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Introduction: The previous manned missions to 

the Moon represent milestones in human ingenuity, 

perseverance, and intellectual curiosity. They also 

highlight a major hazard for future human exploration 

of the Moon and beyond: surface dust. Not only did the 

dust cause mechanical and structural integrity issues 

with the suits, the dust ‘storm’ generated upon reen-

trance into the crew cabin caused “lunar hay fever” and 

“almost blindness [1-3]” (Figure 1). It was further re-

ported that the allergic response to the dust worsened 

with each exposure [4]. The lower gravity environment 

exacerbated the exposure, requiring the astronauts to 

wear their helmet within the module in order to avoid 

breathing the irritating particles [1]. Due to the preva-

lence of these high exposures, the Human Research 

Roadmap developed by NASA identifies the Risk of 

Adverse Health and Performance Effects of Celestial 

Dust Exposure as an area of concern [5]. Extended 

human exploration will further increase the probability 

of inadvertent and repeated exposures to celestial 

dusts. Going forward, hazard assessments of celestial 

dusts will be determined through sample return efforts 

prior to astronaut deployment. However, even then the 

returned samples could also put the Curators, techni-

cians, and scientists at risk during processing and ex-

amination.   
 

 
Figure 1. Eugene Cernan after a spacewalk (Apollo 17) 

 

Lunar samples returned by the Apollo missions are 

the most toxicologically evaluated celestial dust sam-

ples on Earth. Studies on the lunar highland regolith 

indicate that the dust is not only respirable but also 

reactive [2, 6-9] and moderately toxic, generating a 

greater pulmonary response than titanium oxide but a 

lower response than quartz [6]. The presence of reac-

tive oxygen species (ROS) on the surface of the dust is 

implicated as the potential cause of the pulmonary in-

flammation [10,11]. However, there is actually little 

data related to physicochemical characteristics of par-

ticulates and cardiopulmonary toxicity, especially as it 

relates to celestial dust exposure.  
 

 
Figure 2. Interdisciplinary Nature of Medical Geology 

 

New Approach to an Old Problem: The interdis-

ciplinary field of Medical Geology, or Medical Miner-

alogy, developed from the desire to understand the 

properties of a material that contribute to pathogenesis. 

There are an array of different factors that can influ-

ence the health effects of natural and anthropogenic 

materials [12]: 1) intensity and duration of the expo-

sure (dose), 2) exposure route, 3) chemical conditions 

encountered along the exposure route, 4) physicochem-

ical characteristics of the material, 5) potential patho-

gens (e.g. microbial), 6) biosolubility, biodurability, 

bioaccessibility, and bioreactivity of the materials in 

the  body fluids encountered along the various expo-

sure routes, 7) the body’s immune response, or bioac-

tivity, 8) the bodies physiological processes that con-

trol absorption, distribution, metabolism, and excretion 

of toxins/toxicants, and 9) other confounding factors, 

including but not limited to age, gender, genetics, and 

health.  

The array of fields required to address the range of 

factors influencing pathogenesis has helped and hin-

dered progress. While great breakthroughs have been 

made, the lack of cooperation and coordination be-

tween disciplines has stymied progress overall. The 



field of Medical Geology was developed to bridge this 

gap (Figure 2).  

Focus on physicochemical features. For the past 

few decades, the relationship between the geological 

environment and health has focused on the bioavaila-

bility and bioaccessibility of the chemical species. 

From this, great strides have been made in understand-

ing the differences in toxicity between metal valence 

states. For example, toxicity between carcinogenic 

hexavalent chromium versus relatively benign trivalent 

chromium as well as the much higher acute toxicity of 

inorganic arsenites (trivalent) versus organic arsenates 

(pentavalent) [13,14]. Given the surface composition 

of Mars, the toxicity of iron, its valence states, and the 

internal structure in which it is arranged may play an 

important role in generating negative health outcomes.   

As a Fenton metal, iron in its ferrous state can gen-

erate ROS in solution. In fact, the ferrous sulfide min-

eral pyrite has been implicated as the driving force 

behind the prevalence of coal workers pneumoconiosis 

in miners [11]. It has been postulated that, similar to 

the proposed relationship between quartz and silicosis, 

the ability to generate ROS is the main cause of partic-

ulate induced pulmonary inflammation [15,16]. How-

ever, more recent data investigating other reactive 

samples does not show that particle derived ROS is a 

major contributing factors in pulmonary inflammation. 

Instead, correlations with geochemical features, such as 

bulk iron, indicate that bioactivity (e.g. direct biomole-

cule oxidation, cellular responses) may play an even 

greater role than previously thought [17]. Understand-

ing the toxicity of celestial dust and physicochemical 

origin of said toxicity will represent a breakthrough in 

both mitigating the risk for human exploration and in 

exposure science as a whole.   

Filling the Gaps for a Journey to Mars: Given 

the risks involved in human space exploration, there is 

a very small margin for error. Therefore, risk needs to 

be mitigated wherever possible. By leveraging previous 

studies on lunar dust, the breakthroughs made over the 

past decade in medical geology research, and the vast 

on-site expertise (e.g. Exploration Integration and Sci-

ence Directorate [Astromaterials Acquisition and Cura-

tion Office, Astromaterials Research Office, Explora-

tion Mission Planning Office], Flight Operations Direc-

torate [Astronaut Training and Mission Execution], and 

the Human Health and Performance Directorate [Bio-

medical Research and Environmental Sciences Divi-

sion, Space and Clinical Operations Division, Human 

Systems Engineering and Development Division]), 

NASA Johnson Space Center is singularly positioned 

to understand the exposure risks, gaps in knowledge, 

and how to fill them.  

Currently, Mars is the ultimate target for human ex-

ploration. Although a final hazard assessment of mar-

tian dust will require returned samples, a preliminary 

risk assessment is possible by utilizing simulants. In 

fact, the synthesis of an array of martian analogue sam-

ples will enable a robust initial risk assessment, which 

could aid in mission planning. Coordination with a 

Medical Geologist will be vital in this process, since a 

viable martian analogue for toxicological assessment 

will have to: 1) accurately represent martian surface 

and atmospheric dust, 2) be comprised of respirable 

materials, and 3) meet specifications needed to perform 

in vitro and in vivo exposures.  

Conclusions: The interdisciplinary nature of Medi-

cal Geology research is representative of the direction 

in which all research is heading. NASA is at the fore-

front in recognizing the importance of utilizing a di-

verse collection of skillsets when tackling a problem. 

In order to reach for the stars, a balance of bold ideas 

and risk mitigation is necessary.  
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