

SUBPROJECT

NASA

UAS-NAS Phase 2 Project Organization Structure

Project Leadership

Project Manager (PM)

Deputy PM

Chief Engineer (CE)

Robert Sakahara, AFRC Davis Hackenberg, AFRC William Johnson, LaRC

Project Support

Sr. Advisor AFRC

Staff Engineer

Lead Resource Analyst

Resource Analysts

11030dioc7tilaly3t3

Scheduler

Risk Manager/Outreach Change/Doc. Mgmt

Admin Support

Chuck Johnsons,

Dan Roth, AFRC April Jungers, AFRC Amber Gregory, AFRC

Warcquel Frieson, ARC Julie Blackett, GRC

Pat O'Neal, LaRC Irma Ruiz, AFRC

Jamie Turner, AFRC Lexie Brown, AFRC Sarah Strahan, AFRC **Project Systems Engineering Office**

Deputy Chief Engineer SIO Technical Manager Clint St. John, AFRC Kurt Swieringa, LaRC

Command and Control

(C2)

Subproject Manager

Mike Jarrell, GRC

Subproject Technical Lead

Jim Griner, GRC

Detect and Avoid (DAA)

Subproject Manager

Jay Shively, ARC

Subproject Technical Lead

Gilbert Wu (A)/Confesor Santiago, ARC; Lisa Fern; ARC: Tod Lewis, LaRC

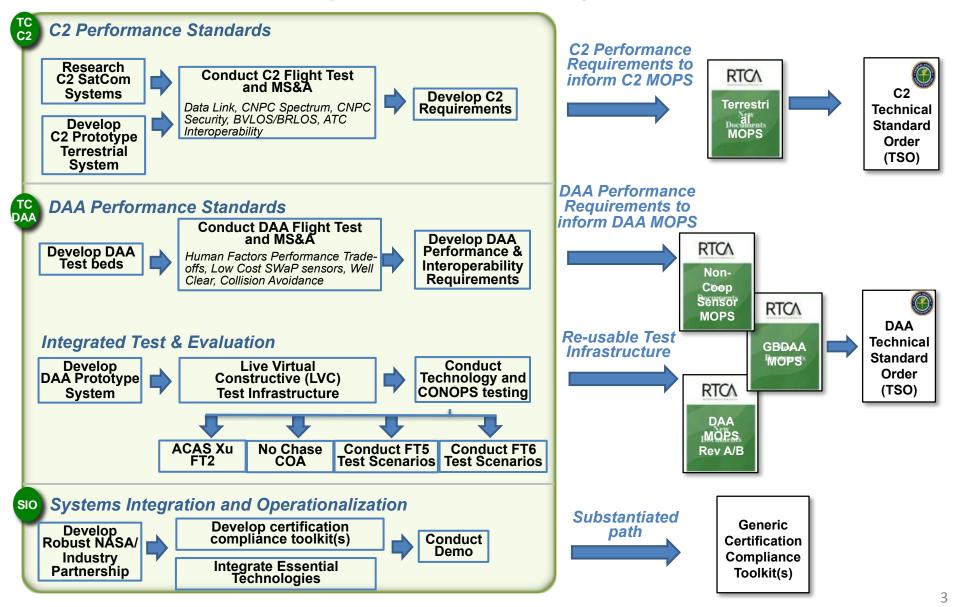
Integrated Test and Evaluation (IT&E)

Subproject Manager

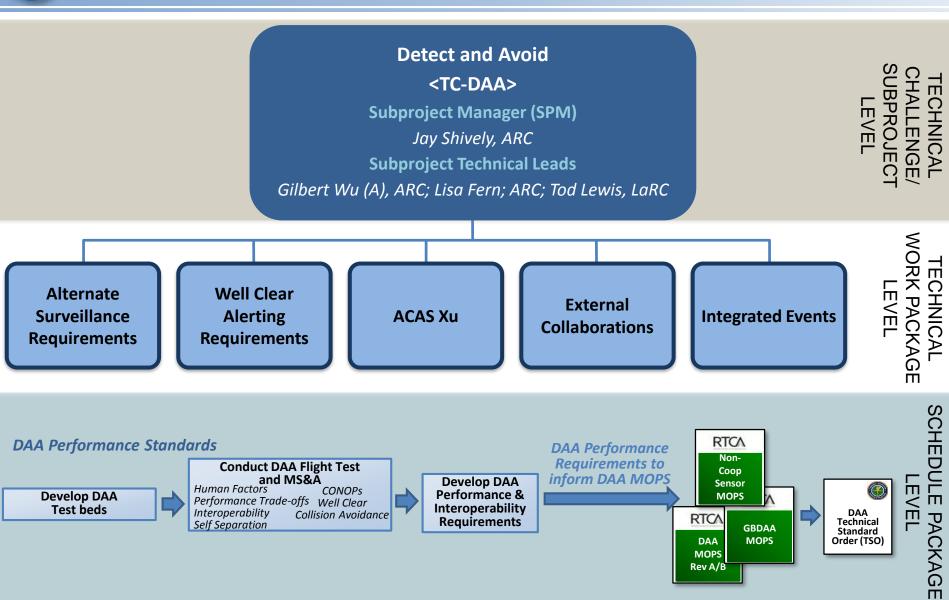
Mauricio Rivas, AFRC / Jim Murphy, ARC

Subproject Technical Lead

Ty Hoang, ARC (A); Sam Kim, AFRC


(A) Acting

UAS-NAS Project Value Proposition


NASA UAS-NAS Project Activities

Key Products Resultant Outcomes

DAA Subproject Structure for Project Phase 2

See and Avoid: FAR Sec. 91.113

General. When weather conditions permit, regardless of whether an operation is conducted under instrument flight rules or visual flight rules, vigilance shall be maintained by each person operating an aircraft so as to see and avoid other aircraft. When a rule of this section gives another aircraft the right-of-way, the pilot shall give way to that aircraft and may not pass over, under, or ahead of it unless well clear.

Piloted "see and avoid" => UAS "detect and avoid"

Pilot vision => surveillance sensors (on- or off- board, or both)

Pilot judgment of well clear => mathematical expression of well clear

Phase 1 DAA well clear defined as:

Horz Miss Distance = 4000ft

Vert Miss Distance = 450ft

modTau = 35sec

DMOD = 4000ft

DAA Operational Environments

Phase 1 Accomplishments

RTCA DO-365:

- Minimum Operating Performance Standards for **Detect and Avoid Systems** RTCA DO-366:
- Minimum Operating Performance Standards for Air-to Air Radar Traffic Surveillance

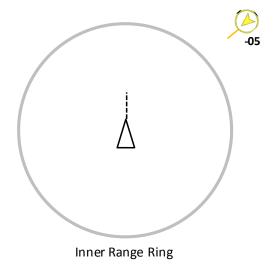
FAA Technical Standard Orders:

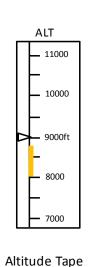
- TSO-C211, Detect and Avoid
- TSO-C212, ATAR for Traffic Surveillance

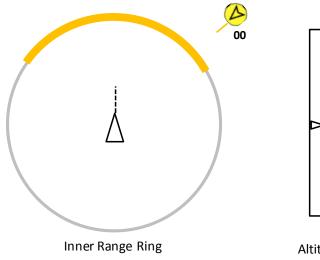
NASA DAA Team Contributions:

- Well clear definition
- Alerting
- Guidance
- Displays
- Reference algorithm
- Significant modeling and simulation

- Augmented Well Clear Definitions
 - Terminal
 - Low SWaP
- Low SwaP Sensors
 - RADAR
 - Cooperative agreement with Honeywell
- Flight Tests
 - FY 19 Low SWaP RADAR
 - Unmitigated encounters
 - FY 20 Pilot response to new well clear definition; use of Low SWaP RADAR

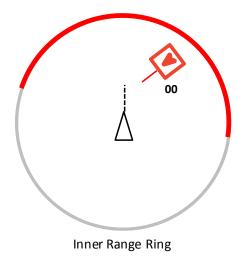

Phase 1 DAA Alerting

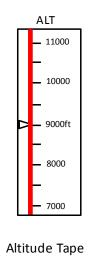

Symbol	Name	Pilot Action	DAA Well Clear Criteria	Time to Loss of DAA Well Clear	Aural Alert Verbiage
	Warning Alert	Notify ATC as soon as practicable after taking action	DMOD = 0.66 nmi HMD = 0.66 nmi ZTHR = 450 ft modTau = 35 sec	25 sec	"Traffic, Maneuver Now" x2
A	Corrective Alert	Coordinate with ATC to determine an appropriate maneuver	DMOD = 0.66 nmi HMD = 0.66 nmi ZTHR = 450 ft modTau = 35 sec	55 sec	"Traffic, Avoid"
	Preventive Alert	On current course, corrective action should not be required	DMOD = 0.66 nmi HMD = 0.66 nmi ZTHR = 700 ft modTau = 35 sec	55 sec	"Traffic, Monitor"
A	Guidance Traffic	Traffic generating guidance bands outside of current course	Associated w/ bands outside current course	х	N/A
A	Remaining Traffic	Traffic within sensor range	Within surveillance field of regard	Х	N/A

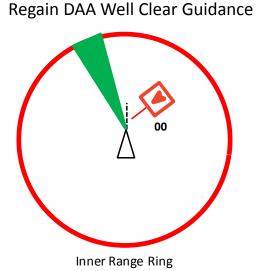

Phase 1 DAA Suggestive Maneuver Guidance

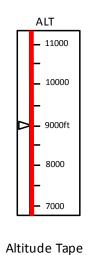
Remain DAA Well Clear Corrective Guidance

Remain DAA Well Clear Corrective Guidance


9000ft - 8000 - 7000


ALT


11000


10000

Remain DAA Well Clear Warning Guidance

NASA

HSI DAA Performance Metrics

- Multiple human-in-the-loop (HITL) simulations were performed to identify requirements for UAS DAA systems. The following metrics were used to assess pilot and system performance:
 - Pilot response times
 - Proportion of losses of DAA well clear
 - Severity of losses of DAA well clear
 - ATC interoperability
 - Subjective assessment & workload

<u>Pilot-Air Traffic Control Interaction Timeline & Metrics</u>

