Revisions to Conventional Clock Domain Crossing Methodologies in Triple Modular Redundant Circuits

Acronyms

- Application specific integrated circuit (ASIC)
- Block random access memory (BRAM)
- Block Triple Modular Redundancy (BTMR)
- Clock (CLK or CLKB)
- Clock to output time (t_{co})
- Collected charge (Q_{coll})
- Combinatorial logic (CL)
- Computer aided design (CAD)
- Configurable Logic Block (CLB)
- Configuration cross section (P_{configuration})
- Critical charge (Q_{crit})
- Digital Signal Processing Block (DSP)
- Distributed triple modular redundancy (DTMR)
- Dual interlocked cell (DICE)
- Dual redundancy (DR)
- Edge-triggered flip-flops (DFFs)
- Energy (E)
- Equivalence Checking (EC)
- Error detection and correction (EDAC)
- Field programmable gate array (FPGA)
- Finite state machine (FSM)
- Flip flop (DFF)
- Frequency of capture domain B (f_{clkB})
- Frequency of incoming data (f_{DataA})
- Functional logic cross section (P_{functionalLogic})
- Gate Level Netlist (EDF, EDIF, GLN)
- Hardware Description Language (HDL)

- Hold time (t_h)
- Input output (I/O)
- Linear energy transfer (LET)
- Local triple modular redundancy (LTMR)
- Mean Time between failure (MTBF)
- NASA Electronic Parts and Packaging (NEPP)
- Negative doped with electrons (N⁺)
- Operational frequency (fs)
- Power on reset (POR)
- Place and Route (PR)
- Positive doped with holes (P*)
- Radiation Effects and Analysis Group (REAG)
- Set up time (t_{su})
- Single event functional interrupt (SEFI)
- Single event functional interrupt cross section (P_{SEFI})
- Single event effects (SEEs)
- Single event latch-up (SEL)
- Single event transient (SET)
- Single event upset (SEU)
- Single event upset cross-section (σ_{SEU})
- System cross section (P(fs)_{error})
- Time delay (τ_{dly})
- Voltage connected to positive rail (V_{DD})
- Voltage connected to ground rail (V_{ss})

Agenda

- Metastability
- Single Event Upsets (SEUs).
- Triple modular redundancy (TMR).
- Metastability filters and TMR.

- Cause: Introducing an asynchronous signal into a synchronous (edge triggered) system... Or creating a combinatorial logic path that does not meet timing constraints.
- Effect:
 - Flip-flop (DFF) clock captures signal during window of vulnerability.
 - DFF output Hovers at a voltage level between high and low, causing the output transition to be delayed beyond the specified clock to output (t_{co}) delay.
- Probability that the DFF enters a metastable state and the time required to return to a stable state varies on the process technology and on ambient conditions.
- Generally the DFF quickly returns to a stable state. However, the resultant stable state is not deterministic

Metastability Timing Diagram (Destination DFF)

Solution: Metastability Filter

- Incoming signal is clocked in Domain A.
- Destination signals are clocked in Domain B.
- Filter: Use a capture DFF and at least one protection DFF.
 - Both DFFs are clocked in the capture domain.
 - The first DFF is expected to go metastable.
 - The second DFF is used to protect the rest of the system from potential metastable output.
 - However, there is no guarantee that the second DFF will not also become metastable. Metastability filters have a mean time between failure (MTBF).
 - Depends on slack time (t_{slack}) between the metastability DFFs; process parameters (c1 and c2); frequency of incoming data (f_{DataA}); and frequency of capture domain (f_{clkB}).

Device Penetration of Heavy lons and Linear Energy Transfer (LET)

- LET characterizes the deposition of charged particles.
- Based on average energy (E) loss per unit path length (x) (stopping power).
- Mass is used to normalize LET to the target material.

How SEUs Affect FPGAs

- SEU and SET error signatures vary between FPGA devices:
 - Temporary glitch (transient)
 - Change of state (in correct state machine transitions)
 - Global upsets: Loss of clock or unexpected reset
 - Route breakage (no signal can get through)
 - Configuration corruption
 - Current jumps or increases (contention)

 $P(fs)_{error} \propto P_{Configuration} + P(fs)_{functionalLogic} + P_{SEFI}$ Sequential and Glitches in Configuration **System** Combinatorial logic global Routes malfunction SEU that causes (CL) events in data and Hidden malfunction path Logic

Triple modular redundancy (TMR): A common approach to SEU mitigation.

How To Insert TMR into A Design:

Various TMR Schemes: Different Topologies

Block diagram of block TMR (BTMR): a complex function containing combinatorial logic (CL) and flip-flops (DFFs) is triplicated as three black boxes; majority voters are placed at the outputs of the triplet. Block diagram of local TMR (LTMR): only flipflops (DFFs) are triplicated and datapaths stay singular; voters are brought into the design and placed in front of the DFFs. Block Diagram of distributed TMR (DTMR): the entire design is triplicated except for the global routes (e.g., clocks); voters are brought into the design and placed after the flip-flops (DFFs). DTMR masks and corrects most single event upsets (SEUs).

BTMR And Metastability

LTMR And Metastability

 Image: Wetastability flops

 Intersection

 Ketastability flops

LTMR And Metastability

Mean time between failure (MTBF) C2 and C1 are process dependent constants. f_{clkB} is the capture clock domain frequency. f_{DataA} is the maximum data switching frequency.

Metastability flops Voter placed between metastability filters. Violation

One solution is to remove the voters between metastability DFFs

Another solution is to include additional DFFs in the metastability filter (increase t_{slack})

Delete Voters and tightly place DFFs... increase t_{slack} ...Increases MTBF

Ē

V

V

V

Domain B

D E

Ĕ

D F

Metas<mark>tability</mark> flip-flops

V

V

V

Domain A

Another solution is to include additional DFFs in the metastability filter (increase t_{slack})

- Complex systems require multiple clock domains.
- In a synchronous design, metastability filters are required to reliably capture signals that source from separate clock domains.
- In order to reduce MTBF in metastability filters t_{slack} must be minimized: no combinatorial logic and short routes between metastability DFFs.
- Automated TMR tools have not been handling metastability filters correctly.
- We show the update to TMR automated tools for the following TMR methodologies:
 - BTMR, LTMR, DTMR.