approach has been taken with the development 
of the MLI ascent venting model. This new predictive code is a first principles-based engineering 
model that tracks the time history of the mass and temperature (internal energy) of the gas in each 
MLI layer. A continuum-based model is used for early portions of the trajectory while a kinetic 
theory-based model is used for the later portions of the trajectory, and the models are blended 
based on a reference mean free path λr. This should improve understanding of the Earth-to-orbit 
transient and enable better insulation system designs for in-space cryogenic propellant systems.
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2.  CODE OVERVIEW

2.1  Problem Setup

	 The overall schematic of the modeled system is displayed in figures 1 and 2. Here, there is  
a system of MLI blankets surrounding a tank of cryogen in either a ground test facility or a launch 
vehicle. The tank may be surrounded with spray-on foam insulation (SOFI). The pressure surround-
ing the tank is reduced to near vacuum levels by either a flight trajectory or a facility pump down 
profile. The current code tracks the thermodynamic state of the gas in the layers between the MLI 
and the heat transfer into the tank. The layers transfer energy from the warm boundary into the 
tank, and gas escapes from the MLI as the external pressure drops.

Vehicle Trajectory
Chamber Pump Down

OML
Chamber Shroud

PE ,TE

MLI Layers

SOFI

Ttank

LH2 Tank

m

q

•

•

Figure 1.  MLI heat transfer setup.
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Figure 2.  Mathematical model schematic.

	 The basic variables in the model are the temperatures of each of the layers in the MLI 
(TWi) and the mass trapped between each layer (mi). All properties of the gas in layer i requiring 
temperature are evaluated using the average of the neighboring wall temperatures: 0.5 × (TWi + 
TWi+1). It is assumed that the area variation between layers is small enough that geometrical con-
siderations can be ignored and a unit-sized planar area is adopted. Each of the layers has a given 
porosity, and the porosity of the outer mold line (OML) and shroud may be different from those  
of the layers. Variable locations are shown in figure 2.

2.2  Mass Transfer Model

	 As the pressure external to the MLI drops from near atmospheric pressure at the start  
of a launch or test down to near vacuum conditions, the residual gas trapped between the MLI  
layers will migrate out of the MLI. A continuum-based model for the mass per time (mi ) flowing 
from layer to layer is used for early portions of the trajectory while a kinetic theory-based model is 
used for the later portions of the trajectory, and the models are blended based on a reference mean 
free path λr = dp, where dp is the typical diameter of the pores in the MLI:

	 !mi = f λ,λr( ) !mk + 1− f λ,λr( )( ) !mc   .	 (1)

A plot of the proposed blending function is shown in figure 3.
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Figure 3.  Proposed blending function.

2.2.1  Kinetic Theory-Based Mass Transfer Model

	 The kinetic theory model is based on the assumption that the distribution of particle veloci-
ties in each volume is given by a Maxwellian distribution, i.e., the probability of finding a particle 
with velocity between Cx, Cy, Cz and Cx + dCx, Cy + dCy, Cz + dCz is given by:1

	
f Cx ,Cy,Cz( ) = a3 2

π 3 2 e
−a x

2C + y
2C + z

2C( )
  
,	 (2)

where 

	 a 	= m/2kT
	 m 	= mass of 1 molecule
	 k 	= Boltzmann constant
	 T 	= temperature.

The differential mass flux out of volume i into volume i +1 can be derived from the Maxwell  
distribution function as follows:

	
dmi
dt

= −Ai,i+1
a3 2

π 3 2 −∞

+∞
∫ −∞

+∞
∫ 0

+∞
∫ ρiCx f Cx,Cy,Cz( )( )dCx dCy dCz   ,	 (3)

which can be evaluated to yield

	
dmi
dt

= −Ai,i+1ρi
Ci
4

  ,	 (4)



5

where Ci =
2

π1 2
2kTi
m

⎛
⎝⎜

⎞
⎠⎟
1 2

is the average particle speed in volume i. The kinetic theory mass flux 

equation is written in general as:

	
dmi
dt

= −Ai,i+1
ρi+1Ci+1

4
−
ρiCi
4

⎛
⎝⎜

⎞
⎠⎟
+Ai,i−1

ρi−1Ci−1
4

−
ρiCi
4

⎛
⎝⎜

⎞
⎠⎟

  .	 (5)

2.2.2  Continuum-Based Mass Transfer Model

	 The continuum-based model begins with the exact formula for the mass flow through  
an orifice of area A which has been expanded to a Mach number M from stagnation conditions  
Pt and Tt:

2

	
!m
A

=M 1+ γ −1
2

M2⎛
⎝

⎞
⎠

− γ +1( ) 2 γ −1( ) γ gc
R

⎛
⎝⎜

⎞
⎠⎟
1 2 Pt

Tt   .	 (6)

This equation was used as a basis for a model in which the Mach number M was determined  
by isentropically expanding the gas such that the dynamic pressure of the flow coming through the 
orifice was matched to the static pressure on the low pressure side of the orifice. However, a simpler 
approach was adopted in which the mass flow from volume i to volume i + 1 is given by:

	 !mi,i+1 ≈αA
Pi+1
Ti+1

−
Pi
Ti

⎛

⎝
⎜

⎞

⎠
⎟   ,	 (7)

where α is determined from numerical experiments. This formulation was found to behave better 
on large systems of equations. A comparison of the two approaches on a simple Joule-Thomson 
expansion is shown in figure 4.
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Figure 4.  Continuum-based mass transfer model applied to Joule-Thompson expansion.

2.2.3  Seam Strategy

	 Often the MLI blankets are applied around the tank in a set of discrete layers. As a first 
attempt at developing a model for this situation, consider the diagram shown in figure 5. In this  
situation, the pressures within each group of blankets are equalized by coupling the mean pressure 
in each group ( Pi ) to Pext using the following equation:

	 !mi,seam ≈αseamAseam
Pext
Text

−
Pi
Ti

⎛

⎝
⎜

⎞

⎠
⎟   .	 (8)

Group 1 Group 2 Group n
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e I
nte

r-b
lan

ke
t V

olu
me

Pext
• • •

Figure 5.  Blanket seam strategy.
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For pressure drop rates typical of launch profiles, αseam = α ≈ 0.005 is set.

2.3  Coupled Thermal Solver

	 In this effort the researchers chose to develop a model for the temperatures of the MLI  
layers and to assume that the temperature of the gas between these layers is the average of the neigh-
boring wall temperatures. The general time evolution equation for an interior layer follows:

	
MiCp

TWi
dt

=
κ i
dri

TWi+1 −TWi( ) + ki−1
dri−1

TWi−1 −TWi( )

	    

+ σ
1

εi+1
+ 1
εi
−1

TWi+1
4 −TW i

4( ) + σ
1

εi+1
+ 1
εi
−1

TWi−1
4 −TW i

4( )
  

,	 (9)

where σ is the Stefan-Boltzmann constant. For layer 1 TW0 = Ttank is set, and if  a layer of SOFI is 
present the conductivity of the gas κ0 is replaced by κSOFI and dr0 = drSOFI while TWN+1 = Text is 
set for layer N. 

	 The coupling of the thermal model to the mass transfer term model comes through gas  
conductivities (κ). A kinetic theory-based approximation is used in the simplest model:3

	 κ i =
9γ −5
8

ρiCvCi min λi ,dri( )   .	 (10)

In this simple model, the conductivity of the gas is independent of the pressure until the mean  
free path in gas layer i becomes greater than the spacing. At this point, the conductivity decays with 
particle density and the model switches seamlessly from the continuum to a free molecular approach.
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3.  TEST CASES

	 The new code has been applied to the A125 test at NASA Kennedy Space Center (KSC) 
and to the multipurpose hydrogen test bed (MHTB) test series at NASA Marshall Space Flight 
Center.

3.1  A125 Test Article

	 The A125 test was conducted at KSC using the Cryostat-100.4 The description of the test 
setup is taken from reference 4 (figures 1 and 2 mentioned here correspond to figures 6 and 7  
in this TM): 

[The Cryostat-100] is guarded on top and bottom for absolute thermal performance measurement. The 
basic schematic and a photograph of the overall arrangement, including the mechanical lift mecha-
nism, are shown in figure 1. A cold mass assembly, including the top and bottom guard chambers and 
a middle test chamber, is suspended from a domed lid atop the vacuum canister, as shown in figure 2.

Each of the three chambers is filled and vented through a single feedthrough (also connected from the 
lid) for easy operation and minimum overall heat leakage... All fluid and instrumentation feedthroughs 
are mounted and suspended from a top-domed lid for easy removal of the cold mass. 

Cryostat-100 includes an external heating system for bakeout and high heat load tests, as well as an 
internal heater system for fine control of the warm boundary temperature (WBT). Three custom-
designed funnel filling tubes (7.93-mm outside diameter) interface with the three LN2 feedthroughs 
(12.7-mm outside diameter) and provide the means for cooldown, filling, and replenishment by pouring 
from a small nonpressurized dewar. The filling tubes are removed when not being used. Connected to 
the top ports of the LN2 feedthroughs are the plastic tubing assemblies that route the boiloff  flow from 
all three liquid chambers to their respective mass flow meters.... The vacuum pumping system includes 
a directly connected turbopump and a separately plumbed mechanical pump. In addition, a gaseous 
nitrogen (GN2) supply system provides purging and residual gas pressure control to vacuum levels as 
low at 5 × 10−5 torr.

...A custom lift mechanism, shown in figure 1, allows the cold mass assembly and insulation test speci-
men to be manipulated easily. The location of temperature feedthroughs on the lid allows the sensors to 
move with the cold mass assembly when insulation specimens are installed.
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Figure 6.  Cryostat-100: (a) Basic schematic and (b) overall arrangement with lift mechanism.
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Figure 7.  Simplified views of Cryostat-100: (a) Overall 
system and (b) cold mass assembly.
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3.1.1  A125 Test Results

	 The A125 test article is a 40-layer, 16-mm-thick DuPont Mylar® net MLI configuration. 
Properties of the MLI are shown in table 1. A simulation has been been performed for this con-
figuration. A schematic of temperature probe locations is shown in figure 8. Plots of the cold and 
warm boundary temperature probes T2 and T12 versus time are shown in figure 9. A comparison 
of the measured and computed heat transfer rates is shown in figure 10. In general, the compari-
son between the heat transfer rates is good, although the predicted rate shows a departure from 
the measured values between 200 and 500 min. A comparision of the vaccum chamber pressures 
shown in figure 11 also indicates a rise and fall in the vaccum chamber pressure. Since gas conduc-
tion is still the dominate heat transfer rate in this regime, it is argued that if  this pressure departure 
were real, then it would have resulted in increased heat transfer. In order to investigate this possibil-
ity, a monotonically decaying pressure profile was constructed and the simulation was rerun. The 
results, shown in figures 12 and 13, demonstrate the improvement in agreement. Finally, tempera-
ture distriubutions within the MLI at the beginning and the end of the test are shown in figures 14 
and 15.

Table 1.  A125 properties.

Mass per layer (kg) 0.013

Cp (J/kg/K) 4,187

MLI emissivity* 0.0035T1/2

Tank emissivity* 0.12

Estimated gap between tank and MLI (m) 0.001

	 * See reference 5.

1 2 3 4 8 12 20
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30 40
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2

3

4 5 6 7 8 9 10

11
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13

F8_1741

Tank
Wall

Figure 8.  A125 temperature probe locations.



11

0
50

100

150

200

250

300

350

200 400 600 800 1,000 1,200

Te
m

pe
ra

tu
re

 (K
)

T2
T12

Time (min)

F9_1742Figure 9.  Warm and cold boundary temperatures (T2 and T12) in A125 test.

0 200 400 600

Time (min)

Q 
(W

/m
2 )

800 1,000 1,200 1,400

A125
Current Solver

103

102

101

100

10–1

F10_1741Figure 10.  !Q comparison of measured and predicted heat transfer rates in A125 test.



12

0 200 400 600

Time (min)

Pr
es

su
re

 (P
a)

800 1,000 1,200 1,400

106

104

102

100

10–2

10–4

F11_1741

P(1)
P(40)
A125 Data

Figure 11.  Comparison of pressures in the MLI in A125 test.

0 200 400 600

Time (min)

Pr
es

su
re

 (P
a)

800 1,000 1,200 1,400

106

104

102

100

10–2

10–4

F12_1741

P(1)
P(40)
A125 Data

Figure 12.  Monotonically decaying pressure profile in A125 test (smooth pressure profile).



13

0 200 400 600

Time (min)

Q 
(W

/m
2 )

800 1,000 1,200 1,400

A125
Current Solver

103

102

101

100

10–1

F13_1741Figure 13.  Q comparison of measured and predicted heat transfer rates in A125 
test (smooth profile).

280

260

240

220

200

180

160

140

120

100
0 5 10 15 20 25 30 35 40

Layer Number

Te
m

pe
ra

tu
re

 (K
)

A125
Current Solver

Figure 14.  Comparison of MLI temperature distributions at T = 0 hr in A125 test. 



14

0

300

250

200

150

100

50
5 10 15 20 25 30 35 40

Layer Number

Te
m

pe
ra

tu
re

 (K
)

A125
Current Solver

F15_1741Figure 15.  Comparison of MLI temperature distributions at T = 22 hr in A125 test.

3.2  Multipurpose Hydrogen Test Bed Test Article

	 The major test article elements consist of the MHTB tank, an environmental shroud,  
a cryogenic insulation subsystem, and test article instrumentation. Technical descriptions of each 
of these elements are summarized below, with further details presented in reference 6.

3.2.1  Multipurpose Hydrogen Test Bed Tank

	 The MHTB 5083 aluminum tank is cylindrical in shape with both a height and diameter of 
3.05 m and 2:1 elliptical domes as shown in figure 16. The tank has an internal volume of 18.09 m3 
and a surface area of 34.75 m2. The tank is ASME pressure vessel-coded for a maximum opera-
tional pressure of 344 kPa and was designed to accommodate various cryogenic fluid management 
technology and advanced concepts as updated versions become available. More details on the test 
article may be found in reference 5.



15

Tank Interface Support
Structure

Tank Support
Legs

Internal Capacitance
Probe

Cryo Insulation
SOFI: ≈3.5 cm Thick
MLI: 45 Layers

Pressurization Penetration
Fill/Drain Penetration
Tank Vent Penetration

Internal Instrument
Rake (Primary)

Environmental Shroud
Assembly

Work PlatformManhole Cover and
Pump-Out Port

Insulation Interstitial
Pressure Probe

Internal Instrument Rake
(Secondary)

Spray Bar/Heat
Exchanger

(Zero-Gravity
Pressure Control)

TVS Enclosure
Purge/Evacuation

Line

TVS Vent Flow Back-
Pressure Orifice

TVS Enclosure (Contains
Subsystem Hardware)

Figure 16.  MHTB test tank and supporting hardware schematic.

3.2.2  Environmental Shroud

	 The MHTB tank is enclosed within an environmental shroud that simulates a ground hold 
conditioning purge, similar to that in a payload bay, and enables the imposition of a range of uni-
form temperatures on the MLI external surfaces. Seen in figure 17, the shroud is 4.57 m high and 
3.65 m in diameter, and contains a purge ring for distributing dry N2. The shroud heater strips  
and cooling loops can impose either constant or time-dependent boundary temperatures ranging 
from 80 to 320 K on the MHTB exterior surfaces. 



16

Figure 17.  MHTB environmental shroud assembly.

3.2.3  Cryogenic Insulation Subsystem

	 The MHTB insulation concept consists of a combination of foam and variable density- 
(VD-) MLI. During ground hold and ascent flight the foam element enables a GN2 purge, as 
opposed to a helium purge, and reduces heat leak. The SOFI, termed Isofoam SS–1171, was applied 
directly to the tank surface with a robotic process at a thickness of 3.18 ± 0.63 cm which was the 
minimum that could be applied with available equipment and procedures at the time. An average 
thickness of 3.53 cm (1.4 in) was calculated based on measurements with a Kaman© eddy current 
device.

	 A 45-layer VD-MLI blanket placed over the SOFI provides thermal protection while at 
vacuum or orbital conditions. Unique features of the VD-MLI concept include utilization of  
a variable density (layers-per-unit thickness) concept for radiation shields to provide a more weight-
efficient insulation system and the use of fewer but larger perforations for venting during ascent 
to orbit. As illustrated in figure 18, the variable density was accomplished using bumper strips of 
variable thickness to provide more layers in warmer regions (16 layers/cm on outside segment), and 
fewer layers in the colder region where radiation blockage is less important (8 layers/cm). The layup 
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resulted in an estimated average layer density of 12 layers/cm (30 layers/in). The vent hole perfora-
tion pattern, which provides a 2% open area, is unusual in that the perforation size is large (1.27 cm 
(0.5 in) in diameter) and the holes are more widely spaced (7.6 cm (3 in)). Standard perforations are 
0.16 to 0.08 cm (0.063 to 0.031 in) in diameter with spacing of about 0.9 cm (0.37 in) and a +2%–
4% open area. The larger holes reduce the radiation view factor—hence, the radiation exchange—
between layers. Details of the MHTB insulation concept are summarized in table 2.

Prelaunch
Ground Hold

LH2

TSOFI = Approximately 111 K (200 °R)

Tank Wall
SOFI
MLI (Low Density)
MLI (Medium Density)
MLI (High Density)

Dry
GN2

Purge GN2
Chamber

Purge

TSOFI = <33 K (60 °R)

Orbit Hold
(Vacuum Conditions)

LH2

Warm Boundary
Condition

138 to 310 K
(250 to 560 °R)

Diffusion of GN2 Purge Gas
Out of MLI During Ascent

F18_1741

Figure 18.  MHTB insulation concept using VD-MLI with foam substrate.

Table 2.  MHTB properties.

Mass per layer (kg) 0.013

Cp (J/kg/K) 4,187

MLI emissivity 0.031

κ SOFI (W/m/K) 0.000866

dr0 (SOFI thickness, cm) 3.5

dri (average layer spacing, cm) 1/12

MLI porosity (%) 2
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3.2.4  Multipurpose Hydrogen Test Bed Orbit Hold Comparisons

	 Results of the three orbit hold simulations are tabulated in table 3. The insulation heat leak  
(Qinsul
 ) ranged from 10.93 to 2.98 W (0.31 to 0.085 W/m2) for warm boundaries ranging from 305  

to 164 K, with and without penetration heat guards, and include some off-nominal conditions. 
The first test (P9502), conducted without heat guards, yielded heat leaks of 10.71 and 4.38 W with 
boundaries of 305 and 164 K, respectively. The second test (P9601) yielded lower heat leaks than 
in the first test, that is, 8.66 and 8.51 W without the heat guards and with the 305 K boundary. The 
lower heat leak observed in the second test might be the result of reduced outgassing, probably from 
the foam insulation. With the penetration heat guards activated, an even lower heat leak of 7.6 W 
(0.22 W/m2) occurred with the 305 K boundary. Comparisons between Q  values computed by the 
current solver and other attempts7 at modeling the heat leaks are displayed in figure 19. The overall 
agreement is encouraging.

Table 3.  Steady-state measured orbit hold performance.

Test Conditions
Measured TCS Performance

(W)

Insulation 
Heat Flux

(W/m2)

Test Initial Conditions

Chamber 
Press 
(torr)

Inter-
stitial 
Press 
(torr) Heat

Heater 
Shroud
Temp 

(K)

Ullage 
Range

(%) Qboiloff Qvent Qfill line

Qpress- 
line Qlegs Qothers Qinsul

P9502 Vacuum chamber 
rapid evacuation to 
orbit conditions after 
completion of ground 
hold test

6 × 10–8 – Off 305 12–17 13.10 0.05 0.07 0.71 1.45 0.10 10.71 0.31
9 × 10–8 – Off 164 17–21 5.34 0.04 0.03 0.36 0.49 0.03 4.38 0.13

P9601 Vacuum chamber 
rapid evacuation to 
orbit conditions after 
completion of ground 
hold test

2 × 10–7 – Off 305 25–30 11.07 0.05 0.13 0.70 1.40 0.11 8.66 0.25
6 × 10–8 – On 305 25–30 7.89 – 0.03 – 0.13 0.10 7.64 0.22
2 × 10–7 – Off 305 25–30 10.90 0.05 0.16 0.67 1.40 0.11 8.51 0.24
9 × 10–8 – Off 164 30–35 3.90 0.05 0.07 0.29 0.48 0.02 2.98 0.086

P9602A Vacuum chamber 
evacuated to 
10–5 torr and test 
article vacuum  
conditioned prior to 
tanking of LH2

5 × 10–8 8 × 10–6 Off 235 5–8 8.41 0.05 0.09 0.52 0.89 0.05 6.82 0.20
4 × 10–8 4 × 10–6 On 

legs 
only

235 5–8 7.28 0.05 0.09 0.50 0.08 0.05 6.52 0.19

4 × 10–8 1 × 10–7 Off 305 8–12 12.87 0.06 0.12 0.78 1.37 0.11 10.47 0.30
4 × 10–8 1 × 10–7 On 

legs 
only

305 8–12 12.11 0.05 0.12 0.81 0.13 0.09 10.93 0.31

• • • • • •
•

Qinsul
•

Atank
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Figure 19.  Comparison of MHTB orbit hold simulations.

3.2.5  Multipurpose Hydrogen Test Bed Ascent Simulation Comparisons

	 After a ground hold was completed during the P9502 simulations, a pressure pump down 
timeline similar to what would be experienced during an ascent profile was executed, and heat leak 
into the tank was measured. A comparison of the computed pressures and Qs is shown in figures 20 
and 21. As can be seen in figure 21, the predicted heat flux into the tank during ground hold was too 
high. This is likely due to temperature dependence of the SOFI and temperature. In order to explore 
the implications of this thought a little further, a curve fit was constructed which blended known 
values for SOFI conductivities with the values used during the orbit hold simulations. The shape 
of this curve fit is shown in figure 22. The simulation was rerun using these values and !Q prediction 
obtained is displayed in figure 23. The comparison is much improved, but more data are needed on 
SOFI conductivities combined with high pressures and low temperatures before a definitive conclu-
sion is reached. Also, with large temperature variations, the possibility remains that the SOFI will 
have to be discretized into a number of sub-blocks in order to accurately capture the flow of energy 
through the SOFI.
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4.  USERS GUIDE

	 The equations in this TM have been coded into a MATLAB script. In order to use the script 
the user must first create the text file mlivalues.txt. A sample of this file is shown in table 4. Formats 
are %u for integers, % f  for floating-point numbers, and %e  for scientific notation.

Table 4.  Values in mlivalues.txt file for A125 test.

Variable name
Format

(%) Values Description
SOFI u – 1 if SOFI present,  0 otherwise
dr_sofi f 0.00105 SOFI spacing (m)
rgas f 297 Purge gas constant (N-m/kg/K)
Cp f 1,055 Purge gas specific heat (J/kg/K)
d e 3.80 × 10–10 Molecular diameter
mol_weight f 28.2 Molecular weight
porosity f 2 MLI porosity (%)
dr f 0.0004 MLI spacing (m)
nlayer u 40 Number of layers
mass_per_layer f 0.012928571 Mass per layer (kg/m2)
cp_mli f 4,187 MLI specific heat (J/kg/K)
mli_emissivity f 0.031 MLI emissivity
tank_emissivity f 0.13 Tanks emissivity
relax f – Empirical constant (α)
ngroups u 2 Number blanket groups
relax_seams f 0.0004513 Empirical constant (αseams)
steady u 1 1 to compute ground hold, 0 otherwise
ode u 1 1 to compute ascent, 0 otherwise
restart u – 1 if this is a restart, 0 otherwise
deltat f 80,588 Duration to perform ascent simulation (s)
nout u 4,000 Number of output points

	 With this file one can run a ground test case, an ascent case, or both. The restart variable 
is necessary in order to interface with SINDA/FLUINT via a Fortran subroutine. In addition, if  
the external pressure or temperatures vary with time, the user needs to create MATLAB curve fits 
to the data such as pext_cf, tcb_cf, or twb_cf and store these in the MATLAB files pext_cf.mat, 
tcb_cf.mat, and twb_cf.mat. If  any of these variables are constant, then the user needs to create  
the files pext.txt, tcb.txt, or twb.txt with the respective values placed in the files. The pressure 
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should be in torr and temperatures in Kelvin. The MATLAB script will automatically generate  
a curve fit internally for use in these situations. An example of how to call the script from Fortran 
is displayed in the appendix. The user may modify this example to fit their needs.

4.1  Output

	 At present, the code writes out the temperature and pressure profiles in the MLI at the end 
of a simulation as well as the time history of the heat flux into the tank during the run into the files 
twall.txt, pgas.txt, and qt.txt for use by the user. Other outputs are easily added as needed.
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5.  CONCLUSION

	 A first principles-based tool for the prediction has been presented and compared to two 
different MLI configurations. In general, the agreement is encouraging, but more experimental 
work is needed to characterize the temperature, pressure dependence, and hysteresis effects on the 
conductivity of SOFI in order to remove uncertainty in the use of the model for hybrid SOFI/MLI 
configurations.
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APPENDIX—SAMPLE FORTRAN DRIVER PROGRAM

program rmat
integer(kind=4) :: nlayer=40,nout=400
integer(kind=4) :: file01,file02,file03
real(kind=8)    :: tcb,twb,pext
real(kind=8)    :: twall(200),pgas(200),qtank(4000)
file01=1
fileO2=2
pext=772.3673 !Torr
tcb=101.7245  !Kelvin
twb=268.9604  !Kelvin
call call_mli(nlayer,nout,file01,file02,file03,tcb,twb,pext,twall,pgas,qtank)
write(6,*) twall(1),pgas(1),qtank(1)
end program rmat
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine call_mli(nlayer,nout,file01,file02, &
file03,tcb,twb,pext,twall,pgas,qtank)
integer(kind=4), intent(in)   :: nlayer,nout,file01,file02,file03
real(kind=8),    intent(in)                       :: tcb,twb,pext
real(kind=8),    intent(out), dimension(nlayer+2) :: twall
real(kind=8),    intent(out), dimension(nlayer)   :: pgas
real(kind=8),    intent(out), dimension(nout)     :: qtank
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!write values for time advance
open(file01,file=’pext.txt’)
write(file01,*) pext
close(file01)
!
open(file01,file=’tcb.txt’)
write(file01,*) tcb
!
close(file01)
open(file01,file=’twb.txt’)
write(file01,*) twb
close(file01)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! run matlab from command line
call execute_command_line(“matlab_2015b -noawt -nosplash -nodisplay &
-r mli_driver3,quit -logfile junk.out >/dev/null”,wait=.true.)
!!!!!!!!!!! Read wall and pressure profiles and qtank time history
open(file02,file=’twall.txt’)
do n=1,nlayer+2
    read(file02,*) twall(n)
enddo
close(file02)
open(file02,file=’pgas.txt’)
do n=1,nlayer
    read(file02,*) pgas(n)
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enddo
close(file02)
open(file02,file=’qtank.txt’)
do n=1,nout
    read(file02,*) qtank(n)
enddo
close(file02)
end subroutine call_mli
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