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EFFICIENT, LOW PRESSURE RATIO the propulsor blades that is no greater than 20 such that a
PROPULSOR FOR GAS TURBINE ENGINES ratio of the number of propulsor blades to the solidity value

is from 9to 20.
CROSS REFERENCE TO RELATED

APPLICATIONS

The present disclosure is a continuation of U.S. applica-
tion Ser. No. 15/252,689, filed August 31, 2016, which is a
continuation of U.S. application Ser. No. 13/176,365, filed
July 5, 2011.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
contract number NAS3-01138 awarded by NASA. The
government has certain rights in the invention.

BACKGROUND

This disclosure relates to gas turbine engines and, more
particularly, to an engine having a geared turbo fan archi-
tecture that is designed to efficiently operate with a high
bypass ratio and a low pressure ratio.
The propulsive efficiency of a gas turbine engine depends

on many different factors, such as the design of the engine
and the resulting performance debits on the fan that propels
the engine. As an example, the fan rotates at a high rate of
speed such that air passes over the blades at transonic or
supersonic speeds. The fast-moving air creates flow discon-
tinuities or shocks that result in irreversible propulsive
losses. Additionally, physical interaction between the fan
and the air causes downstream turbulence and further losses.
Although some basic principles behind such losses are
understood, identifying and changing appropriate design
factors to reduce such losses for a given engine architecture
has proven to be a complex and elusive task.

SUMMARY

An exemplary gas turbine engine includes a spool, a
turbine coupled to drive the spool, and a propulsor that is
coupled to be driven by the turbine through the spool. A gear
assembly is coupled between the propulsor and the spool
such that rotation of the turbine drives the propulsor at a
different speed than the spool. The propulsor includes a hub
and a row of propulsor blades that extend from the hub. The
row includes no more than 20 of the propulsor blades.

In another aspect, a gas turbine engine includes a core
flow passage and a bypass flow passage. A propulsor is
arranged at an inlet of the bypass flow passage and core flow
passage. The propulsor includes a hub and a row of propul-
sor blades that extend from the hub. The row includes no
more than 20 of the propulsor blades and the bypass flow
passage has a design pressure ratio of approximately 1.3-
1.55 with regard to an inlet pressure and an outlet pressure
of the bypass flow passage.
An exemplary propulsor for use in a gas turbine engine

includes a rotor having a row of propulsor blades that
extends radially outwardly from a hub. Each of the propulsor
blades extends radially between a root and a tip and in a
chord direction between a leading edge and a trailing edge
to define a chord dimension at the tip of each propulsor
blade. The row of propulsor blades defines a circumferential
pitch with regard to the tips. The row of propulsor blades has
a solidity value defined as the chord dimension divided by
the circumferential pitch. The row also includes a number of

5 BRIEF DESCRIPTION OF THE DRAWINGS

The various features and advantages of the disclosed
examples will become apparent to those skilled in the art
from the following detailed description. The drawings that

10 accompany the detailed description can be briefly described
as follows.
FIG. 1 is a schematic cross-section of a gas turbine

engine.
FIG. 2 is a perspective view of a fan section of the engine

15 of FIG. 1.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

20 FIG. 1 schematically illustrates a gas turbine engine 20.
The gas turbine engine 20 may be a two-spool turbofan that
generally incorporates a fan section 22, a compressor section
24, a combustor section 26 and a turbine section 28. Alter-
native engine architectures may include a single-spool

25 design, a three-spool design, or an open rotor design, among
other systems or features.
The fan section 22 drives air along a bypass flow passage

B while the compressor section 24 drives air along a core
flow passage C for compression and communication into the

30 combustor section 26. Although depicted as a turbofan gas
turbine engine, it is to be understood that the concepts
described herein are not limited to use with turbofans and the
teachings may be applied to other types of gas turbine
engines.

35 The engine 20 includes a low speed spool 30 and high
speed spool 32 mounted for rotation about an engine central
longitudinal axis A relative to an engine static structure 36
via several bearing systems 38. The low speed spool 30
generally includes an inner shaft 40 that is coupled with a

40 propulsor 42, a low pressure compressor 44 and a low
pressure turbine 46. The low pressure turbine 46 drives the
propulsor 42 through the inner shaft 40 and a gear assembly
48, which allows the low speed spool 30 to drive the
propulsor 42 at a different (e.g. lower) angular speed.

45 The high speed spool 32 includes an outer shaft 50 that is
coupled with a high pressure compressor 52 and a high
pressure turbine 54. A combustor 56 is arranged between the
high pressure compressor 52 and the high pressure turbine
54. The inner shaft 40 and the outer shaft 50 are concentric

5o and rotate about the engine central longitudinal axis A,
which is collinear with their longitudinal axes.
A core airflow in core flow passage C is compressed by

the low pressure compressor 44 then the high pressure
compressor 52, mixed with the fuel in the combustor 56, and

55 then expanded over the high pressure turbine 54 and low
pressure turbine 46. The turbines 54, 46 rotationally drive
the respective low speed spool 30 and high speed spool 32
in response to the expansion.
As shown, the propulsor 42 is arranged at an inlet 60 of

60 the bypass flow passage B and core flow passage C. Air flow
through the bypass flow passage B exits the engine 20
through an outlet 62 or nozzle. For a given design of the
propulsor 42, the inlet 60 and the outlet 62 of the engine 20
define a design pressure ratio with regard to an inlet pressure

65 at the inlet 60 and an outlet pressure at the outlet 62 of the
bypass flow passage B. As an example, the design pressure
ratio may be determined based upon the stagnation inlet
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pressure and the stagnation outlet pressure at a design
rotational speed of the engine 20. In that regard, the engine
20 may optionally include a variable area nozzle 64 within
the bypass flow passage B. The variable area nozzle 64 is
operative to change a cross-sectional area 66 of the outlet 62 5
to thereby control the pressure ratio via changing pressure
within the bypass flow passage B. The design pressure ratio
may be defined with the variable area nozzle 64 fully open
or fully closed.

Referring to FIG. 2, the propulsor 42, which in this 10
example is a fan, includes a rotor 70 having a row 72 of
propulsor blades 74 that extend a circumferentially around a
hub 76. Each of the propulsor blades 74 extends radially
outwardly from the hub 76 between a root 78 and a tip 80
and in a chord direction (axially and circumferentially) 15
between a leading edge 82 and a trailing edge 84. A chord
dimension (CD) is a length between the leading edge 82 and
the trailing edge 84 at the tip of each propulsor blade 74. The
row 72 of propulsor blades 74 also defines a circumferential
pitch (CP) that is equivalent to the arc distance between the 20
tips 80 of neighboring propulsor blades 74.
As will be described, the example propulsor 42 includes

a number (N) of the propulsor blades 74 and a geometry that,
in combination with the architecture of the engine 20,
provides enhanced propulsive efficiency by reducing perfor- 25

mance debits of the propulsor 42.
In the illustrated example, the number N of propulsor

blades in the row 72 is no more than 20. In one example, the
propulsor 42 includes 18 of the propulsor blades 74 uni-
formly circumferentially arranged about the hub 76. In other 30

embodiments, the number N may be any number of blades
from 12-20.

The propulsor blades 74 define a solidity value with
regard to the chord dimension CD and the circumferential
pitch CP. The solidity value is defined as a ratio (R) of 35
CD/CP (i.e., CD divided by CP). In embodiments, the
solidity value of the propulsor 42 is between 1.0 and 1.3. In
further embodiments, the solidity value is from 1.1 to 1.2.

Additionally, in combination with the given example
solidity values, the engine 20 may be designed with a 40

particular design pressure ratio. In embodiments, the design
pressure ratio may be between 1.3 and 1.55. In a further
embodiment, the design pressure ratio may be between 1.3
and 1.4.
The engine 20 may also be designed with a particular 45

bypass ratio with regard to the amount of air that passes
through the bypass flow passage B and the amount of air that
passes through the core flow passage C. As an example, the
design bypass ratio of the engine 20 may nominally be 12,
or alternatively in a range of approximately 8.5 to 13.5. 50

The propulsor 42 also defines a ratio of N/R. In embodi-
ments, the ratio N/R is from 9 to 20. In further embodiments,
the ratio N/R is from 14 to 16. The table below shows
additional examples of solidity and the ratio N/R for differ-
ent numbers of propulsor blades 74. 55

TABLE

Number of Blades, Solidity and Ratio N/R

60
Number of Blades (N) Solidity Ratio N/R

20 1.3 15.4
18 1.3 13.8
16 1.3 12.3
14 1.3 10.8
12 1.3 9.2 65

20 1.2 16.7

4
TABLE-continued

Number of Blades, Solidity and Ratio N/R

Number of Blades (N) Solidity Ratio N/R

18 1.2 15.0
16 1.2 13.3
14 1.2 11.7
12 1.2 10.0
20 1.1 18.2
18 1.1 16.4
16 1.1 14.5
14 1.1 12.7
12 1.1 10.9
20 1.0 20.0
18 1.0 18.0
16 1.0 16.0
14 1.0 14.0
12 1.0 12.0

The disclosed ratios of N/R enhance the propulsive efli-
ciency of the disclosed engine 20. For instance, the disclosed
ratios of N/R are designed for the geared turbo fan archi-
tecture of the engine 20 that utilizes the gear assembly 48.
That is, the gear assembly 48 allows the propulsor 42 to
rotate at a different, lower speed than the low speed spool 30.
In combination with the variable area nozzle 64, the pro-
pulsor 42 can be designed with a large diameter and rotate
at a relatively slow speed with regard to the low speed spool
30. A relatively low speed, relatively large diameter, and the
geometry that permits the disclosed ratios of N/R contribute
to the reduction of performance debits, such as by lowering
the speed of the air or fluid that passes over the propulsor
blades 74.

Although a combination of features is shown in the
illustrated examples, not all of them need to be combined to
realize the benefits of various embodiments of this disclo-
sure. In other words, a system designed according to an
embodiment of this disclosure will not necessarily include
all of the features shown in any one of the Figures or all of
the portions schematically shown in the Figures. Moreover,
selected features of one example embodiment may be com-
bined with selected features of other example embodiments.
The preceding description is exemplary rather than lim-

iting in nature. Variations and modifications to the disclosed
examples may become apparent to those skilled in the art
that do not necessarily depart from the essence of this
disclosure. The scope of legal protection given to this
disclosure can only be determined by studying the following
claims.

What is claimed is:
1. A gas turbine engine comprising:
a bypass flow passage and a core flow passage, the bypass

flow passage including an inlet and defining a bypass
ratio in a range of approximately 8.5 to 13.5 with regard
to flow through the bypass flow passage and flow
through the core flow passage;

a fan arranged within the bypass flow passage;
a first shaft and a second shaft;
a first turbine coupled with the first shaft, the first shaft

coupled with the fan, wherein the first turbine is a
5-stage turbine;

a first compressor coupled with the first shaft, wherein the
first compressor is a 3-stage compressor; and

a second turbine coupled with the second shaft, wherein
the second turbine is a 2-stage turbine;

wherein the fan includes a hub and a row of fan blades that
extend from the hub, and the row includes a number
(N) of the fan blades, a solidity value (R) at tips of the
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fan blades, and a ratio of N/R that is from 14 to 16 to
manage the propulsive losses at the lower speed.

2. The gas turbine engine as recited in claim 1, wherein
the number (N) of the fan blades is 18.

3. The gas turbine engine as recited in claim 2, wherein
the bypass flow passage includes an inlet and an outlet
defining a design pressure ratio with regard to an inlet
pressure at the inlet and an outlet pressure at the outlet at a
design rotational speed of the engine, the design pressure
ratio being approximately 1.3 to 1.55.

4. The gas turbine engine as recited in claim 3, wherein
the design pressure ratio is approximately 1.55.

5. The gas turbine engine as recited in claim 4, wherein
the first shaft and the second shaft are concentric, the first
shaft being an inner shaft and the second shaft being an outer
shaft.

6. The gas turbine engine as recited in claim 5, wherein
the bypass ratio is nominally 12.

7. The gas turbine engine as recited in claim 6, wherein
each of the fan blades is fixed in position between the hub
and the tip.

8. The gas turbine engine as recited in claim 1, wherein
the bypass flow passage includes an inlet and an outlet
defining a design pressure ratio with regard to an inlet
pressure at the inlet and an outlet pressure at the outlet at a
design rotational speed of the engine, the design pressure
ratio being between 1.3 and 1.4.

9. The gas turbine engine as recited in claim 8, wherein
each of the fan blades is fixed in position between the hub
and the tip.

10. A gas turbine engine comprising:
a bypass flow passage and a core flow passage, the bypass

flow passage defining a bypass ratio in a range of
approximately 8.5 to 13.5 with regard to flow through
the bypass flow passage and flow through the core flow
passage;

a fan arranged within the bypass flow passage;
a first shaft and a second shaft, wherein the first shaft and

the second shaft are concentric, the first shaft being an
inner shaft and the second shaft being an outer shaft;

a first turbine coupled with the first shaft, the first shaft
coupled with the fan, wherein the first turbine is a
5-stage turbine;

a first compressor coupled with the first shaft, wherein the
first compressor is a 3-stage compressor; and

a second turbine coupled with the second shaft, wherein
the second turbine is a 2-stage turbine;

wherein the fan includes a hub and a row of fan blades that
extend from the hub, and the row includes a number
(N) of the fan blades, the number (N) being 18, a
solidity value (R) at tips of the fan blades that is from
1.0 to 1.2, and a ratio of N/R that is from 15.0 to 18.0.

11. The gas turbine engine as recited in claim 10, wherein
the bypass flow passage includes an inlet and an outlet
defining a design pressure ratio with regard to an inlet
pressure at the inlet and an outlet pressure at the outlet at a
design rotational speed of the engine, the design pressure
ratio being approximately 1.3 to 1.55.

12. The gas turbine engine as recited in claim 11, wherein
the solidity value (R) at the tips of the fan blades is from 1.0
to 1.1.

13. The gas turbine engine as recited in claim 12, wherein
the ratio of N/R is from 16.4 to 18.0.

14. The gas turbine engine as recited in claim 12, further
comprising a variable area nozzle, wherein the design pres-
sure ratio is achieved in operation with the variable area
nozzle fully open.

6
15. The gas turbine engine as recited in claim 13, wherein

the bypass ratio is nominally 12.
16. The gas turbine engine as recited in claim 13, wherein

the design pressure ratio is between 1.3 and 1.4.
5 17. The gas turbine engine as recited in claim 11, wherein

the solidity value (R) at the tips of the fan blades is from 1.1
to 1.2.

18. The gas turbine engine as recited in claim 17, wherein
the ratio of N/R is from 15.0 to 16.4.

10 19. The gas turbine engine as recited in claim 18, wherein
the design pressure ratio is approximately 1.55.

20. The gas turbine engine as recited in claim 19, wherein
the bypass ratio is nominally 12.

15 21. The gas turbine engine as recited in claim 19, wherein
the design pressure ratio is between 1.3 and 1.4.

22. The gas turbine engine as recited in claim 10, wherein
each of the fan blades is fixed in position between the hub
and the tip.

20 23. A gas turbine engine comprising:
a bypass flow passage and a core flow passage, the bypass

flow passage defining a bypass ratio in a range of
approximately 8.5 to 13.5 with regard to flow through
the bypass flow passage and flow through the core flow

25 passage, and wherein the bypass flow passage includes
an inlet and an outlet defining a design pressure ratio
with regard to an inlet pressure at the inlet and an outlet
pressure at the outlet at a design rotational speed of the
engine, the design pressure ratio being approximately

30 1.3 to 1.55;
a fan arranged within the bypass flow passage;
a first shaft and a second shaft, wherein the first shaft and

the second shaft are concentric, the first shaft being an
35 inner shaft and the second shaft being an outer shaft;

a first turbine coupled with the first shaft, the first shaft
coupled with the fan;

a first compressor coupled with the first shaft, wherein the
first compressor is a 3-stage compressor; and

40 a second turbine coupled with the second shaft, wherein
the second turbine is a 2-stage turbine;

wherein the fan includes a hub and a row of fan blades that
extend from the hub, and the row includes a number
(N) of the fan blades, the number (N) being 18, a

45 solidity value (R) at tips of the fan blades that is from
1.0 to 1. 1, and a ratio of N/R that is from 16.4 to 18.0.

24. The gas turbine engine as recited in claim 23, wherein
the design pressure ratio is approximately 1.55.

25. The gas turbine engine as recited in claim 24, wherein
50 the bypass ratio is nominally 12.

26. The gas turbine engine as recited in claim 24, wherein
the design pressure ratio is between 1.3 and 1.4.

27. The gas turbine engine as recited in claim 23, wherein
each of the fan blades is fixed in position between the hub

55 and the tip.
28. A gas turbine engine comprising:
a bypass flow passage and a core flow passage, the bypass

flow passage defining a bypass ratio in a range of
approximately 8.5 to 13.5 with regard to flow through

60 the bypass flow passage and flow through the core flow
passage, and wherein the bypass flow passage includes
an inlet and an outlet defining a design pressure ratio
with regard to an inlet pressure at the inlet and an outlet
pressure at the outlet at a design rotational speed of the

65 engine, the design pressure ratio being approximately
1.55;

a fan within the bypass flow passage;
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a first shaft and a second shaft, wherein the first shaft and
the second shaft are concentric, the first shaft being an
inner shaft and the second shaft being an outer shaft;

a first turbine coupled with the first shaft, the first shaft
coupled with the fan; s

a first compressor coupled with the first shaft, wherein the
first compressor is a 3-stage compressor; and

a second turbine coupled with the second shaft, wherein
the second turbine is a 2-stage turbine;

wherein the fan includes a hub and a row of fan blades that io
extend from the hub, and the row includes a number
(N) of the fan blades, the number (N) being 18, a
solidity value (R) at tips of the fan blades that is from
1.0 to 1. 1, and a ratio of N/R that is from 16.4 to 18.0.

29. The gas turbine engine as recited in claim 28, wherein 15
each of the fan blades is fixed in position between the hub
and the tip.

30. The gas turbine engine as recited in claim 28, wherein
the first turbine is a 5-stage turbine.

* * * * * 20
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