BioNutrients-1 (BN-1) Payload Overview

POIWG #43 April 26, 2018

Kevin Sims

Ames Research Center (ARC)

AMES RESEARCH CENTER

BioNutrients-1 Experiment Summary

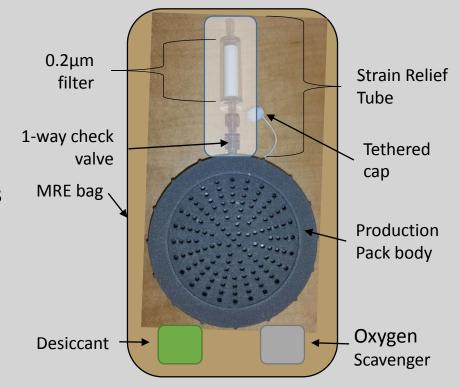
Principal Investigators	John Hogan, Ph.D. NASA Ames Research Center
Sponsor	Technology and Science Research Office
Funding Authority	NASA / Human Exploration & Operations / Advanced Exploration Systems (AES)
Experiment Duration	Five years
Ground Control	Near-synchronous Ground Control performed at PI Laboratory at Ames
Research Objectives	The goal of the BioNutrients experiment is to determine the effect of long-duration, low-Earth-orbit stowage on the ability to biologically generate nutrients through organism activation and growth.

BioNutrients Key Stakeholders

- PI The Principal Investigator of the BioNutrients Project, Dr. John Hogan at NASA Ames Research Center
- AES The Advanced Exploration Systems Office at NASA Headquarters
- HRP The Human Research Program Office at NASA Johnson Space Center
- ISS The ISS Payload Program at NASA Johnson Space Center
- Code SC The Space Biosciences Division at NASA Ames Research Center
- Code SCF The Flight Systems Implementation Branch at NASA Ames Research Center
- Code SCB The Bioengineering Branch at NASA Ames Research Center
- ARC OCE The Office of the Chief Engineer at NASA Ames Research Center

Need and Goals

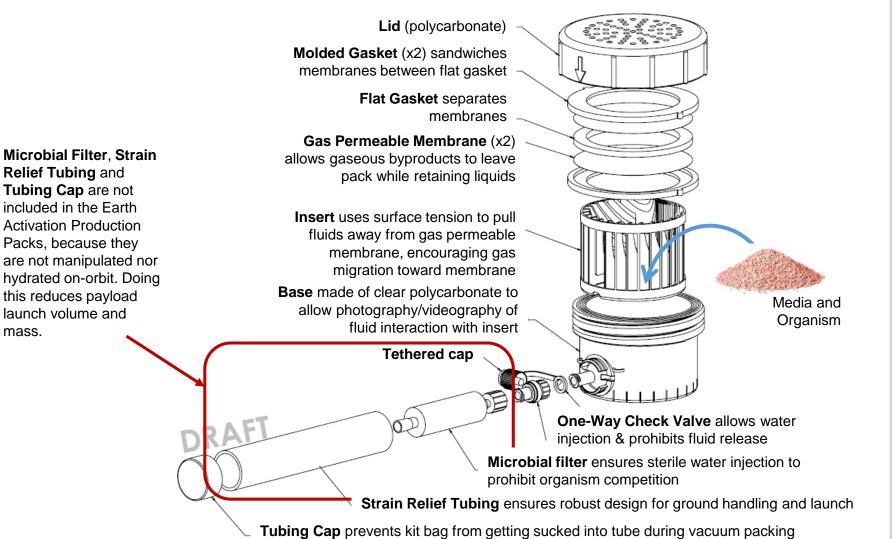
Need: To enable rapid, safe and reliable in situ production of needed dietary nutrients using minimal mass, power and volume for long duration missions.


Goals:

- Evaluate system for maintaining shelf-life of contents and enabling organism growth and nutrient production on ISS
- 2. Demonstrate long-term in-situ nutrient production on ISS
- 3. Collect ISS-based data on long-term viability of candidate future experiment organisms

Hardware Overview

- Production Packs
 - ISS Activation Production Packs
 Activated on-orbit. 14 runs over 5
 years. 4 packs/run.
 - Earth Activation Production Packs Flown controls. Activated on Earth after exposure to ISS. 13 returns over 5 years. 4 samples/return.



 Stasis Packs – Matrix of various sample types to study changes in organisms and media after exposure to ISS.
 Candidate samples for future BioNutrients payloads. 13 returns from ISS over 5 years, at specific intervals.

Exploded View of Production Pack

Production Pack Kits

Contents, Launched Quantities & Return Timetable

Sample	~6d	~25 d	4 M	8 M	12 M	16 M	20 M	24 M	30 M	36 M	42 M	48 M	54 M	60 M	Spare			Total
ISS Activation Samples	4 run 1	4 run 2	4 run3	4 run4	4 run5	4 run6	4 run7	4 run8	4 run9	4 run10	4 run11	4 run12	4 run13	4 run14	8	8	8	80
Earth Activation Samples	4	4	4	4	4	4	4	4	4	4	4	4	4	4	0	0	0	56
												Total	136					

Organism Legend:

Blue = Saccharomyces boulardii (Yeast)

Yellow = Y55 strain of Saccharomyces cerevisiae (Yeast)

Pink = *Bacillus subtilis* (Bacteria)

A duplicate of the above set of hardware will be built in-parallel with the to-beflown hardware, for execution of near-synchronous ground controls.

Stasis Pack Kits

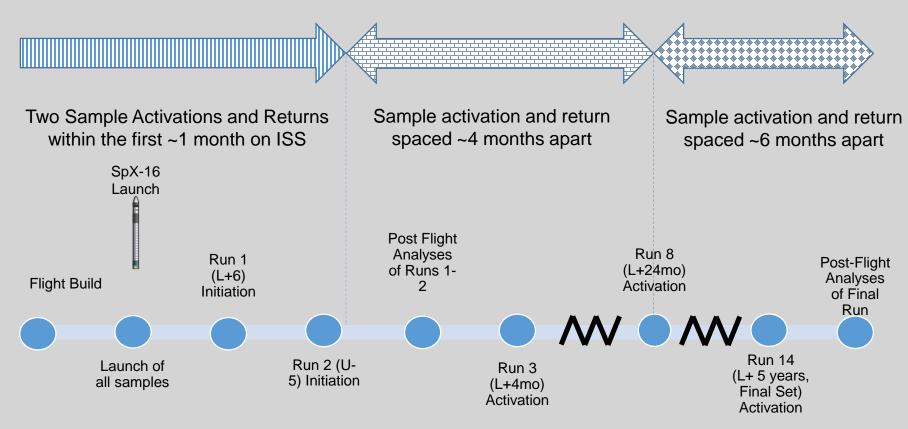
Contents, Quantities & Return Timetable

Contents & Number of Vials	1M	4M	8M	12M	16M	20M	24M	30M	36M	42M	48M	54M	60M	Spar e	Total
S. Boulardii CAHS +Beta-carotene -															
dessicated (x4)															
S. Boulardii WT -dessicated (x4)															
S. Boulardii CAHS +Beta-carotene															
+trehalose +Skim milk +MSG (x4)	1	1	1	1	1	1	1	1	1	1	1	1	1	2	15
Y55 spore +encapsulation (x4)															
Y55 WT spore (x4)															
Bacillus subtilis WT (x4)															
Bacillus subtilis Del-SkfA (x4)															
Media only (x4)															

Return events 1-13 for Stasis Samples

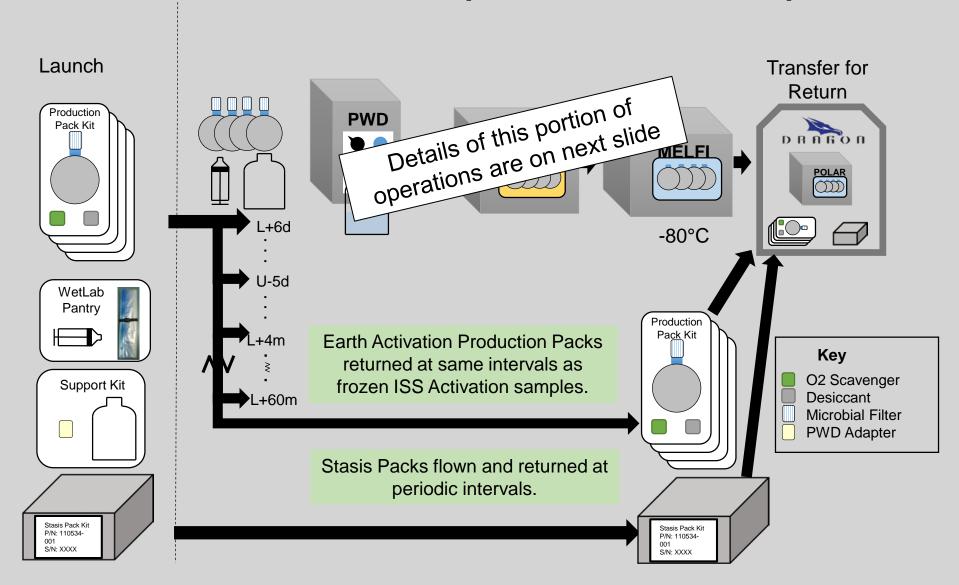
A duplicate of the above set of hardware will be built in-parallel with the to-beflown hardware, for execution of near-synchronous ground controls.

Concept of Operations


Assumptions and Constraints

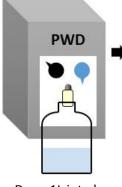
Assumptions & constraints bound complexity, schedule, and cost, while enabling features needed for quality science:

- Pre-flight sample and hardware prep occurs at ARC.
- All hardware launched in single launch event.
- Payload launched soft-stowed at ambient temperature.
- Payload launched to ISS in the SpaceX Dragon spacecraft or comparable vehicle
- ISS Activation Samples return in <-70°C cold stowage. Earth Activation Samples and Stasis Samples return at ambient temperature.
- Payload returned from ISS in SpaceX Dragon spacecraft.
- Samples are early de-stow items.
- Earth-bound, near-synchronous ground control is conducted by the PI.


Timeline Overview

Note: Timeline not to scale.

Overview of On-Orbit Operations for All Samples



Agitation #2

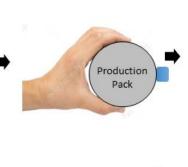
ISS Activation Sample On-Orbit Experiment

Draw 1L into bag using PWD adapter and 1L bag provided by JSC EHS group and launched by BioNutrients-1 payload

Use syringe to draw ~50mL water from bag

Water Draw

Syringe for hydration and bitran bag for freezer containment obtained from Wetlab **Pantry**



Hydration

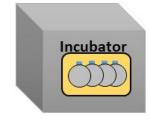
Use syringe to inject ~50mL water into production pack. Trash microbial filter.

Agitation #1

Repeat 4x per run

(~24C, 30C, or 37C)

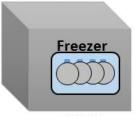
Incubation


~6hrs @ specimenspecific temperature

Incubation

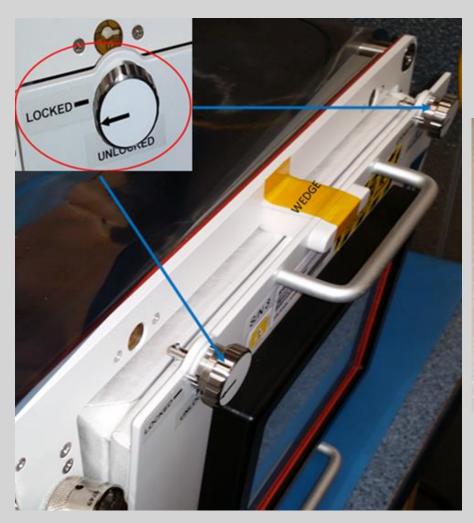
Production

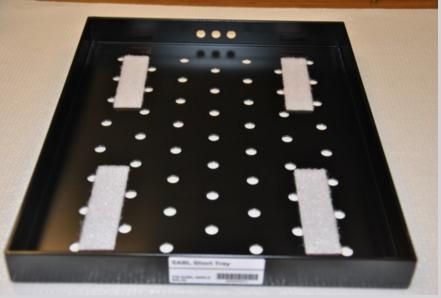
Pack



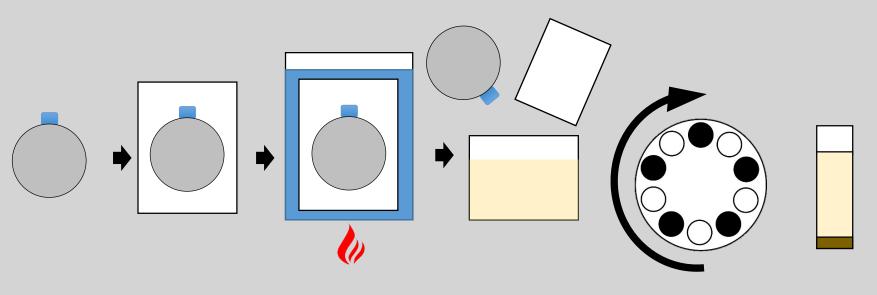
~42hrs @ specimen-specific temp

Preservation


Use bitran bag to contain production pack prior to insertion into MELFI.



-80°C


SABL

Post-Flight Sample Processing

- 1. Delivery
- 2. Protection
- 3. Thaw
- 4. Empty and Wash
- 5. Centrifuge
- 6. Analyze

Payload Safety Package Overview and Status

Phase II Safety Review

- Phase II Safety Review was held on February 7, 2018
- All hazard reports were approved with minor modifications
- One Non-Compliance Report (NCR) was approved with modification as Equivalent Safety
 - NCR addresses temporary lack of fault tolerance regarding containment of the Tox 1 oxygen scavenger
 - The Equivalent Safety designation allows the NCR to be approved by the ISS Safety Review Panel and it will not require approval by the ISS Program
- Project was given approval to proceed to Phase III
 - Current plan has Phase III in the May timeframe

Unique Hazard Reports

- Release of Toxicity Hazard Level 1 Material
 - BN1-001, Critical severity
 - The Oxygen Scavenger has been identified as Toxicity Hazard Level
 1 as a potential eye and respiratory irritant
 - Hazard report shows the required two levels of containment (COTS sachet, Kit bag) for almost all operations
 - NCR addresses temporary loss of failure tolerant containment when the Kit bag is opened to retrieve the Production Pack
- Release of Ethanol
 - BN1-002, Critical severity
 - The amount of ethanol produced in the Production Packs each run is considered an ECLSS Level 6 hazard
 - Hazard report shows the required two levels of containment (at least two membranes or seals for any potential release path) at all times following activation

Stowage Overview: SpX-16

Ascent

Return

Soft Stowage

- ISS Activation Production Pack Kit (x40)
 - Each Kit contains two Production Packs, for a total of 80 ISS Activation Production Packs
- Earth Activation Production Pack Kit (x56)
 - Each Kit contains one Production Pack
- Stasis Pack Kit (x15)
 - Each Kit contains 32 sample vials (see slide 9)
- Support Kit (x14)
 - Contains PWD Adapter and Water Bag
 - One Support Kit used to hydrate one set of four ISS Activation Production Packs
 - Trashed onboard after use

Cold Stowage

- ISS Activation Production Pack (x8)
 - -70°C or colder
 - First two sets (L+6d and L+25d)
 - Each Production Pack will be individually bagged in a Bitran bag
 - Early retrieval at Long Beach

Soft Stowage

- Earth Activation Production Pack (x8)
 - First two sets (different organisms)
 - Early retrieval at Long Beach
- Stasis Pack Kit (x1)
 - Return event #1
 - Early retrieval at Long Beach

Stowage Overview: Return on SpX-17 and Subsequent

Cold Stowage

- ISS Activation Production Pack (x4)
 - -70°C or colder
 - Depending on vehicle traffic, may be multiple sets on one vehicle
 - Each Production Pack will be individually bagged in a Ziploc bag
 - Early retrieval at Long Beach

Soft Stowage

- Earth Activation Production Pack (x4)
 - Depending on vehicle traffic, may be multiple sets on one vehicle
 - Early retrieval at Long Beach
- Stasis Pack Kit (x1)
 - Early retrieval at Long Beach

