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ACME: Background

• Additive Construction
• “The process of joining materials to create constructions from 3D 

model data” (Labonnote et al., 2016)
• brick stacking, powder bed printing, and liquid/slurry/paste extrusion

• 3D models allow fabrication of multiple types of structures – roads, 
berms, habitats, garages, hangars, etc. – with a single device

• Original work at Marshall Space Flight Center (MSFC) 
2004-2007

• Contour Crafting, goal of using resources found in-situ on planetary 
surfaces

•      ACME •      Constraints •      Methodology •      Results •      Next Steps      •



ACME: Background

• Interest from the United States Army Corps of Engineers (USACE) since 
2014

• Use locally available cement/concrete

• Work captured, co-funded by USACE and NASA/STMD/GCDP* (2015-2017)
• Additive Construction with Mobile Emplacement (ACME)

• Delivery of Additive Construction of Expeditionary Structures (ACES) system

• Materials work

• Paste type preferred
• Little to no construction waste
• No mortar and adhesive used between bricks
• No formwork
• Single feedstock delivery and emplacement system
• Scalable

•      ACME •      Constraints •      Methodology •      Results •      Next Steps      •

*National Aeronautics and Space 
Administration / Space Technology 
Mission Directorate / Game 
Changing Development Program



ACME: Background – MSFC ACME-2

•      ACME •      Constraints •      Methodology •      Results •      Next Steps      •
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ACME: Material Constraints

• Must be compatible with additive construction 
technologies

• Capable of being extruded, stacked, or emplaced layer by 
layer – predictably

• Avoid warping and shrinkage during cooling/curing
• Capable of being removed for system cleaning easily (or avoid 

cleaning by using a material such as thermoplastics)
• Capable of being pumped or moved through the system 

without easily damaging, clogging, or abrading system 
components

• Vibration
• Capable of mixing adequately and predictably

• Accurate dispensing and mixing ratios
• Capable of pressurization if pumped
• Consistency of a mix-specific viscosity

•      ACME •      Constraints •      Methodology •      Results •      Next Steps      •



ACME: Material Constraints

• Must be composed of in-situ resources 
(reduce/eliminate cost of launching construction 
material)

• Resources are site-specific, must know what materials 
are available (and have adequate simulants)

• LARGE quantity of (processed) feedstock is needed

•      ACME •      Constraints •      Methodology •      Results •      Next Steps      •
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ACME: Material Constraints

• Must be composed of in-situ resources 
• Minimize the use of water
• Minimize the potential for deleterious chemical reactions

• Geology varies on small scales
• Mechanical binder for regolith grains is preferred (does not have to 

be a “precise mix”)
• Minimize the energy needed to mine the material

• Use loose surface regolith when possible
• The original composition dictates:

• Viscosity at given temperatures
• Extrudability / workability of the mixture
• Initial compressive strength, support subsequent layers
• Initial set time
• Layer adhesion
• Resistance to aging (degradation over time)

•      ACME •      Constraints •      Methodology •      Results •      Next Steps      •



ACME: Material Constraints

• Must be compatible with (extreme) planetary 
surface environments

• Deposition
• Gravity
• Pressure at the surface

• Deposition and Aging
• Temperature swings

• Thermal expansion

• Aging
• Radiation (galactic cosmic rays, solar particle events)
• Solar wind
• Micrometeorite bombardment

•      ACME •      Constraints •      Methodology •      Results •      Next Steps      •



ACME: Material Constraints

• Ability to provide necessary structural integrity
• Strength of the material (all aspects)
• Define accurate construction tolerances for thermal 

expansion and vapor loss
• Layer adhesion
• Durability in the environment
• Compatibility with human activities – must not be 

flammable, decompose, or become toxic when exposed 
to H2O, O2, or CO2 (unless lined)

•      ACME •      Constraints •      Methodology •      Results •      Next Steps      •



ACME: Methodology

• Multiple materials are under study as planetary 
construction materials by multiple groups

• ACME materials research
• Kennedy Space Center – focus on minimally processed 

regolith
• Sintering
• Polymer/regolith simulant mixtures (polymer to be created 

from the CO2-rich atmosphere of Mars)
• Marshall Space Flight Center - focus on cementitious 

materials similar to USACE
• Planetary regolith simulant as aggregate
• Binders such as Ordinary Portland Cement, MgO-based 

cements, and sodium silicate
• Previous work with sulfur, polyethylene, and sintering

•      ACME •      Constraints •      Methodology •      Results •      Next Steps      •



ACME: Methodology - MSFC

• Standard mixture
• Ordinary Portland 

Cement (OPC)
• Water
• Navitas (rheology control)
• Stucco mix (includes 

sand)

• Simulant mixture
• OPC
• Water
• Navitas
• Simulant (JSC Mars-1A)
• Stucco mix (includes 

sand)

JSC Mars-1A, 5mm and less in size
Image credit: NASA

All aggregate used was less than 64mm in size.
Mixes captured above were used for printing.  

Other mixtures were compression tested.



ACME: Methodology - MSFC

• Standard mixture defined viscosity for the ACME-2 
additive construction system (between 5 and 20 
Pa*s for OPC-based material)

• Pump-able mixture
• Retain cohesiveness
• Smooth extruded bead

• MgO-based binder also investigated but not utilized 
in the ACME-2 system

• Required constant vibration not possible in the ACME-2 
feedstock delivery system

• QUICK set-up time

•      ACME •      Constraints •      Methodology •      Results •      Next Steps      •



ACME: Results to Date - MSFC

• Three samples were cast into 15.24cm x 15.24cm x 
2.54cm molds, one was 3D printed with Mars 
simulant aggregate

•      ACME •      Constraints •      Methodology •      Results •      Next Steps      •

Martian simulant 
JSC Mars-1A, 
stucco mix, OPC, 
Navitas, and water

Martian simulant JSC Mars-1A, 
MgO-based cement, boric acid 
(set retardant) and water –
sample fractured during shipping 
to JSC prior to testing

Lunar simulant 
JSC-1A, stucco 
mix, OPC, Navitas, 
and water

Sample delaminated 
during shipping to JSC 
on a boundary 
between prints made 
on different days

Image credits: NASA



ACME: Results to Date - MSFC

• Hypervelocity impact tests were internally funded and 
performed at the White Sands Test Facility in Las 
Cruces, NM

• 2.0mm Al 2017-T4 (density 2.796g/cm3) impactor, 0.17-
caliber light gas gun, 0° impact angle, 1Torr N2 in 
chamber during test

• 7.0±0.2km/s velocity (approximate mean expected 
velocity of micrometeorites at the surface of Mars, and 
higher than expected velocity for bullets on Earth)

• Kinetic energy is equivalent to a micrometeorite with a 
density of 1g/cm3 and a diameter of 0.1mm traveling at 
a velocity of 10.36km/s, as well as a 9x17mm Browning 
Short bullet.

•      ACME •      Constraints •      Methodology •      Results •      Next Steps      •



• Image scales are comparable

ACME: Results to Date - MSFC

Martian simulant JSC Mars-1A, 
stucco mix, OPC, Navitas, and water

Lunar simulant 
JSC-1A, stucco 

mix, OPC, Navitas, 
and water

Martian simulant 
JSC Mars-1A, MgO-

based cement, boric 
acid (set retardant) 

and water

Image credits: NASA



• Hypervelocity Impact Testing conclusions 
(Ordonez et al., 2017)

• MgO-based cement, in this formulation, is not as 
resistant to impact as OPC

• The projectile did not penetrate as deeply into the 
JSC-1A simulant-based mortar (compared to the JSC 
Mars-1A simulant-based mortar)

• Smaller grain size of JSC-1A simulant
• Makeup of JSC-1A simulant (grains not as porous as JSC 

Mars-1A simulant, crushed basalt versus weathered ash)
• More deleterious reactions in the JSC Mars-1A mortar?

• Layer adhesion issue

ACME: Results to Date - MSFC

•      ACME •      Constraints •      Methodology •      Results •      Next Steps      •



• Grain size analysis/OPC binder - compression testing
• Standard 5.08cm cubes, 7 and 28 days

• Initial strength related to tricalcium silicate formation
• Ultimate strength related to dicalcium silicate formation

ACME: Results to Date - MSFC

•      ACME •      Constraints •      Methodology •      Results •      Next Steps      •

Size Fraction (µm) JSC Mars-1A (kPa) JSC-1A (kPa) 
 7-Day 28-Day 7-Day 28-Day 
4000-5000 20339 32218   
2000-3999 21146 35584   
1000-1999 22111 32675   
500-999 21335 33515 20554 28244 
250-499 21949 35633 24728 34158 
125-249 25628 31905 21089 26170 
63-124 27802 34326 27820 37098 
<63 23939 29967 29367 37140 
Unsieved 22826 24383 27796 36092 

 • Tensile properties not measured but expected to be 
~10% of compression results



ACME: Results to Date - MSFC

• One more thing...

•      ACME •      Constraints •      Methodology •      Results •      Next Steps      •

Image credit: NASA



ACME: Next Steps

• Investigate and characterize more binders
• Target specific proposed landing sites, generate (as accurately 

as possible) simulants, and mature binder fabrication and 
emplacement technologies

• Test them in replicated environments
• Thermal cycling, vacuum curing, etc.

• Establish building codes for planetary structures, and 
standards for additively constructed materials

• Set up an artificial neural network to help optimize 
these multifaceted, multifunctional materials

• Balance between the site-specific regolith composition, 
extreme environments, emplacement via additive 
technologies, and characteristics of the final structure

•      ACME •      Constraints •      Methodology •      Results  •      Next Steps      •



ACME: Next Steps

• Optimization through trade studies / artificial neural 
network

• Grain size
• Compressive strength (including regolith load)
• Tensile strength
• Thermal conductivity
• Radiation protection (materials and/or regolith shell)
• Need for a skin/liner (pressurized?)
• Cost to produce
• Time to produce
• Aging
• Ability to be repaired
• Ability to cure in a specific planetary environment

•      ACME •      Constraints •      Methodology •      Results  •      Next Steps      •



•      ACME •      Constraints •      Methodology •      Results  •      Next Steps      •

https://www.bradley.edu/sites/challenge/

Image credit: NASA
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3D – Three-dimensional

ACES – Additive Construction of Expeditionary Structures

ACME – Additive Construction with Mobile Emplacement

ESSCA – Engineering Services and Science Capability Augmentation (contract)

GCDP – Game Changing Development Program

JSC – Johnson Space Center

KSC – Kennedy Space Center

MSFC – Marshall Space Flight Center

NASA – National Aeronautics and Space Administration

OPC – Ordinary Portland Cement

STMD – Space Technology Mission Directorate

USACE – United States Army Corps of Engineers
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