additive construction for use on D ep Spa

Additive Construction with Mobile Emplacement: Multifaceted Planetary Construction Materials Development

Mike Fiske – Jacobs ESSCA/NASA MSFC Rob Mueller – NASA KSC Dr. Hunain Alkhateb – University of Mississippi Dr. Amin Akhnoukh – East Carolina University Heather Morris – Jacobs ESSCA/NASA MSFC Van Townsend – Craig Technologies/NASA KSC John Fikes – NASA MSFC Mallory Johnston – NASA MSFC

Dr. Jennifer Edmunson

Jacobs ESSCA/NASA MSFC

Image credit: NASA

ACME: Background

- Additive Construction
 - "The process of joining materials to create constructions from 3D model data" (Labonnote et al., 2016)
 - brick stacking, powder bed printing, and liquid/slurry/paste extrusion
 - 3D models allow fabrication of multiple types of structures roads, berms, habitats, garages, hangars, etc. – with a single device
- Original work at Marshall Space Flight Center (MSFC) 2004-2007
 - Contour Crafting, goal of using resources found in-situ on planetary surfaces

ACME: Background

- Interest from the United States Army Corps of Engineers (USACE) since 2014
 - Use locally available cement/concrete
- Work captured, co-funded by USACE and NASA/STMD/GCDP* (2015-2017)
 - Additive Construction with Mobile Emplacement (ACME)
 - Delivery of Additive Construction of Expeditionary Structures (ACES) system
 - Materials work
- Paste type preferred
 - Little to no construction waste
 - No mortar and adhesive used between bricks
 - No formwork
 - Single feedstock delivery and emplacement system
 - Scalable

*National Aeronautics and Space Administration / Space Technology Mission Directorate / Game Changing Development Program

•

ACME

Constraints

Methodology

Results

Next Steps

ACME: Background – MSFC ACME-2

Gantry Mobility System

Pump

Mixer

Accumulator __ (allows pump to stay on when nozzle closes for doors/windows)

Image credit: NASA

Hose

• **ACME** • Co

Constraints

Methodology

Results

Next Steps •

- Must be compatible with additive construction technologies
 - Capable of being extruded, stacked, or emplaced layer by layer – predictably
 - Avoid warping and shrinkage during cooling/curing
 - Capable of being removed for system cleaning easily (or avoid cleaning by using a material such as thermoplastics)
 - Capable of being pumped or moved through the system without easily damaging, clogging, or abrading system components
 - Vibration
 - Capable of mixing adequately and predictably
 - Accurate dispensing and mixing ratios
 - Capable of pressurization if pumped
 - Consistency of a mix-specific viscosity
- ACME
 Constraints
 Methodology
 Results
 Next Steps

- Must be composed of in-situ resources (reduce/eliminate cost of launching construction material)
 - Resources are site-specific, must know what materials are available (and have adequate simulants)
 - LARGE quantity of (processed) feedstock is needed

ACME
 Constraints
 Methodology
 Results
 Next Steps

- Must be composed of in-situ resources
 - Minimize the use of water
 - Minimize the potential for deleterious chemical reactions
 - Geology varies on small scales
 - Mechanical binder for regolith grains is preferred (does not have to be a "precise mix")
 - Minimize the energy needed to mine the material
 - Use loose surface regolith when possible
 - The original composition dictates:
 - Viscosity at given temperatures
 - Extrudability / workability of the mixture
 - Initial compressive strength, support subsequent layers
 - Initial set time
 - Layer adhesion
 - Resistance to aging (degradation over time)

ACME
 Constraints
 Methodology
 Results
 Next Steps

- Must be compatible with (extreme) planetary surface environments
 - Deposition
 - Gravity
 - Pressure at the surface
 - Deposition and Aging
 - Temperature swings
 - Thermal expansion
 - Aging
 - Radiation (galactic cosmic rays, solar particle events)
 - Solar wind
 - Micrometeorite bombardment

• ACME • Constraints • Methodology • Results • Next Steps •

- Ability to provide necessary structural integrity
 - Strength of the material (all aspects)
 - Define accurate construction tolerances for thermal expansion and vapor loss
 - Layer adhesion
 - Durability in the environment
 - Compatibility with human activities must not be flammable, decompose, or become toxic when exposed to H₂O, O₂, or CO₂ (unless lined)

ACME: Methodology

- Multiple materials are under study as planetary construction materials by multiple groups
- ACME materials research
 - Kennedy Space Center focus on minimally processed regolith
 - Sintering
 - Polymer/regolith simulant mixtures (polymer to be created from the CO₂-rich atmosphere of Mars)
 - Marshall Space Flight Center focus on cementitious materials similar to USACE
 - Planetary regolith simulant as aggregate
 - Binders such as Ordinary Portland Cement, MgO-based cements, and sodium silicate
 - Previous work with sulfur, polyethylene, and sintering

ACME: Methodology - MSFC

- Standard mixture
 - Ordinary Portland Cement (OPC)
 - Water
 - Navitas (rheology control)
 - Stucco mix (includes sand)

- Simulant mixture
 - OPC
 - Water
 - Navitas
 - Simulant (JSC Mars-1A)
 - Stucco mix (includes sand)

All aggregate used was less than 64mm in size. Mixes captured above were used for printing. Other mixtures were compression tested.

JSC Mars-1A, 5mm and less in size Image credit: NASA

ACME: Methodology - MSFC

- Standard mixture defined viscosity for the ACME-2 additive construction system (between 5 and 20 Pa*s for OPC-based material)
 - Pump-able mixture
 - Retain cohesiveness
 - Smooth extruded bead
- MgO-based binder also investigated but not utilized in the ACME-2 system
 - Required constant vibration not possible in the ACME-2 feedstock delivery system
 - QUICK set-up time

ACME
 Constraints
 Methodology
 Results
 Next Steps

Three samples were cast into 15.24cm x 15.24cm x
 2.54cm molds, one was 3D printed with Mars
 simulant aggregate

simulant aggregate

Martian simulant JSC Mars-1A, stucco mix, OPC, Navitas, and water

Martian simulant JSC Mars-1A, MgO-based cement, boric acid (set retardant) and water – sample fractured during shipping to JSC prior to testing

Sample delaminated during shipping to JSC on a boundary between prints made on different days Lunar simulant JSC-1A, stucco mix, OPC, Navitas, and water Image credits: NASA

ACME

Constraints

• N

Methodology •

Results

Next Steps

- Hypervelocity impact tests were internally funded and performed at the White Sands Test Facility in Las Cruces, NM
- 2.0mm Al 2017-T4 (density 2.796g/cm³) impactor, 0.17caliber light gas gun, 0° impact angle, 1Torr N₂ in chamber during test
- 7.0±0.2km/s velocity (approximate mean expected velocity of micrometeorites at the surface of Mars, and higher than expected velocity for bullets on Earth)
- Kinetic energy is equivalent to a micrometeorite with a density of 1g/cm³ and a diameter of 0.1mm traveling at a velocity of 10.36km/s, as well as a 9x17mm Browning Short bullet.
- ACME
 Constraints
 Methodology
 Results
 Next Steps

• Image scales are comparable

Martian simulant JSC Mars-1A, stucco mix, OPC, Navitas, and water

Lunar simulant JSC-1A, stucco mix, OPC, Navitas, and water

Martian simulant JSC Mars-1A, MgObased cement, boric acid (set retardant) and water

Image credits: NASA

- Hypervelocity Impact Testing conclusions (Ordonez et al., 2017)
 - MgO-based cement, in this formulation, is not as resistant to impact as OPC
 - The projectile did not penetrate as deeply into the JSC-1A simulant-based mortar (compared to the JSC Mars-1A simulant-based mortar)
 - Smaller grain size of JSC-1A simulant
 - Makeup of JSC-1A simulant (grains not as porous as JSC Mars-1A simulant, crushed basalt versus weathered ash)
 - More deleterious reactions in the JSC Mars-1A mortar?
 - Layer adhesion issue

- Grain size analysis/OPC binder compression testing
 - Standard 5.08cm cubes, 7 and 28 days
 - Initial strength related to tricalcium silicate formation
 - Ultimate strength related to dicalcium silicate formation

Size Fraction (µm)	JSC Mars-1A (kPa)		JSC-1A (kPa)	
	7-Day	28-Day	7-Day	28-Day
4000-5000	20339	32218		
2000-3999	21146	35584		
1000-1999	22111	32675		
500-999	21335	33515	20554	28244
250-499	21949	35633	24728	34158
125-249	25628	31905	21089	26170
63-124	27802	34326	27820	37098
<63	23939	29967	29367	37140
Unsieved	22826	24383	27796	36092

- Tensile properties not measured but expected to be ~10% of compression results

• One more thing...

Image credit: NASA

ACME
 Constraints
 Methodology
 Results
 Next Steps

ACME: Next Steps

- Investigate and characterize more binders
 - Target specific proposed landing sites, generate (as accurately as possible) simulants, and mature binder fabrication and emplacement technologies
 - Test them in replicated environments
 - Thermal cycling, vacuum curing, etc.
- Establish building codes for planetary structures, and standards for additively constructed materials
- Set up an artificial neural network to help optimize these multifaceted, multifunctional materials
 - Balance between the site-specific regolith composition, extreme environments, emplacement via additive technologies, and characteristics of the final structure

ACME: Next Steps

- Optimization through trade studies / artificial neural network
 - Grain size
 - Compressive strength (including regolith load)
 - Tensile strength
 - Thermal conductivity
 - Radiation protection (materials and/or regolith shell)
 - Need for a skin/liner (pressurized?)
 - Cost to produce
 - Time to produce
 - Aging
 - Ability to be repaired
 - Ability to cure in a specific planetary environment

ACME • Constraints • Methodology • Results • Next Steps •

https://www.bradley.edu/sites/challenge/

Image credit: NASA

• ACME

Constraints

Methodology

Results
 Next Steps

References and Acronyms

- Labonnote, N., Ronnquist, A., Manum, B., Ruther, P. (2016) "Additive construction: State-of-the-art, challenges and opportunities". *Automation in Construction*, 72(3), 347-366.
- Ordonez, E., Edmunson, J., Fiske, M., Christiansen, E., Miller, J., Davis, B., Read, J., Johnston, M., and Fikes, J. (2017) "Hypervelocity impact testing of materials for additive construction: Applications on Earth, the Moon, and Mars". *Procedia Engineering*, 204, 390-396.
- 3D Three-dimensional
- ACES Additive Construction of Expeditionary Structures
- ACME Additive Construction with Mobile Emplacement
- ESSCA Engineering Services and Science Capability Augmentation (contract)
- GCDP Game Changing Development Program
- JSC Johnson Space Center
- KSC Kennedy Space Center
- MSFC Marshall Space Flight Center
- NASA National Aeronautics and Space Administration
- **OPC** Ordinary Portland Cement
- STMD Space Technology Mission Directorate
- USACE United States Army Corps of Engineers