Inner Magnetospheric Physics

Dennis Gallagher, PhD NASA Marshall Space Flight Center Dennis.gallagher@nasa.gov

Inner Magnetosphere Effects

- Historical Background
- Main regions and transport processes
 - Ionosphere
 - Plasmasphere
 - Plasma sheet
 - Ring current
 - Radiation belt
- Geomagnetic Activity
 - Storms
 - Substorm
- Models

Historical Background: Space in 1950

Historical Background

Historical Background

L. R. O. Storey, Phil. Trans. R. Soc. Lond. A 1953 246 113-141; DOI: 10.1098/rsta.1953.0011. Published 9 July 1953

Historical Background

Explorer 1 January 31, 1958

nes of Radiation Belts Discovered

Van Allen, James A., Observation of high intensity radiation by satellites 1958 alpha and 1 958 gamma, IOWA Univ. preprint SUI 60-13, reprinted in p. 58-75, Space Science Comes of Age, P.A. Hanle and V.D. Chamberlain, editors, Smithsonian Inst. Press, Washington, DC 1981

Ionosphere

Photoionization

$$O + hv = O^{+} + e^{-}$$

- Ionosphere: ionized portion of upper atmosphere
 - Extends from around 60 to beyond 1000 km
 - Completely encircles the Earth
 - Main Source: photoionization of neutrals
 - + Other production processes may dominate in certain ionospheric regions
 - Loss Mechanism: ionospheric outflow

Main regions and transport processes

Ionosphere outflow

- Ambipolar electric field
- pressure gradients
- Mirror force due to gyration of charged particles
- Polar wind: Ionospheric loss at polar latitude
 - Along essentially open geomagnetic field lines
- At mid-latitudes the plasma may bounce to the conjugate ionosphere or become the plasmasphere

Main regions and transport processes

Plasmasphere Formation: Diffusive Equilibrium

$$H_{j} = \left(\frac{kT_{i}}{m_{j}g}\right)\left(1 - \frac{m_{a}T_{e}}{m_{j}T_{t}}\right)^{-1}$$

Titheridge (1972)

 H_j = scale height

k = Boltzmann constant

 $m_i = j'th ion mass$

g = gravitational constant

 m_a = mean ion mass

T_e = electron temperature

 $T_t = T_i + T_e$ total temperature

Source: Webb and Essex, Modelling the Plasmasphere

Global convection

• In the Late 50s, pusk for pawn ground-based measurements revealed the plasma flow pattern in the polar and auroral ionosphere

- Anti-sunward flow over the polar cap and
- Return flow equatorward of the auroral oval
- In 1959 Gold introduced the term convection
 - Resemblance to thermally driven flow cells
 Main regions and transport processes

Solar wind dynamo

 Highly conducting plasma in the solar wind flows across polar geomagnetic field lines

- Induces an electric dynamo field
- Frozen-in flux concept

Main regions and transport processes

Reconnection

- If the polar geomagnetic field lines are open
 - The electric field produces an anti-sunward ExB drift of solar wind and magnetospheric plasma across the polar cap
 - Reconnection occurs down tail
 - Closed geomagnetic field lines flow back towards Earth at lower latitudes

Main regions and transport processes

Plasma sheet

 Plasma sheet: population of ionospheric and solar wind particles being accelerated Earthward

- Neutral current sheet: large-scale current flow from dawn to dusk across the plasma sheet
 - Separates the two regions of oppositely directed magnetic field in the magnetotail
 - Accelerates particles towards Earth
- Direct access to night side auroral oval

Can collide with ionosphere producing aurora

Adiabatic Invariants

• Energetic plasma near the center of the plasma sheet gyrates closer to the Earth $\mu = \frac{W_{\perp}}{R} = \frac{mv_{\perp}^2}{2R}$

- Become trapped on closed dipole like field lines
- Encounter increasing magnetic field strength
- Bounce between hemispheres $J = \oint_{bounce} v \cdot d = \oint_{bounce} v \cdot d = \int_{bounce} v \cdot d$
- Gradient and curvature drift $\Phi = \int \stackrel{\cdot}{B} \cdot d\stackrel{\cdot}{A}$
 - + Divert ions and electrons in opposite directions
 - + Form the ring current and radiation belts

Ring Current

- $\Delta \mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int_{V} \frac{\mathbf{J}(\mathbf{r}') \times (\mathbf{r} \mathbf{r})}{|\mathbf{r} \mathbf{r}'|^3}$
- Hot (1-400 keV)
 tenuous (1-10s cm⁻³)
- diamagnetic current produced by motion of plasma trapped in the inhomogeneous geomagnetic field
 - Torus-shaped volume extending from $^{\sim}3$ to 8 R_E
 - Main Source: plasma sheet particles
 - Loss Mechanisms: charge exchange, coulomb collisions, atmospheric loss, pitch angle (PA) diffusion, and escape from magnetopause

Radiation Belt

- Very Hot (100s keV MeV)
- Extremely tenuous: <<1 cm⁻³
 - Outer belt: very dynamic region
 - + Mostly elections located at 3-6 R_E
 - Inner belt: fairly stable population
 - + Protons, electrons and ions at 1.5-2 R_E
- Source: injection and energization events following geomagnetic storms
- Loss Mechanisms: Coulomb collisions, magnetopause shadowing, and PA diffusion

Plasmasphere

- Cool (<10 eV)
- High density (100s-1000s cm⁻³)
- Co-rotating plasma
 - Torus-shaped, extends to 4-8 R_F
 - Plasmapause: essentially the boundary between co-rotating and convecting plasma
- Main Source: the ionosphere
- Loss Mechanism: plasmaspheric erosion and drainage plume

Geomagnetic storms

- Large (100s nT)
- Prolonged (days)
- Magnetospheric disturbances
 - Caused by variations in the solar wind
 - Related to extended periods of large southward interplanetary magnetic field (-IMF Bz)
 - + Increasing the rate of magnetic reconnection
 - + Enhancing global convection

Geomagnetic storms

- Enhanced convection
 - Increased rate of injection into the ring current
 - + The ring current then expands earthward
 - + Induced current can reduce the horizontal component of the geomagnetic field (100s nT)
 - * Used to calculate Dst

Geomagnetic Activity

Plasmaspheric Plumes

Enhanced convection
 also causes the co-rotating
 plasmaspheric material to surge sunward

- Decreasing the night-side plasmapause radius
- Extending the dayside plasmapause radius
- Creates a plume extending from 12 to 18 MLT
- For continued enhanced convection less material remains to feed the plume and it narrows in MLT
 - Dusk edge remains almost stationary
 - Western edge moves eastward

Substorms

- A relatively short (hours) period of increased energy input and dissipation into the inner magnetosphere
 - Events may be isolated or occur during a storm
 - Associated with a flip from northward to southward IMF Bz
- Increased rate of reconnection
- Increased flow in magnetospheric boundary layer
- Energy accumulates in the near-Earth tail

Geomagnetic Activity

Substorms

 Additional magnetic flux in the tail lobes causes the cross-tail

current sheet thickness to decrease

- When the current sheet thickness reaches its threshold reconnection occurs
- The cross-tail current is disrupted
- The substorm current wedge closes the cross-tail current through the ionosphere
- Particle precipitation increases Auroral activity

Geomagnetic Activity

Models – Empirical: IRI

Models – Empirical: GCPM

Models -LFM Model

(Multi-Fluid Lyon-Fedder-Mobarry MHD)

Lyon, Fedder, Mobarry, DOI: 10.1016/j.jastp.2004.03.020 Through the Coordinated Community Modeling Center, NASA/GSFC

Coupling Models

Tóth, et al., The Space Weather Modeling Framework, Proceedings of ISSS-7, 26-31, March, 2005