

Reliability Concerns for Flying SiC Power MOSFETs in Space

K.F. Galloway¹, A.F. Witulski¹, R.D. Schrimpf¹, A.L. Sternberg¹, D.R. Ball¹,

A. Javanainen², R.A. Reed¹, B.D. Sierawski¹, and J-M. Lauenstein³

¹ Vanderbilt University

- ² University of Jyvaskyla
- ³ NASA Goddard Space Flight Center

THANKS to Our Sponsors ...

At Vanderbilt University: NASA Early Stage Innovation Grant No: NNX17AD09G

At NASA Goddard: NEPP Program

At University of Jyväskylä: ESA/ESTEC Contract No. 4000111630/14/NL/PA and Academy of Finland Project No. 2513553

Outline

- 1. Why the interest in SiC power?
- 2. Electrical reliability.
- 3. SEB in SiC power MOSFETs.
- 4. Environment.
- 5. Estimating failure rate in space.

1200 V SiC Power MOSFET

Why Silicon Carbide Power Devices for Space?

SiC vs Silicon Power Devices:

- Higher Breakdown Voltage (~ 10x vs. Si)
- Lower On-State Resistance (~1/100 vs. Si)
- Higher Temperature Operation (~3x vs. Si)
- High Thermal Conductivity (~10x vs. Si)
- Mass, cost, power savings

After: A. Elasser and T.P. Chow, Proc. IEEE, vol. 90, 2002.

Example: Concept Design of High Power Solar Electric Propulsion (SEP) for Human Exploration

- Desired power levels ~400 kW
- Change from 120 V bus voltage to 300 V

After: D.J. Hoffman, et al., NASA/TM-2011-217281

PMAD: Power management and distribution HTB PPU: High-temperature boost power processing unit

Toyota and Denso Development for Hybrid Vehicles

- Power control units (PCUs) contain multiple power semiconductors

 usually silicon technology
- According to Toyota, ~20% of hybrid electric vehicle (HEV) total electrical power loss is associated with power semiconductors
- Goal to improve hybrid vehicle (HV) fuel efficiency by 10% and PCU downsizing of 80%
- SiC technology leads to lower weight, higher efficiency

Accelerated Testing – High-Temperature Reverse Bias

- High-Temperature Reverse Bias (HTRB)
- Wolfspeed 1200 V 20A G2 MOSFETs
- V_{GS} = 0V, V_{DS} = 1460V, 1540V, 1620V
- Mean failure time at a given V_{DS} predicted by extrapolation
- At 800 V_{DS}, extrapolated failure time is ~ 3 x 10⁷ hours (~ 3400 years)

After: D.J. Lichtenwalner, B. Hull, J. Richmond, J. Casady, D. Grider, S. Allen, and J.W. Palmour, Wolfspeed – A CREE Company, presented at NASA Space Technology Mission Directorate Early Stage Innovation Technical Exchange, NASA GSFC, September 2017.

See: D.J. Lichtenwalner, et al., MRS Advances, vol.1, no. 2, pp. 81-89, 2016.

Accelerated Testing – Time-Dependent Dielectric Breakdown

- Time-Dependent Dielectric Breakdown (TDDB)
- Wolfspeed 1200 V 20A G2 MOSFETs
- Mean failure time at a given V_{GS} predicted by extrapolation
- Extrapolated mean failure time at 20 V_{GS} > 10⁸ hours (~ 11,000 years)

After: D.J. Lichtenwalner, B. Hull, J. Richmond, J. Casady, D. Grider, S. Allen, and J.W. Palmour, Wolfspeed – A CREE Company, presented at NASA Space Technology Mission Directorate Early Stage Innovation Technical Exchange, NASA GSFC, September 2017.

See: D.J. Lichtenwalner, et al., MRS Advances, vol.1, no. 2, pp. 81-89, 2016.

What is the Problem ?

 SiC power devices – both diodes and MOSFETs – are susceptible to catastrophic failure in the swift, energetic heavy ion environment encountered in space or neutron environments

After: G. Consentino et. al, 2014 IEEE Applied Power Electronics Conference and Exposition, Fort Worth, TX

Measurement of SEB in SiC Power MOSFET

- Tests performed on SiC power devices rated 650 V to 3300 V by NASA, ESA, JAXA, and others
- Single-event burnout (SEB) occurs at typically ½ rated V_{DS}
- Ion-induced degradation observed in gate, drain leakage currents prior to SEB

Lethal Ion Criteria

- Most particles in space are of no consequence to MOSFET catastrophic failure.
- To be lethal, a particle (or one of its recoils), must:
 - 1. Have sufficient energy deposition
 - 2. Strike at the proper solid angle
 - 3. Strike within the sensitive area
 - 4. Strike when the biases are in a critical state

After: J.L. Titus et. al, IEEE Trans. Nucl. Sci., vol. 46, 1999.

Estimate of the Failure Rate for 1200 V SiC Power MOSFETs in Space

- Devices show SEB failure at ≈ 500 V for LET > 10 MeV-cm²/mg
- Assume SEB cross-section saturated for LET > 10 MeV-cm²/mg
- Define SEB failure as operation at a reverse voltage > 500 V for any LET > 10

Failure Rate (FR) = SEB cross-section (σ) Flux(LET) dLET

 $\int_{10}^{10} \text{Flux(LET) dLET} = \text{integral over LET spectrum for LETs greater than}$ 10 MeV-cm²/mg using CREME96 or Xapsos *et al.*

Integral LET Spectra

Worst day solar particle event (SPE) from CREME96. GEO and LEO are solar minimum spectra from CREME96. Cumulative solar particle event spectra at the 99% confidence level after Xapsos *et al.* Results for 100 mils aluminum shielding.

See: M.A. Xapsos, C. Stauffer, T. Jordan, J.L. Barth, and R.A. Mewaldt, IEEE Trans. Nucl. Sci., vol. 64, 2007.

Worst Case Estimate of the Failure Rate (FR) for 1200 V SiC Power MOSFETs in Space

FR = $\sigma \int Flux(LET) dLET$

 σ = base MOSFET SEB cross-section on chip area, 1200V chip is \approx 2 mm x 3 mm assume 50% sensitive area and 50% duty cycle

 σ = 1.5 x 10⁻² cm²

Integral evaluated for all LET> 10 MeV-cm²/mg from the 99% confidence level curve from Xapsos *et al.* – appropriate a conservative design estimate of the single-event rate due to solar particles

 $\int Flux(LET) dLET = 10 cm^{-2} day^{-1}$

 $FR = 6.25 \times 10^{-3}$ /hour and $FIT = 6.25 \times 10^{6}$

MTTF (Mean Time To Failure) = 160 hours

Integral LET > 10 MeV-cm²/mg, FIT, MTTF for Different Mission and Satellite Scenarios

	Integral (no./cm²-day)	FIT (1 per billion hours)	MTTF (hours)
SPEW	1000	6.25E+08	1.6
SPE	10	6.25E+06	160
GEO	0.9	5.6E+05	1786
LEO	1E-04	62.5	1.6E+07

SPEW = worst day solar particle event from CREME96

- SPE = cumulative particle event at 99% confidence level from Xapsos *et al.*
- **GEO** = geostationary orbit during solar min from CREME96
- **LEO = low Earth orbit during solar min from CREME96**
- For all, 100 mils of aluminum shielding assumed.

FIT: Failure in time

MTTF on Orbit – 1200 V SiC MOSFET Operated at V_{DS} > 500 V

MTTF > 1000 years – LEO from CREME96

Image from: National Oceanic and Atmospheric Administration

Summary

- SiC power MOSFETs have several performance advantages over Si power MOSFETs and silicon IGBTs
- Current commercial devices are very reliable
- Demonstrated heavy-ion susceptibility
- Failure rate estimates indicate a radiation reliability issue for space electronics
- Any application of commercially available 1200 V SiC MOSFETs in space would require significant voltage de-rating
- Performance advantages may justify use if de-rating and leakage degradation is acceptable
- Careful heavy ion testing of any commercially available SiC MOSFET component proposed for spaceborne electronic systems is recommended

