Nuclear Thermal Propulsion (NTP)

STMD (GCD) Nuclear Thermal Propulsion Video

https://www.youtube.com/watch?feature=youtu.be&v=miy2mbs2zAQ&app=desktop
Background:
NTP Benefits

- For human Mars missions, NTP can reduce crew time away from earth from >900 days to <500 days while still allowing ample time for surface exploration
 - Reduce crew exposure to space radiation, microgravity, other hazards
- NTP can enable abort modes not available with other architectures
 - Potential to return to earth anytime within 3 months of earth departure burn, also to return immediately upon arrival at Mars
- Stage/habitat optimized for use with NTP could further reduce crew exposure to cosmic rays and provide shielding against any conceivable solar flare
- NTP can reduce cadence and total number of SLS launches
- NTP has potential for reducing cost, increasing flexibility, and enabling faster response times in cis-lunar space
- First generation NTP is a stepping stone to fission power systems and highly advanced nuclear propulsion systems that could further improve crew safety and architectural robustness
Why is NTP Attractive for Human Missions to Mars?

The diagram illustrates the total delta-v (change in velocity) required for different mission durations to Mars, categorized into two types: "Short-Stay" and "Long-Stay". The "Short-Stay" class includes missions up to 80 days, whereas the "Long-Stay" class extends to 100 days or more. The diagram also shows the impact of Venus swing-by on reducing the total delta-v, demonstrating the efficiency of NTP (Nuclear Thermal Propulsion) in comparison to chemical propulsion (Chem/SEP). The "Advanced Propulsion" category represents the theoretical potential for even further reduction in delta-v, though not discussed in the diagram.
How Might Initial NTP Systems Work?

- Propellant heated directly by a nuclear reactor and thermally expanded/accelerated through a nozzle
- Low molecular weight propellant – typically Hydrogen
- Thrust directly related to thermal power of reactor: 100,000 N ≈ 450 MW_{th} at 900 sec
- Specific Impulse directly related to exhaust temperature: 830 - 1000 sec (2300 - 3100K)
- Specific Impulse improvement over chemical rockets due to lower molecular weight of propellant (exhaust stream of O2/H2 engine actually runs hotter than NTP)
How Might Initial NTP Systems Work?

Note: Control drums rotate to control reactivity. Portion of circumference covered with neutron absorber and remainder is reflector.
Nuclear Thermal Propulsion (NTP) and Space Fission Power (SFP) Thermal Hydraulic Considerations

- First generation NTP systems will use H\textsubscript{2} as propellant (coolant).
- H\textsubscript{2} used to cool nozzle, neutron reflector, structure, moderator tie tubes, and fuel. Temperature increase of > 2500 K (turbopump to reactor outlet) in < 1 second.
- NTP requires rapid startup. Warm critical to ~500 MW in <30 seconds.
- NTP has short operating time (typically <15 minutes/burn), but decay heat removal still required.
- Potential option to use neutron and gamma heating to pressurize propellant tank.
First generation space fission power systems may use heat pipes for cooling, especially at unit power levels < 50 kWe.

Higher power fission systems may be heat pipe cooled, gas-cooled, or cooled by an alkali metal.

Performance benefit from high temperature operation.

Desire long-life, no maintenance.
NTP Ground Testing May also Benefit from State-of-the-Art Thermal Hydraulics (Exhaust Capture Concept)

Strategy:
- Fully Contain engine exhaust
- Slowly drain containment vessels after test

How it works:
- Hot hydrogen exhaust from the NTP engine flows through a water cooled diffuser that transitions the flow from supersonic to subsonic to enable stable burning with injected LO2
 - Products include steam, excess O\textsubscript{2} and potentially, a small fraction of noble gases (e.g., xenon and krypton)
- Water spray and heat exchanger dissipates heat from steam/O\textsubscript{2}/noble gas mixture to lower the temperature and condense steam
- Water tank farm collects H\textsubscript{2}O and any radioactive particulates potentially present in flow.
 - Drainage is filtered post test.
- Heat exchanger-cools residual gases to LN2 temperatures (freezes and collects noble gases) and condenses O2.
 - LOX Dewar stores LO\textsubscript{2}, to be drained post test via boil-off
NTP Ground Test Exhaust Capture Concept
Conceptual System Design Layout

One Potential Option: SSC’s A3 Test Stand

• Most of the infrastructure required by ground test facility (including exhaust capture) is already in place:
 • Tower, test cell, propellant, HPIW & data and controls infrastructure, the Test Control Center, electric power, etc.
 • Major modifications, procurements, and construction work will be required and are captured in the ROM estimate.
SSC’s Acoustic Buffer Zone
Illustration of Comparable NRC-Designated Planning Zones

13,800 Acre
Fee Area/“Exclusion Area”
(20 mi²)

“Fee Area” Avg. Radius ~ 2.5 mi

125,000 Acre
Buffer Zone/“Low-Population Zone”
(195 mi²)

“Buffer Zone” Avg. Radius ~ 7.9 mi

• Slidell, LA
• Population ~ 27,000
• PCD from A3 ~ 8 miles
=> LPZ < 6 miles

PCD (Population Center Distance ~8 miles) > 1.333 x LPZ ~ 1.333 x 6 miles ~ 8.0 miles

Ref.: NRC Regulatory Guide 4.7
Technology Advances Could Help Enable Extremely Advanced Systems

SOLID CORE NUCLEAR ROCKET

LIQUID CORE NUCLEAR ROCKET

Open-Cycle Gas Core Nuclear Rocket

Closed-Cycle Gas Core Nuclear Rocket
Nuclear Thermal Propulsion (NTP) and Space Fission Power (SFP) Fuels

• Space reactors require specialty fuels.
• NTP requires very high power density (~5 MW/L) and very high temperature (up to 2850 K) for short periods of time (~2 hours) and at low burnup (~0.1%).
• SFP requirements vary with application. Low power systems (~1 kWe) benefit from high U-235 density. High power systems benefit from fuels with high temperature, high burnup capability.
Can NTP systems using Low-Enriched Uranium (LEU) be Developed?

- Directly reduce cost through savings related to safeguards and security
- Indirectly (and more significantly) reduced cost through enabling use of an optimal development approach and team
- Consistent with ongoing programs to convert operational Highly Enriched Uranium (HEU) systems to LEU
- Consistent with US policy. “The United States is committed to eliminating the use of HEU in all civilian applications, including in the production of medical radioisotopes, because of its direct significance for potential use in nuclear weapons, acts of nuclear terrorism, or other malevolent purposes.” (2012 White House “Fact Sheet”)

Initial LEU Conceptual Designs Very Promising
Evolving LEU Designs Have Significant Potential Advantages

- Graded Mo to Mo/W approach reduces engine mass and need for W-184.
- Multiple potential cermet fuel fabrication options. Optimize for performance and affordability.
- Potential for dual-use core design. Optimize for NTP, but close derivatives potentially applicable to high performance space fission power systems.

Courtesy BWXT
LEU Fission System Considerations

- Greatly reduced safeguards considerations if LEU is used. US encourages use of LEU in nuclear programs around the world.
- No uniquely hazardous materials in fission systems prior to operation. LEU toxicity comparable to depleted uranium. Depleted uranium used in shielding for industrial radiography cameras, trim weights in aircraft (up to 1500 kg in Boeing 747-100), sailboat keels, ammunition, armor plating, etc. Beryllium used in most modern spacecraft. James Webb telescope contains ~300 lbs of beryllium.
- Primary potential hazard from space fission systems is inadvertent criticality while personnel are in very close proximity (i.e. ground processing). Highly affected radius is < 10 m. System design and procedures for precluding inadvertent criticality during ground processing can be made independent of launch vehicle specifics.
- For criticality (with significant fissions) to occur during a launch failure the system must remain geometrically intact while safety mechanisms are simultaneously removed. Designs to preclude this can be made independent of launch vehicle specifics.
Previous NTP Engine Designs (Rover / NERVA)

NERVA Reactor Cross Section

Fuel Segment Cluster
20 NTP Engines Designed, Built, and Tested During Rover/NERVA
Fission Can Provide the Energy for Either Nuclear Thermal or Nuclear Electric Propulsion Systems

- NEP Power System Performance Projections from 2001 STAIF Conference
- Fission Surface Power and Prometheus Concepts Superimposed

Near=Liq Metal Rx, Brayton, 1300K, 6 kg/m2, 200 Vac (Available ~10 yrs)
Mid=Liq Metal Rx, Brayton, 1500K, 3 kg/m2, 1000 Vac (Available ~ 15-20 yrs)
Far=Liq Metal Rx, Brayton, 2000K, 1.5 kg/m2, 5000 Vac (Available ~ 25-30 yrs)
Cargo=Instrument rated shielding, 1.6x10^15 nvt, 1.2x10^8 rad @ 2 m
Crew=Human rated shielding, 5 rem/yr @ 100 m, 7.5° half angle

Chart courtesy Lee Mason, NASA GRC
Kilopower-Enabled Concepts Family

- Common Design Features include:
 - 0.5 to 10 kWe; >10 year design life
 - Utilize available UMo reactor fuel from DOE-NNSA
 - Minimize thermal power to simplify reactor design and control
 - Incorporate passive Na heat pipes for reactor heat transport
 - Leverage power conversion technologies from RPS Program (TE, Stirling)
 - Design system so that it can be tested in existing DOE nuclear facilities

- 1 kW Thermoelectric
 Approx. 4 m long
 600 kg or 1.7 W/kg

- 800 W Stirling
 Approx. 2.5 m long
 400 kg or 2 W/kg

- 3 kW Stirling
 Approx. 5 m long
 750 kg or 4 W/kg

- 10 kW Stirling
 Approx. 4 m tall
 1800 kg or 5 W/kg

1 kWe-class Technology Demonstration establishes foundation for range of systems and capabilities
Latest Configuration of 1 kW\textsubscript{e} Krusty Nuclear Demonstration
Comparison of HEU vs LEU at 10 kWe (masses (and mass difference) lower if use in-situ shielding)

10-KWe Kilopower Mars ISRU Demo

Electronics (1e12 nvt, 100 kRad), Lander (1e14 nvt, 10 MRad)

- U7Mo-HEU: 2187 kg (+44%)
- U7Mo-LEU: 2016 kg (+33%)
- U-LEU*: 2126 kg (+40%)
- U238H-LEU**: 1519 kg

*Un-alloyed U reduces mass, but adds low/modest risk in fuel performance and is different than KRUSTY fuel.

**The U238H mass shown is extremely optimistic – neutronically ideal (entire core in single can) and hydrogen loss is 10x less than previous GA estimates; more importantly, development time/cost/risk will be substantially higher for any

(Figure generated by David Poston, Los Alamos National Laboratory)
Observations

• Space fission power and propulsion systems are game changing technologies for space exploration.

• First generation NTP systems could provide significant benefits to sustained human Mars exploration and other missions.
 – Potential for Earth-Mars transit times of 120 days; 540 day total Mars mission times; reduced crew health effects from cosmic radiation and exposure to microgravity; robust Mars architectures including abort capability.
 – Faster response times, improved capability, and reduced cost for cis-lunar operations. NTP derivatives could enable very high power systems on lunar surface (ISRU) and in space.

• Advanced space fission power and propulsion systems could enable extremely ambitious space exploration and development.