
11111111111111111111111111111111111111111111111111111111111111111111111111

(12) United States Patent
Gallagher et al.

(54) EFFICIENT, LOW PRESSURE RATIO
PROPULSOR FOR GAS TURBINE ENGINES

(71) Applicant: United Technologies Corporation,
Hartford, CT (US)

(72) Inventors: Edward J. Gallagher, West Hartford,
CT (US); Byron R. Monzon,
Cromwell, CT (US); Shari L. Bugaj,
Haddam, CT (US)

(73) Assignee: United Technologies Corporation,
Farmington, CT (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 17 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 14/695,373

(22) Filed: Apr. 24, 2015

(65) Prior Publication Data

US 2016/0201607 Al Jul. 14, 2016

Related U.S. Application Data

(63) Continuation-in-part of application No. 13/484,858,
filed on May 31, 2012, now Pat. No. 9,121,368, and

(Continued)

(51) Int. Cl.
F02C 7/36 (2006.01)
F02K 1/06 (2006.01)

(Continued)
(52) U.S. Cl.

CPC ................ F02C 7/36 (2013.01); FOLD 5/147
(2013.01); FOLD 5/282 (2013.01); FOLD

15/12 (2013.01);

(Continued)

(io) Patent No.: US 9,909,505 B2
(45) Date of Patent: *Mar. 6, 2018

(58) Field of Classification Search
CPC ... F02K 3/06; F02K 1/06; FO1D 5/282; FO1D

17/14; FO1D 5/147; FO1D 15/12;

(Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

3,287,906 A 11/1966 McCormick
3,468,473 A 9/1969 Davies et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP 1712738 10/2006
G13 1516041 6/1978

(Continued)

OTHER PUBLICATIONS

Gray, D.E. et al. (1978). Energy efficient engine preliminary design
and integration study. United Technologies Corporation; Pratt &
Whitney Aircraft Group. Prepared for NASA. Nov. 1, 1978. pp.
1-366.

(Continued)

Primary Examiner Carlos A Rivera

(74) Attorney, Agent, or Firm Carlson, Gaskey & Olds,
P.C.

(57) ABSTRACT

A gas turbine engine includes a core flow passage, a bypass
flow passage, and a propulsor arranged at an inlet of the
bypass flow passage and the core flow passage. The propul-
sor includes a row of propulsor blades. The row includes no
more than 20 of the propulsor blades. The propulsor has a
pressure ratio between about 1.2 and about 1.7 across the
propulsor blades.

20 Claims, 3 Drawing Sheets



US 9,909,505 B2
Page 2

Related U.S. Application Data

a continuation of application No. 13/176,365, filed on

Jul. 5, 2011.

(51) Int. Cl.

F02K 3/06 (2006.01)

FOLD 5/28 (2006.01)

FOLD 5/14 (2006.01)

FOLD 15/12 (2006.01)

F04D 29/02 (2006.01)

F04D 29/053 (2006.01)

F04D 29/32 (2006.01)

F04D 29/38 (2006.01)

F04D 29/52 (2006.01)

F04D 29/56 (2006.01)

(52) U.S. Cl.

CPC .................. F02K 1/06 (2013.01); F02K 3/06

(2013.01); F04D 29/023 (2013.01); F04D

29/053 (2013.01); F04D 29/325 (2013.01);

F04D 29/388 (2013.01); F04D 29/526

(2013.01); F04D 29/563 (2013.01); F05D

2220132 (2013.01); F05D 22201327 (2013.01);

F05D 2220136 (2013.01); F05D 226014031

(2013.01); F05D 23001603 (2013.01); Y02T

501672 (2013.01)

(58) Field of Classification Search

CPC ....... F05D 2260/4031; F05D 2220/327; F04D

29/023; F04D 29/053; F04D 29/325;

F04D 29/388; F04D 29/526; F04D

29/563; F02C 7/36

See application file for complete search history.

(56) References Cited

U.S.PATENT DOCUMENTS

3,747,343 A 7/1973 Rosen
3,754,484 A 8/1973 Roberts
3,892,358 A 7/1975 Gisslen
4,130,872 A 12/1978 Harloff
4,486,146 A 12/1984 Campion
4,885,912 A 12/1989 Nakhamkin
5,141,400 A * 8/1992 Murphy .................. B29C 43/18

416/204 A
5,169,288 A 12/1992 Gliebe et al.
5,433,674 A 7/1995 Sheridan et al.
5,447,411 A 9/1995 Curley et al.
5,524,847 A 6/1996 Brodell et al.
5,769,607 A 6/1998 Neely et al.
5,778,659 A 7/1998 Duesler et al.
5,857,836 A 1/1999 Stickler et al.
5,915,917 A 6/1999 Eveker et al.
5,975,841 A 11/1999 Lindemuth et al.
6,004,095 A 12/1999 Waitz et al.
6,195,983 B1 3/2001 Wadia et al.
6,223,616 B1 5/2001 Sheridan
6,318,070 B1 11/2001 Rey et al.
6,382,905 BI* 5/2002 Czachor ................ FOLD 11/122

415/128
6,709,239 B2 3/2004 Chandraker
6,814,541 B2 11/2004 Evans et al.
7,021,042 B2 4/2006 Law
7,107,756 B2 9/2006 Rolt
7,241,112 B2 * 7/2007 Dambrine ............... B29C 70A8

29/889.7
7,374,403 B2 5/2008 Decker et al.
7,591,754 B2 9/2009 Duong et al.
7,758,306 B2 7/2010 Burton et al.
7,770,377 B2 8/2010 Rolt
7,824,305 B2 11/2010 Duong et al.
7,882,691 B2 2/2011 Lemmers, Jr. et al.

7,926,260 B2 4/2011 Sheridan et al.
7,950,237 B2 5/2011 Grabowski et al.
8,205,432 B2 6/2012 Sheridan
8,667,775 B1 3/2014 Kisska et al.
9,121,412 B2 9/2015 Gallagher et al.

2006/0228206 Al 10/2006 Decker et al.
2007/0041842 Al * 2/2007 Thompson .............. FOLD 5/147

416/223 R
2008/0095633 Al 4/2008 Wilson
2008/0155961 Al 7/2008 Johnson
2008/0206048 Al* 8/2008 Coupe ..................... B29C 70/24

415/200
2008/0226454 Al 9/2008 Decker et al.
2009/0074565 Al 3/2009 Suciu et al.
2009/0245997 Al 10/2009 Hurwitz et al.
2010/0089019 Al 4/2010 Knight et al.
2010/0148396 Al 6/2010 Xie et al.
2010/0162683 Al 7/2010 Grabowski et al.
2010/0218483 Al 9/2010 Smith
2010/0260609 Al 10/2010 Wood et al.
2010/0331139 Al 12/2010 McCune
2011/0020130 Al * 1/2011 Murakami .............. B29C 70/30

416/223 R
2011/0142670 Al* 6/2011 Pilpel ...................... F03D 3/062

416/230
2013/0008146 Al* 1/2013 Gallagher ............... FOLD 17/14

60/226.3

FOREIGN PATENT DOCUMENTS

GB 2041090 9/1980
GB 2426792 12/2006
WO 2007038674 4/2007
WO 2015034630 3/2015
WO 2015047511 4/2015

OTHER PUBLICATIONS

File History for U.S. Pat. No. 9,121,412.

Davies, D. and Miller, D.C. (1971). Avariable pitch fan for an ultra
quiet demonstrator engine. 1976 Spring Convention: Seeds for
Success in Civil Aircraft Design in the Next Two Decades. pp. 1-18.
Middleton, P. (1971). 614: VFW's jet feederliner. Flight Interna-
tional, Nov. 4, 1971. p. 725, 729-732.
Willis, W.S. (1979). Quiet clean short-haul experimental engine
final report. Prepared for NASA. Aug. 1979. pp. 1-293.
Sweetman, B. and Sutton, O. (1998). Pratt & Whitney's surprise
leap: The announcement of the PW8000 geared turbofan caught the
industry unawares. Interavia. Jun. 1998; 53, 621. pp. 25-26.
Brines, G. (1990). The turbofan of tomorrow. Mechanical Engi-
neering; The Journal of the American Society of Mechanical Engi-
neers. 112, 8. pp. 65-67.
Mattingly, J.D. (1996). Elements of gas turbine propulsion.
McGraw-Hill. New York, NY. pp. 1-18, 60-62, 85-87, 95-104,
121-123, 223-234, 242-245, 278-285, 303-309, 323-326, 462-479,
517-520, 563-565, 630-632, 673-675, 682-685, 697-699, 703-705,
802-805, 862-864, 923-925.
Gunston, B. (2000). Ed. Jane's aero-engines. Issue Seven. Janes
Information Group Limited. Alexandria, VA. pp. 510-512.
Wendus, B.E., Stark, D.F., Holler, R.P., and Funkhouse, M.E.
(2003). Follow-on technology requirement study for advanced
subsonic transport. Technical Report prepared for NASA. NASA/
CR-2003-212467. Aug. 1, 2003. pp. 1-47.
Whitaker, R. (1982). ALF502: plugging the turbofan gap. Flight
International, Jan. 30, 1982. p. 237-241.
Schaefer, J.W., Sagerser, D.R., and Stakolich, E.G. (1977). Dynam-
ics of high-bypass-engine thrust reversal using a variable-pitch fan.
Technical Report prepare for NASA. NASA-TM-X-3524. May 1,
1977. pp. 1-33.
Savelle, S.A. and Garrard, G.D. (1996). Application of transient and
dynamic simulations to the U.S. Army T55-L-712 helicopter engine.
The American Society of Mechanical Engineers. Presented Jun.
10-13, 1996. pp. 1-8.
Petition for Inter Partes Review of U.S. Pat. No. 9,121,412.



US 9,909,505 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Declaration of Reza Abhari, Ph.D. In re U.S. Pat. No. 9,121,412.
Executed Apr. 23, 2016. pp. 1-71.
McMillian, A. (2008) Material development for fan blade contain-
ment casing. Abstract. p. 1. Conference on Engineering and Physics:
Synergy for Success 2006. Journal of Physics: Conference Series
vol. 105. London, UK. Oct. 5, 2006.
Kurzke, J. (2009). Fundamental differences between conventional
and geared turbofans. Proceedings of ASME Turbo Expo: Power for
Land, Sea, and Air. 2009, Orlando, Florida. pp. 145-153.
Agarwal, B.D and Broutman, L.J. (1990). Analysis and performance
of fiber composites, 2nd Edition. John Wiley & Sons, Inc. New
York: New York. pp. 1-30, 50-51, 56-58, 60-61, 64-71, 87-89,
324-329, 436-437.
Carney, K., Pereira, M. Revilock, and Matheny, P. (2003). Jet engine
fan blade containment using two alternate geometries. 4th European
LS-DYNA Users Conference. pp. 1-10.
Brines, G.L. (1990). The turbofan of tomorrow. Mechanical Engi-
neering: The Journal of the American Society of Mechanical Engi-
neers,108(8), 65-67.
Faghri, A. (1995). Heat pipe and science technology. Washington,
D.C.: Taylor & Francis. pp. 1-60.
Hess, C. (1998). Pratt & Whitney develops geared turbofan. Flug
Revue 43(7). Oct. 1998.
Grady, J.E., Weir, D.S., Lamoureux, M.C., and Martinez, M.M.
(2007). Engine noise research in NASA's quiet aircraft technology
project. Papers from the International Symposium on Air Breathing
Engines (ISABE). 2007.
Griffiths, B. (2005). Composite fan blade containment case. Modern
Machine Shop. Retrieved from: http://www.mmsonline.com/ar-
ticles/composite-fan-blade-containment. case pp. 1-4.
Hall, C.A. and Crichton, D. (2007). Engine design studies for a
silent aircraft. Journal of Turbomachinery, 129, 479-487.
Haque, A. and Shamsuzzoha, M., Hussain, F., and Dean, D. (2003).
S20-glass/epoxy polymer nanocomposites: Manufacturing, struc-
tures, thermal and mechanical properties. Journal of Composite
Materials, 37(20), 1821-1837.
Brennan, P.J. and Kroliczek, E.J. (1979). Heat pipe design hand-
book. Prepared for National Aeronautics and Space Administration
by B & K Engineering, Inc. Jun. 1979. pp. 1-348.
Horikoshi, S. and Serpone, N. (2013). Introduction to nanoparticles.
Microwaves in nanoparticle synthesis. Wiley-VCH Verlag GmbH &
Co. KGaA. pp. 1-24.
Kerrebrock, J.L. (1977). Aircraft engines and gas turbines. Cam-
bridge, MA: The MIT Press. p. 11.
Xie, M. (2008). Intelligent engine systems: Smart case system.
NASA/CR-2008-215233. pp. 1-31.
Knip, Jr., G. (1987). Analysis of an advanced technology subsonic
turbofan incorporating revolutionary materials. NASA Technical
Memorandum. May 1987. pp. 1-23.
Willis, W.S. (1979). Quiet clean short-haul experimental engine
(QCSEE) final report NASA/CR-159473 pp. 1-289.
Kojima, Y, Usuki, A. Kawasumi, M., Okada, A., Fukushim, Y,
Kurauchi, T., and Kamigaito, O. (1992). Mechanical properties of
nylon 6-clay hybrid. Journal of Materials Research, 8(5), 1185-
1189.
Kollar, L.P. and Springer, G.S. (2003). Mechanics of composite
structures. Cambridge, UK: Cambridge University Press. p. 465.
Ramsden, J.M. (Ed). (1978). The new European airliner. Flight
International, 113(3590). Jan. 7, 1978. pp. 39-43.
Langston, L. and Faghri, A. Heat pipe turbine vane cooling.
Prepared for Advanced Turbine Systems Annual Program Review.
Morgantown, West Virginia. Oct. 17-19, 1995. pp. 3-9.
Oates, G.C. (Ed). (1989). Aircraft propulsion systems and technol-
ogy and design. Washington, D.C.: American Institute of Aeronau-
tics, Inc. pp. 341-344.
Lau, K., Gu, C., and Hui, D. (2005). A critical review on nanotube
and nanotube/nanoclay related polymer composite materials. Com-
posites: Part B 37(2006) 425-436.

Shorter Oxford English dictionary, 6th Edition. (2007). vol. 2, N-Z.
P. 1888.
Lynwander, P. (1983). Gear drive systems: Design and application.
New York, New York: Marcel Dekker, Inc. pp. 145, 355-358.
Sweetman, B. and Sutton, O. (1998). Pratt & Whitney's surprise
leap. Interavia Business & Technology, 53.621, p. 25.
Mattingly, J.D. (1996). Elements of gas turbine propulsion. New
York, New York: McGraw-Hill, Inc. pp. 8-15.
Pyrograf-III Carbon Nanofiber. Product guide. Retrieved Dec. 1,
2015 from: http://pyrografproducts.com/Merchant5/merchant.
mvc? Screen=cpnanofiber.
Nanocor Technical Data for Epoxy Nanocomposites using Nanomer
1.30E Nanoclay. Nnacor, Inc. Oct. 2004.
Rama, D. (2009). Handbook of thermoset resins. Shawbury, UK:
iSmithers. pp. 187-216.
Wendus, B.E., Stark, D.F., Holler, R.P., and Funkhouser, M.E.
(2003). Follow-on technology requirement study for advanced
subsonic transport. NASA/CR-2003-212467. pp. 1-37.
Silverstein, C.C., Gottschlich, J.M., and Meininger, M. The feasi-
bility of heat pipe turbine vane cooling. Presented at the Interna-
tional Gas Turbine and Aeroengine Congress and Exposition, The
Hague, Netherlands. Jun. 13-16, 1994.pp. 1-7.
Merriam-Webster's collegiate dictionary, 11th Ed. (2009). p. 824.
Merriam-Webster's collegiate dictionary, 10th Ed. (2001). p. 1125-
1126.
Whitaker, R. (1982). ALF 502: plugging the turbofan gap. Flight
International, p. 237-241, Jan. 30, 1982.
Hughes, C. (2010). Geared turbofan technology. NASA Environ-
mentally Responsible Aviation Project. Green Aviation Summit.
NASA Ames Research Center. Sep. 8-9, 2010. pp. 1-8.
Gliebe, P.R. and Janardan, B.A. (2003). Ultra-high bypass engine
aeroacoustic study. NASA/CR-2003-21252. GE Aircraft Engines,
Cincinnati, Ohio. Oct. 2003. pp. 1-103.
Moxon, J. How to save fuel in tomorrow's engines. Flight Interna-
tional. Jul. 30, 1983. 3873(124). pp. 272-273.
File History for U.S. Appl. No. 12/131,876.
Cusick, M. (1981). Avco Lycoming's ALF 502 high bypass fan
engine. Society of Automotive Engineers, inc. Business Aircraft
Meeting & Exposition. Wichita, Kansas. Apr. 7-10, 1981. pp. 1-9.
Fledderjohn, K.R. (1983). The TFE731-5: Evolution of a decade of
business jet service. SAE Technical Paper Series. Business Aircraft
Meeting & Exposition. Wichita, Kansas. Apr. 12-15, 1983. pp. 1-12.
Dickey, T.A. and Dobak, E.R. (1972). The evolution and develop-
ment status of ALF 502 turbofan engine. National Aerospace
Engineering and Manufacturing Meeting. San Diego, California.
Oct. 2-5, 1972. pp. 1-12.
Gunston, B. (Ed.) (2000). Jane's aero-engines, Issue seven.
Coulsdon, Surrey, UK: Jane's Information Group Limited. pp.
510-512.
Ivchenko -Progress D-436. Jane's Aero-engines, Aero-engines- Tur-
bofan. Feb. 8, 2012.
Ivchenko -Progress AI-727M. Jane's Aero-engines, Aero-engines-
Turbofan. Nov. 27, 2011.
Ivchenko -Progress D-727. Jane's Aero-engines, Aero-engines- Tur-
bofan. Feb. 7, 2007.
Turbomeca Aubisque. Jane's Aero-engines, Aero-engines- Turbo-
fan. Nov. 2, 2009.
Aviadvigatel D-110. Jane's Aero-engines, Aero-engines- Turbofan.
Jun. 1, 2010.
Rolls-Royce M45H. Jane's Aero-engines, Aero-engines- Turbofan.
Feb. 24, 2010.
Honeywell LF502. Jane's Aero-engines, Aero-engines- Turbofan.
Feb. 9, 2012.
Honeywell LF507. Jane's Aero-engines, Aero-engines- Turbofan.
Feb. 9, 2012.
Honeywell TFE731. Jane's Aero-engines, Aero-engines- Turbofan.
Jul. 18, 2012.
NASA Conference Publication. Quiet, powered-lift propulsion.
Cleveland, Ohio. Nov. 14-15, 1978. pp. 1-420.
"Civil Turbojet/Turbofan Specifications", Jet Engine Specification
Database (Apr. 3, 2005).
Kandebo, S.W. (1993). Geared-turbofan engine design targets cost,
complexity. Aviation Week & Space Technology, 148(8). Start p. 32.



US 9,909,505 B2
Page 4

(56) References Cited

OTHER PUBLICATIONS

Hendricks, E.S. and Tong, M.T. (2012). Performance and weight
estimates for an advanced open rotor engine. NASA/TM-2012-
217710. pp. 1-13.
Guynn, M. D., Berton, J.J., Fisher, K. L., Haller, W.J., Tong, M. T.,
and Thurman, D.R. (2011). Refined exploration of turbofan design
options for an advanced single-aisle transport. NASA/TM-2011-
216883. pp. 1-27.
Zalud, T. (1998). Gears put a new spin on turbofan performance.
Machine Design, 70(20), p. 104.
Edkins, D.P. and Hirschkron, R.L. (1972). TF34 turbofan quiet
engine study final report. NASA CR-120914. Dec. 31, 1972. pp.
1-96.
Marsh, G. (2012). Aero engines lose weight thanks to composites.
Reinforced Plastics. 56(6). Nov. 1, 2012. pp. 32-35.
European Search Report for European Patent Application No.
16166928 dated Sep. 7, 2016.
European Search Report for European Patent Application No.
12174431 dated Sep. 8, 2016.
Zalud, T. (1998). "Gears Put a New Spin on Turbofan Performance"
Nov. 5, 1998, 2010 Penton Media Inc.
Meier, N. (2005). Civil Turbojet/Turbofan Specifications. Retrieved
from http://www.jet-engine.net/civifspec.html.
Hendricks et al. "Performance and Weight Estimates for an
Advanced Open Rotor Engine" NASA/TM-2012-217710, Sep.
2012, 20 pp.
Gunston, "Jane's Aero-Engines" Pratt & Whitney/USA, Mar. 2000,
JAEng-Issue 7, 5 pp.
Kandebo, "Geared-Turbofan Engine Design Targets Cost, Com-
plexity" Aviation Week & Space Technology; New York; Feb. 23,
1998, 4 pp.

* cited by examiner



U.S. Patent Mar. 6, 2018 Sheet 1 of 3 US 9,909,505 B2

22,

BC



U.S. Patent Mar. 6, 2018 Sheet 2 of 3 US 9,909,505 B2

FIG.3

289a

1

I I
275

86 
289b

I
274

FIG.7

1741 

FlG.6



U.S. Patent Mar. 6, 2018 Sheet 3 of 3 US 9,909,505 B2

zz~

431

w

FIGA

FIG.5
Oyu

.. .......................................................... .. .......................................................... .. .......................................................... .. .......................................................... .. ..........................................................------------------------------------------------------------
o❖.❖.❖.❖.❖.❖.❖.❖.❖.❖.❖.❖.❖.❖.❖.❖.❖.❖.❖.❖.•.~ .❖.❖.❖.•.,.❖.❖.❖.,.,.❖.❖.❖.❖.❖.❖.❖.❖.❖.❖.,.❖.❖.•~

FIG.9



US 9,909,505 B2

EFFICIENT, LOW PRESSURE RATIO
PROPULSOR FOR GAS TURBINE ENGINES

CROSS REFERENCE TO RELATED
APPLICATIONS

The present disclosure is a continuation-in-part of U.S.
application Ser. No. 13/484,858, filed May 31, 2012, which
is a continuation of U.S. application Ser. No. 13/176,365,
filed Jul. 5, 2011.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
contract number NAS3-01138 awarded by NASA. The
government has certain rights in the invention.

BACKGROUND

This disclosure relates to gas turbine engines and, more
particularly, to an engine having a geared turbo fan archi-
tecture that is designed to efficiently operate with a high
bypass ratio and a low pressure ratio.
The overall propulsive efficiency and fuel burn of a gas

turbine engine depends on many different factors, such as
the design of the engine and the resulting performance debits
on the fan that propels the engine. As an example, the fan
rotates at a high rate of speed such that air passes over the
blades at transonic or supersonic speeds. The fast-moving air
creates flow discontinuities or shocks that result in irrevers-
ible propulsive losses. Additionally, physical interaction
between the fan and the air causes downstream turbulence
and further losses. Although some basic principles behind
such losses are understood, identifying and changing appro-
priate design factors to reduce such losses for a given engine
architecture has proven to be a complex and elusive task.

SUMMARY

A gas turbine engine according to an example of the
present disclosure includes a core flow passage, a bypass
flow passage, and a propulsor arranged at an inlet of the
bypass flow passage and the core flow passage. The propul-
sor includes a row of propulsor blades. The row includes no
more than 20 of the propulsor blades. The propulsor has a
pressure ratio of between about 1.2 or 1.3 and about 1.7
across the propulsor blades.

In a further embodiment of any of the foregoing embodi-
ments, the pressure ratio is between about 1.3 and about 1.4.

In a further embodiment of any of the foregoing embodi-
ments, each of the propulsor blades extends radially between
a root and a tip and in a chord direction between a leading
edge and a trailing edge at the tip to define a chord
dimension (CD). The row of propulsor blades defines a
circumferential pitch (CP) with regard to the tips. The row
of propulsor blades has a solidity value (R) defined as
CD/CP that is between about 0.9 or 1.0 and about 1.3.

In a further embodiment of any of the foregoing embodi-
ments, the propulsor is coupled to be driven by a turbine
through a spool, and a gear assembly is coupled between the
propulsor and the spool such that rotation of the turbine
drives the propulsor at a different speed than the spool.

In a further embodiment of any of the foregoing embodi-
ments, the propulsor blades include a carbon-fiber rein-
forced polymer matrix material.

2
In a further embodiment of any of the foregoing embodi-

ments, the polymer of the carbon-fiber reinforced polymer
matrix material is a thermoplastic polymer.
In a further embodiment of any of the foregoing embodi-

5 ments, the propulsor blades each further comprise a sheath
on a leading edge thereof.
In a further embodiment of any of the foregoing embodi-

ments, each of the propulsor blades includes a first distinct
region of carbon-fiber reinforced polymer matrix material

10 
and a second distinct region of a non-carbon-fiber reinforced
polymer matrix material.
In a further embodiment of any of the foregoing embodi-

ments, the propulsor blades each include a distinct core that
supports a skin of carbon-fiber reinforced polymer matrix
material.

15 In a further embodiment of any of the foregoing embodi-
ments, the skin of carbon-fiber reinforced polymer matrix
material has a three-dimensional fiber structure.
In a further embodiment of any of the foregoing embodi-

ments, the core is formed of a metallic material.
20 In a further embodiment of any of the foregoing embodi-

ments, the core is formed of a fiber-reinforced material that
is different in composition from the carbon-fiber reinforced
polymer matrix material.
A further embodiment of any of the foregoing embodi-

25 ments includes a case surrounding the propulsor, the case
including a carbon-fiber reinforced polymer matrix material.
A further embodiment of any of the foregoing embodi-

ments includes a case surrounding the propulsor. The case
and the propulsor blades include a carbon-fiber reinforced

30 polymer matrix material. The propulsor blades each include
an airfoil body that has a distinct core that supports a skin of
the carbon-fiber reinforced polymer matrix material, and a
sheath secured on a leading edge of the airfoil body.
In a further embodiment of any of the foregoing embodi-

35 ments, wherein the carbon-fiber reinforced polymer matrix
material of the propulsor blades is different from the carbon-
fiber reinforced polymer matrix material of the case with
respect to composition.

In a further embodiment of any of the foregoing embodi-
40 ments, the row includes no more than 17 of the propulsor

blades.
In a further embodiment of any of the foregoing embodi-

ments, the propulsor blades each include a distinct core that
supports a skin of the carbon-fiber reinforced polymer

45 matrix material.
In a further embodiment of any of the foregoing embodi-

ments, the fiber reinforced polymer matrix material of the
case includes carbon fibers.
A gas turbine engine according to an example of the

50 present disclosure includes a core flow passage, a bypass
flow passage, and a propulsor arranged at an inlet of the
bypass flow passage and the core flow passage. The propul-
sor includes a row of propulsor blades. The row includes no
more than 20 of the propulsor blades and the propulsor

55 blades include a carbon-fiber reinforced polymer matrix
material. Each of the propulsor blades extends radially
between a root and a tip and in a chord direction between a
leading edge and a trailing edge at the tip to define a chord
dimension (CD). The row of propulsor blades defines a

60 circumferential pitch (CP) with regard to the tips. The row
of propulsor blades has a solidity value (R) defined as
CD/CP that is less than about 1.2 or less than about I.I.

65

BRIEF DESCRIPTION OF THE DRAWINGS

The various features and advantages of the disclosed
examples will become apparent to those skilled in the art
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from the following detailed description. The drawings that
accompany the detailed description can be briefly described
as follows.

FIG. 1 is a schematic cross-section of an embodiment of
a gas turbine engine.

FIG. 2 is a perspective view of a fan section of the engine
of FIG. 1.

FIG. 3 illustrates an embodiment of a carbon-fiber rein-
forced polymer matrix material.

FIG. 4 illustrates an embodiment of a two-dimensional
woven fiber structure.
FIG. 5 illustrates an embodiment of a three-dimensional

fiber structure.
FIG. 6 is a cross-section of an embodiment of a propulsor

blade that has a distinct core and a skin of carbon-fiber
reinforced polymer matrix material.

FIG. 7 illustrates an embodiment of a propulsor blade that
has a sheath.

FIG. 8 illustrates a portion of an embodiment of a case and
propulsor blade.

FIG. 9 illustrates another embodiment of a case.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

FIG. 1 schematically illustrates a gas turbine engine 20.
The gas turbine engine 20 may be a two-spool turbofan that
generally incorporates a fan section 22, a compressor section
24, a combustor section 26 and a turbine section 28. Alter-
native engine architectures may include a single-spool
design, a three-spool design, or an open rotor design, among
other systems or features.
The fan section 22 drives air along a bypass flow passage

B while the compressor section 24 drives air along a core
flow passage C for compression and communication into the
combustor section 26. Although depicted as a turbofan gas
turbine engine, it is to be understood that the concepts
described herein are not limited to use with turbofans and the
teachings may be applied to other types of gas turbine
engines.
The engine 20 includes a low speed spool 30 and high

speed spool 32 mounted for rotation about an engine central
longitudinal axis A relative to an engine static structure 36
via several bearing systems 38. The low speed spool 30
generally includes an inner shaft 40 that is coupled with a
propulsor 42, a low pressure compressor 44 and a low
pressure turbine 46. The propulsor 42 is in the fan section 22
and a case 43 surrounds the propulsor 42. The low pressure
turbine 46 drives the propulsor 42 through the inner shaft 40
and a gear assembly 48, which allows the low speed spool
30 to drive the propulsor 42 at a different (e.g. lower)
angular speed.
The high speed spool 32 includes an outer shaft 50 that is

coupled with a high pressure compressor 52 and a high
pressure turbine 54. A combustor 56 is arranged between the
high pressure compressor 52 and the high pressure turbine
54. The inner shaft 40 and the outer shaft 50 are concentric
and rotate about the engine central longitudinal axis A,
which is collinear with their longitudinal axes.
A core airflow in core flow passage C is compressed by

the low pressure compressor 44 then the high pressure
compressor 52, mixed with the fuel in the combustor 56, and
then expanded over the high pressure turbine 54 and low
pressure turbine 46. The turbines 54, 46 rotationally drive
the respective low speed spool 30 and high speed spool 32
in response to the expansion.

4
As shown, the propulsor 42 is arranged at an inlet 60 of

the bypass flow passage B and core flow passage C. Air flow
through the bypass flow passage B exits the engine 20
through an outlet 62 or nozzle. For a given design of the

5 propulsor 42, the inlet 60 and the outlet 62 of the engine 20
define a design (fan) pressure ratio with regard to an inlet
pressure at the inlet 60 and an outlet pressure at the outlet 62
of the bypass flow passage B. As an example, the design
pressure ratio may be determined based upon the stagnation

io inlet pressure and the stagnation outlet pressure at a design
rotational speed of the engine 20. In that regard, the engine
20 may optionally include a variable area nozzle 64 within
the bypass flow passage B. The variable area nozzle 64 is
operative to change a cross-sectional area 66 of the outlet 62

15 to thereby control the pressure ratio via changing pressure
within the bypass flow passage B. The design pressure ratio
may be defined with the variable area nozzle 64 fully open
or fully closed.

Referring to FIG. 2, the propulsor 42, which in this
20 example is a fan, includes a rotor 70 having a row 72 of

propulsor blades 74 that extend a circumferentially around a
hub 76. Each of the propulsor blades 74 extends radially
outwardly from the hub 76 between a root 78 and a tip 80
and in a chord direction (axially and circumferentially)

25 between a leading edge 82 and a trailing edge 84. A chord
dimension (CD) is a length between the leading edge 82 and
the trailing edge 84 at the tip of each propulsor blade 74. The
row 72 of propulsor blades 74 also defines a circumferential
pitch (CP) that is equivalent to the arc distance between the

30 tips 80 of neighboring propulsor blades 74.
As will be described, the example propulsor 42 includes

a number (N) of the propulsor blades 74 and a geometry that,
in combination with the architecture of the engine 20,
provides enhanced overall propulsive efficiency by reducing

35 performance debits of the propulsor 42.
In the illustrated example, the number N of propulsor

blades in the row 72 is no more than 20. In one example, the
propulsor 42 includes 18 of the propulsor blades 74 uni-
formly circumferentially arranged about the hub 76. In other

40 embodiments, the number N may be any number of blades
from 12-20.
The propulsor blades 74 define a solidity value with

regard to the chord dimension CD and the circumferential
pitch CP. The solidity value is defined as a ratio (R) of

45 CD/CP (i.e., CD divided by CP). In embodiments, the
solidity value of the propulsor 42 is between 0.9 or 1.0 and
1.3. In further embodiments, the solidity value is from 1.1 to
1.2. In additional embodiments, the solidity value is less
than 1.1, and in a further example is also greater than 0.85.

50 Additionally, in combination with the given example
solidity values, the fan 22 of the engine 20 may be designed
with a particular design pressure ratio. In embodiments, the
design pressure ratio may be between 1.2 or 1.3 and 1.55. In
a further embodiment, the design pressure ratio may be

55 between 1.3 and 1.4. In further examples, the design pres-
sure ratio is between 1.3 and 1.7.
The engine 20 may also be designed with a particular

bypass ratio with regard to the amount of air that passes
through the bypass flow passage B and the amount of air that

60 passes through the core flow passage C. As an example, the
design bypass ratio of the engine 20 may nominally be 12,
or alternatively in a range of approximately 8.5 to 13.5 or 18.
The propulsor 42 also defines a ratio of N/R. In embodi-

ments, the ratio N/R is from 9 to 20. In further embodiments,
65 the ratio N/R is from 14 to 16. The table below shows

additional examples of solidity and the ratio N/R for differ-
ent numbers of propulsor blades 74.
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TABLE

Number of Blades, Solidity and Ratio N/R

Number of Blades (N) Solidity Ratio N/R

20 1.3 15.4
18 1.3 13.8
16 1.3 12.3
14 1.3 10.8
12 1.3 9.2
20 1.2 16.7
18 1.2 15.0
16 1.2 13.3
14 1.2 11.7
12 1.2 10.0
20 1.1 18.2
18 1.1 16.4
16 1.1 14.5
14 1.1 12.7
12 1.1 10.9
20 1.0 20.0
18 1.0 18.0
16 1.0 16.0
14 1.0 14.0
12 1.0 12.0

The disclosed ratios of N/R enhance the overall propul-
sive efficiency and fuel burn of the disclosed engine 20. For
instance, the disclosed ratios of N/R are designed for the
geared turbo fan architecture of the engine 20 that utilizes
the gear assembly 48. That is, the gear assembly 48 allows
the propulsor 42 to rotate at a different, lower speed than the
low speed spool 30. In combination with the variable area
nozzle 64, the propulsor 42 can be designed with a large
diameter and rotate at a relatively slow speed with regard to
the low speed spool 30. A relatively low speed, relatively
large diameter, and the geometry that permits the disclosed
ratios of N/R contribute to the reduction of performance
debits, such as by lowering the speed of the air or fluid that
passes over the propulsor blades 74.
The propulsor blades 74 can include a carbon-fiber rein-

forced polymer matrix material, an example portion of
which is depicted in FIG. 3 at 86. In this example, the
material 86 includes carbon fibers 86a that are disposed in
a polymer matrix 86b. The propulsor blades 74 can be
formed exclusively of the material 86 or partially of the
material 86 in combinations with alloys or other fiber-
reinforced materials.
The material 86 can include a plurality of carbon fiber

layers 88 that are stacked and consolidated to form the
material 86. For example, the fiber layers 88 can each have
uni-directionally oriented fibers and the layers 88 can be
cross-plied. In further examples, one or more of the layers 88
has a different fiber structure, such as but not limited to,
random fiber orientation, woven, or three-dimensional. An
example two-dimensional woven fiber structure is depicted
in FIG. 4. An example three-dimensional fiber structure is
depicted in FIG. 5. In this example, the fibers 86a are woven
into sheets 90, and transverse fibers 86c bundle the sheets 90
to one another. As can be appreciated, other two- or three-
dimensional fiber structures could alternatively or addition-
ally be used.
The polymer matrix 86b can include thermoplastic poly-

mer, thermoset polymer, or combinations thereof. Thermo-
set polymers can include, but are not limited to, epoxy and
phenolic. Thermplastic polymers can include, but are not
limited to, polyethers and polyimides.
The carbon fibers 86a provide the material 86 with

strength and stiffness. For example, the properties of the
carbon fibers 86a can be selected in accordance with desired

6
properties of the material 86, and thus desired properties of
the propulsor blades 74. In one example, the carbon fibers
86a are polyacrylonitrile or polyacrylonitrile-based. The
fibers are initially with polyacrylonitrile fibers and are then

5 graphitized. Alternatively, the fibers are initially thermoplas-
tic fibers that are then graphitized. thermoplastics can
include, but are not limited to, polyethylene, polyarylether,
and poly ether ether ketones. In further examples, the carbon
fibers 86a have an average diameter of 1-100 micrometers.

to Alternatively, the carbon fibers 86a are nano-sized and have
a diameter of less than I micrometer. In other examples, the
carbon fibers 86a are carbon-containing such that the fibers
include carbon as a primary constituent or element. In one

15 example, the carbon fibers 86a are carbide.
FIG. 6 illustrates a cross-sectional view of another

example propulsor blade 174, which may include any of the
aforementioned features. In this disclosure, like reference
numerals designate like elements where appropriate and

20 reference numerals with the addition of one-hundred or
multiples thereof designate modified elements that are
understood to incorporate the same features and benefits of
the corresponding elements. In this example, the propulsor
blade 174 includes a distinct core 174a that supports a skin

25 174b of the carbon-fiber reinforced polymer matrix material
86. In this example, the core 174a is a solid piece, but it
alternatively can be hollow to reduce weight.
The core 174a can be formed of a metallic material, a fiber

reinforced polymer matrix material, or combinations
30 thereof. An example metallic material includes a titanium-

based alloy. The fiber reinforced polymer matrix material
can include carbon fiber, as in any of the examples of the
material 86. Alternatively, the fibers in the core 174a are
non-carbon fibers. Example non-carbon fibers can include,

35 but are not limited to, glass fibers, metallic fibers, ceramic
fibers, polymeric fibers, and combinations thereof.

In further examples, the core 174 is formed of a fiber-
reinforced material that is different in composition from the
material 86 of the skin 174b. The difference in composition

40 can be in the kinds of polymers of the matrices, the kinds of
fibers, the amounts of the polymer matrices, the amounts of
the fibers, or any combination of such differences.
In further examples, the skin 174b is the multi-layered

structure of the material 86. For example, layers 88 are
45 laid-up on or around the core 174a and then consolidated.

Alternatively, the skin 174b is a continuous sleeve. The core
174a is inserted into the sleeve and then the skin 174b is
consolidated. In one further example, the material 86 of the
sleeve has a three-dimensional fiber structure.

50 FIG. 7 illustrates another example propulsor blade 274
that is formed of the material 86. In this example, the
propoulsor blade 274 also includes a sheath 275 on a leading
edge of the blade. For example, the sheath 275 protects the
propulsor blade 274 from foreign object impact. In one

55 example, the sheath 275 is formed of a metallic material.
The metallic material can include, but is not limited to, a
titanium-based alloy, a cobalt-based alloy, or combinations
thereof. In further examples, the sheath 275 is multi-layered
and includes at least one layer of a metallic material. One or

60 more additional layers can include a layer of a metallic
material of a different composition, a layer of a polymer-
based material, or combinations thereof.
The sheath 275 is secured to the leading edge of the

propulsor blade 274. In this regard, the sheath 275 can be
65 bonded using an adhesive, mechanically attached to the

blade, or secured by a combination of adhesive bonding and
mechanical attachment.
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In a further example, the propulsor blade 274 includes a
first distinct region 289a (outside of dashed line region) of
carbon-fiber reinforced polymer matrix material 86 and a
second distinct region 289b (inside dashed line region) of a
non-carbon-fiber reinforced polymer matrix material. The
non-carbon fibers can include, but are not limited to, glass
fibers, aramid fibers, boron fibers, carbide fibers, or combi-
nations thereof. The second distinct region 289b of non-
carbon-fiber reinforced polymer matrix material provides
the ability to locally tailor the performance of the propulsor
blade 274 with regard to properties. For example, the
vibrational properties are locally tailored through selection
of the properties of the second distinct region 289b to control
vibration or control response to an impact event.

FIG. 8 illustrates selected portions of the fan section 22 of
the engine 20, including the case 43 and a portion of one of
the propulsor blades 74. The case 43 serves as a containment
structure in the case of a blade release event. For example,
the case 43 includes a fiber reinforced polymer matrix
material 45. The material 45 includes fibers 45a that are
disposed in a polymer matrix 45b. The fibers 45a can be
carbon fibers or non-carbon fibers. Non-carbon fibers can
include, but are not limited to, glass fibers, aramid fibers, or
combinations thereof. In one example, the material 45
includes a plurality of fiber layers 45c that are stacked and
consolidated to form the material 45. For example, all of the
layers 45c have the same kind of fibers. In other examples,
alternating layers 45c, or an alternating pattern of layers 45c,
have different kinds of fibers, one of which is carbon fibers.

In further examples, the carbon-fiber reinforced polymer
matrix material 86 of the propulsor blades 74 is different
from the carbon-fiber reinforced polymer matrix material 45
of the case 43 with respect to composition. The difference in
composition can be in the kinds of polymers of the matrices,
the kinds of fibers, the amounts of the polymer matrices, the
amounts of the fibers, or any combination of such differ-
ences. Further, the differences can be tailored for thermal
conformance between the propulsor blades 74 and the case
43.

FIG. 9 illustrates another example case 143 that includes
a layer of the material 45 adjacent a layer 147. The layer 147
can be a layer of carbon-fiber reinforced polymer matrix
material, non-carbon-fiber reinforced polymer matrix mate-
rial, or metallic material, such as in a honeycomb or acoustic
structure.

Although a combination of features is shown in the
illustrated examples, not all of them need to be combined to
realize the benefits of various embodiments of this disclo-
sure. In other words, a system designed according to an
embodiment of this disclosure will not necessarily include
all of the features shown in any one of the Figures or all of
the portions schematically shown in the Figures. Moreover,
selected features of one example embodiment may be com-
bined with selected features of other example embodiments.
The preceding description is exemplary rather than lim-

iting in nature. Variations and modifications to the disclosed
examples may become apparent to those skilled in the art
that do not necessarily depart from the essence of this
disclosure. The scope of legal protection given to this
disclosure can only be determined by studying the following
claims.

What is claimed is:
1. A gas turbine engine comprising:
a turbine;
a gear assembly;
a core flow passage;

8
a bypass flow passage, said bypass flow passage having an

inlet having a stagnation inlet pressure, and an outlet
having a stagnation outlet pressure;

a design pressure ratio with regard to said stagnation inlet
5 pressure and said stagnation outlet pressure, said design

pressure ratio being from 1.3 to 1.55; and
a propulsor coupled with said turbine through said gear

assembly, said propulsor arranged within said bypass
flow passage, said propulsor including a row of pro-

lo pulsor blades, said row includes no more than 20 of
said propulsor blades, wherein each of said propulsor
blades extends radially between a root and a tip and in
a chord direction between a leading edge and a trailing

15 edge at said tip to define a chord dimension (CD), said
row of propulsor blades defining a circumferential pitch
(CP) with regard to said tips, and said row of propulsor
blades has a solidity value (R) at said tips defined as
CD/CP that is from 1.0 to 1.3.

20 2. The gas turbine engine as recited in claim 1, wherein
said pressure ratio is between about 1.3 and about 1.4.

3. The gas turbine engine as recited in claim 1, wherein
said propulsor blades include a carbon-fiber reinforced poly-
mer matrix material.

25 4. The gas turbine engine as recited in claim 3, wherein
said polymer of said carbon-fiber reinforced polymer matrix
material is a thermoplastic polymer.

5. The gas turbine engine as recited in claim 4, wherein
said thermoplastic polymer includes polyether or polyimide.

30 6. The gas turbine engine as recited in claim 3, wherein
said propulsor blades each further comprise a sheath on a
leading edge thereof.

7. The gas turbine engine as recited in claim 1, wherein
each of said propulsor blades includes a first distinct region

35 of carbon-fiber reinforced polymer matrix material and a
second distinct region of a non-carbon-fiber reinforced poly-
mer matrix material.

8. The gas turbine engine as recited in claim 1, wherein
said propulsor blades each include a distinct core that

40 supports a skin of carbon-fiber reinforced polymer matrix
material.
9. The gas turbine engine as recited in claim 8, wherein

said skin of carbon-fiber reinforced polymer matrix material
has a three-dimensional fiber structure.

45 10. The gas turbine engine as recited in claim 9, wherein
said three-dimensional fiber structure includes woven fiber
sheets and transverse fibers that bundle said woven fiber
sheets together.

11. The gas turbine engine as recited in claim 9, wherein
50 said core is formed of a metallic material.

12. The gas turbine engine as recited in claim 9, wherein
said core is formed of a fiber-reinforced material that is
different in composition from said carbon-fiber reinforced
polymer matrix material.

55 13. The gas turbine engine as recited in claim 1, wherein
said solidity value (R) at said tips is from 1.0 to 1.2.
14. The gas turbine engine as recited in claim 13, wherein

said solidity value (R) at said tips is from 1.0 to 1.1 and said
row includes no more than 18 of said propulsor blades.

60 15. The gas turbine engine as recited in claim 14, further
comprising a ratio of propulsor blades (N) to the solidity
value (R) at said tips within a range from 14 to 16.
16. The gas turbine engine as recited in claim 15, further

comprising a bypass ratio within a range from 8.5 to 13.5.
65 17. The gas turbine engine as recited in claim 16, further

comprising a case surrounding said propulsor, said case
including a carbon-fiber reinforced polymer matrix material.
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18. The gas turbine engine as recited in claim 16, further
comprising a case surrounding said propulsor, said case and
said propulsor blades including a carbon-fiber reinforced
polymer matrix material.

19. The gas turbine engine as recited in claim 18, wherein s
said carbon-fiber reinforced polymer matrix material of said
propulsor blades is different from said carbon-fiber rein-
forced polymer matrix material of said case with respect to
composition.

20. The gas turbine engine as recited in claim 19, wherein io
said propulsor blades further include a three-dimensional
fiber structure.
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