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Cart3D Aerodynamic Analysis & Design Package

• Automated multilevel Cartesian mesh generation 
with adjoint-driven adaptive refinement 

• Cut-cell approach in cells that include model 
surface 

• Finite volume, 2nd-order accurate Euler solver 
with explicit Runge-Kutta time stepping and 
multigrid 

• Steady or time-accurate 
• Part of a design framework allowing for gradient-

based aerodynamic shape optimization of user-
specified functional 

• Shown to be highly effective for analysis and 
design of low boom aircraft

2



1/2/18 DLRodriguez

Motivation for New Boundary Conditions
• Current SurfBC inflow/outflow boundary condition requires user to specify 

an entire state (𝜌, u, v, w, p) at the boundary 
• Riemann solver is applied to compute flux at the boundary and thus boundary 

condition is always well-posed 

• Robust and flexible since it can be used for both inflow and outflow, subsonic and 
supersonic 

• Inconvenient when user wants to specify inflow or outflow with minimal 
information 
• for subsonic flow through inlets, most common boundary condition is back 

pressure 

• for subsonic flow into nozzles, most common boundary condition is specifying total 
pressure and total temperature (and flow direction) 

• very difficult to specify mass flow rate, particularly in cases where nonlinear flow 
features are prevalent

3



1/2/18 DLRodriguez

Back Pressure Outflow BC Formulations
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Back Pressure Outflow BC Formulations
• CFL3D 

• set pressure 
• extrapolate density and velocity
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Back Pressure Outflow BC Formulations
• CFL3D 

• set pressure 
• extrapolate density and velocity

• Fun3D 
• set pressure 
• extrapolate velocity and temperature 

• update density
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Back Pressure Outflow BC Formulations
• CFL3D 

• set pressure 
• extrapolate density and velocity

• Fun3D 
• set pressure 
• extrapolate velocity and temperature 

• update density

• OVERFLOW 
• set pressure 
• extrapolate density and momentum 
• update total energy
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Back Pressure Outflow BC Formulations
• CFL3D 

• set pressure 
• extrapolate density and velocity

• Fun3D 
• set pressure 
• extrapolate velocity and temperature 

• update density

• OVERFLOW 
• set pressure 
• extrapolate density and momentum 
• update total energy

• Cart3D (since 2004) 
• set entire boundary flow state 
• Riemann solver applied
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Cart3D Surface Boundary Conditions
• Solid wall
• Specify full flow state and use Riemann 

solver (SurfBC) 
• Pandya, Murman, Aftosmis, 2004 

• for all inflows and outflows
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Cart3D Surface Boundary Conditions
• Solid wall
• Specify full flow state and use Riemann 

solver (SurfBC) 
• Pandya, Murman, Aftosmis, 2004 

• for all inflows and outflows

• Subsonic Outflow 
• back pressure 

• constant normal velocity
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Cart3D Surface Boundary Conditions
• Solid wall
• Specify full flow state and use Riemann 

solver (SurfBC) 
• Pandya, Murman, Aftosmis, 2004 

• for all inflows and outflows

• Subsonic Outflow 
• back pressure 

• constant normal velocity

• Subsonic Inflow 
• total pressure and total temperature 

• mass flow rate and total temperature
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Subsonic Outflow Boundary Conditions
• One flow quantity 

specified at 
boundary 
• back pressure 

• normal velocity 

• Four flow quantities 
extrapolated from 
interior
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Back Pressure Outflow
• Most other CFD solvers have this common 

option 
• Pressure set to specified value at boundary 
• Entropy and tangential velocity extrapolated 

from interior 
• Riemann invariants used to compute boundary 

state 
• Safeguards 

• if flow reverses back into interior (back pressure too high), solid wall boundary enforced 

• if interior flow goes supersonic, compare back pressure to pressure after normal shock 
occurring at boundary 

• if set back pressure is higher, use after-shock state at boundary, forcing subsonic flow in the interior 

• if set back pressure is lower, extrapolate all flow attributes from interior (supersonic outflow) 

• Can be difficult to obtain specific mass flow rate for nonlinear flows
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Constant Normal Velocity Outflow
• Allows for robust mass flow rate steering 
• Might better represent flow in front of an 

engine fan face (Pearson ’59, Reid ’69) 
• Normal velocity set to specified value at 

boundary 
• Entropy and tangential velocity 

extrapolated from interior 
• Riemann invariants used to compute 

boundary state 
• Safeguards 

• when interior flow is subsonic but boundary flow is supersonic (bad input velocity), flow is 
forced to be sonic (choked flow) 

• when interior and boundary flow are both supersonic, supersonic outflow is enforced (all 
interior quantities extrapolated)
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Subsonic Inflow Boundary Conditions
• Four flow quantities 

specified at boundary 
• velocity set to be 

normal to boundary 
(two flow quantities) 

• total pressure and 
total temperature 

• mass flow rate and 
total temperature 

• One flow quantity 
extrapolated from 
interior
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Stagnation Property Inflow
• Most other CFD solvers have this common 

option 
• Total pressure and temperature set to 

specified value at boundary 
• Tangential velocity set to zero, forcing 

inflow to be normal to surface 
• Enthalpy is extrapolated from interior 
• Riemann invariant used to computed 

boundary state 
• Safeguards 

• when flow tries to reverse back into boundary, solid wall boundary enforced 

• inflow Mach number is limited to sonic, adjusting stagnation properties accordingly 

• Cannot explicitly set a mass flow rate

10

boundary interior

J-

n̂

Vn

Vt, b = 0

pt,set

Tt,set
Ht,i



1/2/18 DLRodriguez

Mass Flow Rate and Total Temperature Inflow

• Allows for explicit mass flow rate 
control 

• Mass flow rate and total 
temperature set to specified value at 
boundary 

• Tangential velocity set to zero, 
forcing inflow to be normal to 
surface 

• Density is extrapolated from interior 
• Boundary flux computed from boundary state 

• Safeguard 
• inflow Mach number is limited to sonic, adjusting boundary values accordingly
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Mass Flow Rate Control
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Mass Flow Rate Control
• Constant velocity outflow boundary 

condition can be steered to obtain 
specified mass flow rate out of the domain 
• average density over surface is computed 

• velocity out of domain is set based on desired 
mass flow rate 

• repeat every few iterations until solution 
converged and mass flow rate within 
tolerance

12
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Mass Flow Rate Control
• Constant velocity outflow boundary 

condition can be steered to obtain 
specified mass flow rate out of the domain 
• average density over surface is computed 

• velocity out of domain is set based on desired 
mass flow rate 

• repeat every few iterations until solution 
converged and mass flow rate within 
tolerance

• Constant mass flow rate inflow boundary 
condition explicitly sets mass flow rate into 
the domain
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Adjoint-Driven Adaptive Mesh Refinement
• All boundary conditions now implemented in adaptive mesh refinement process 

• Updates to adjointCart, xSensit, adjointErrorEstQuad, etc.
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Application of New Boundary Conditions
• Ducted fan in near-hover (subsonic) 

• verification of back pressure outflow and mass flow 
rate inflow boundary conditions 

• Turbofan with both fan and turbine exhaust 
streams (transonic) 
• verification of constant velocity outflow boundary 

condition 

• Turbojet with 2-D ramp inlet (supersonic) 
• mesh convergence through adaptive refinement 

• mass flow rate steering example 

• Scramjet (hypersonic) 

• Low boom demonstrator
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Ducted Fan in Hover
• Duct and center body 

housing motor to drive fan 

• Very low freestream Mach 
number (0.001) to simulate 
near hover 

• No angle of attack - 
axisymmetric flow 

• Fan modeled as annular 
disk 

• Inflow / Outflow boundary 
conditions enforced on disk 
to model fan effects
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Ducted Fan - Example Solution
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Ducted Fan - Example Solution
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Back Pressure B.C. Mesh Convergence
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Back Pressure B.C. Mesh Convergence
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Ducted Fan - Example Solution
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Ducted Fan - Example Solution
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Constant Mass Flow Rate B.C. Mesh Convergence
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Turbofan in Transonic Flow
• Transonic diffuser with fan hub 

• Two stream exhaust with cone 
nozzle for turbine flow 

• Mach 0.8 freestream, no angle of 
attack (axisymmetric flow) 

• Fan / Compressor face modeled 
as annulus, outflow boundary 
condition applied 

• Fan and turbine exhaust planes 
modeled as annuli, inflow 
boundary conditions applied
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Turbofan - Example Solution
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Turbofan - Example Solution
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Constant Velocity B.C. Mesh Convergence

22



1/2/18 DLRodriguez

Turbojet in Supersonic Flow
• 2-D ramp inlet design for normal terminal shock 

• Converging-diverging duct with cone nozzle 

• Mach 1.5 freestream, 
1° angle of attack  

• Outflow / Inflow 
boundary conditions 
applied to annuli
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Turbojet - Mesh Convergence
• Good convergence of functional (thrust + lift + plume sensor) 

• Steady reduction in error estimate
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Supersonic Inlet - Mass Flow Rate
• Usually need to specify mass flow rate through an inlet 
• Often desirable to match nozzle mass flow rate if modeled 
• Highly nonlinear flow features can make mass flow rate steering difficult 

in supersonic and even transonic inlets
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Turbojet - Mass Flow Rate Steering
• Inflow mass flow 

rate (ṁinflow) set 
through boundary 
condition 

• Outflow mass flow 
rate (ṁoutflow) 
steered to match 

• Mass flow rate 
quickly converges 
and continues to 
converge through 
each refined mesh
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Turbojet - Mass Flow Rate Steering
• Inflow mass flow 

rate (ṁinflow) set 
through boundary 
condition 

• Outflow mass flow 
rate (ṁoutflow) 
steered to match 

• Mass flow rate 
quickly converges 
and continues to 
converge through 
each refined mesh
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Turbojet - Adaptively Refined Mesh
• Colors represent cells of same level of refinement 
• Mesh was refined at surface, within Mach cone of influence, at 

shock and expansion structures, and at plume shear layer 
influencing pressure sensor
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Turbojet - Matched Mass Flow Rates
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Scramjet in Hypersonic Flow
• Multiple ramp inlet and outlet, flow through burner remains supersonic 
• Mach 5.0 freestream, 2° angle of attack 
• Subsonic inflow / outflow boundary conditions not applicable 
• Original full state with Riemann solver (SurfBC) boundary condition applied 

• Mesh was refined at surface, within Mach cone of influence, shock and expansion structures, and 
plume shear layer influencing pressure sensor
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Low Boom Supersonic Demonstrator
• Realistically complex 

geometry 

• Mach 1.4 freestream, 
2.15° angle of attack 

• 3 inlets and 3 exhausts
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Low Boom Aircraft - Adaptively Refined Mesh

• Functional was aircraft drag 

• Colors represent cells of same level of refinement 

• Mesh was refined at surface, within Mach cone of influence, and at 
shock and expansion structures
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Low Boom Aircraft - Example Solution
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M∞ = 1.4, 𝛼 = 2.15°,
70M cells (half-body mesh)

• Underwing inlet geometry is not fully 
realized 

• Safeguards were active in these inlets 
(solid wall to not allow reverse flow)
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Summary and Ongoing Work
• Four new subsonic inflow/outflow boundary conditions implemented to 

improve modeling of propulsion systems 

• Robust mass flow rate control implemented for both inflow and outflow 

• Demonstrated on notional propulsion systems in flight regimes ranging from 
subsonic to hypersonic 
• adjoint-driven mesh refinement demonstrated with all propulsion boundary conditions 

• new boundary conditions verified mesh convergence studies on notional examples 

• Demonstrated on realistically complex low boom aircraft 

• Ongoing work 
• Implement additional functionals appropriate for propulsion systems 

• Extend design framework to include new propulsion boundary conditions and 
functionals
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