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Abstract 11 

The drought of 2012 in the North America devastated agricultural crops and pastures, further 12 
damaging agriculture and livestock industries and leading to great losses in the economy. The 13 
drought maps of the United States Drought Monitor (USDM) and various drought monitoring 14 
techniques based on the data collected by the satellites orbiting in space such as the Gravity 15 
Recovery and Climate Experiment (GRACE) and the Moderate Resolution Imaging 16 
Spectroradiometer (MODIS) are inter-compared during the 2012 drought conditions in the 17 
southeastern United States. The results indicated that spatial extent of drought reported by 18 
USDM were in general agreement with those reported by the MODIS-based drought maps. 19 
GRACE-based drought maps suggested that the southeastern US experienced widespread decline 20 
in surface and root-zone soil moisture and groundwater resources. Disagreements among all 21 
drought indicators were observed over irrigated areas, especially in Lower Mississippi region 22 
where agriculture is mainly irrigated. Besides, we demonstrated that time lag of vegetation 23 
response to changes in soil moisture and groundwater partly contributed to these 24 
disagreements, as well.  25 
 26 
Keywords: Drought monitoring; Drought indicators; MODIS; GRACE; USDM.  27 



2 
 

1. Introduction 28 

Drought is one of the devastating natural hazards, which often recurs when plants cannot 29 

sustain their growth as a result of water deficit. Its occurrence interferes with agricultural 30 

production by significantly reducing crop yields, in turn damaging the global economy. As the 31 

world population has been steadily growing, food supply must keep up with this increasing 32 

demand.  33 

In this regard, several drought monitoring tools such as United States Drought Monitor 34 

(USDM) (Svoboda et al. 2002) and Global Agricultural Drought Monitoring and Forecasting 35 

System (GADMFS) (Deng et al. 2013) have been developed to detect onset, duration, extent and 36 

severity of drought and timely inform state and government agencies, stake-holders, farmers and 37 

public so that its devastating effects can be mitigated. 38 

Observations obtained by satellites orbiting in space are indispensible to routinely track the 39 

Earth's ground and surface water resources and natural hazards such as droughts and floods, etc. 40 

In the last decade, many efforts have been devoted to drought monitoring. Drought is relatively 41 

defined natural phenomenon, generally identified by the deviations of precipitation (e.g., 42 

meteorological drought), soil water (e.g., agricultural drought) and ground water and streamflow 43 

(e.g., hydrological drought) from their long-term average condition (Wilhite 2000).    44 

Remotely-sensed vegetation indices such as the Normalized Difference Vegetation Index 45 

(NDVI) have been extensively used to track droughts (Kogan 2001), especially from the NOAA’s 46 

Advanced Very High Resolution Radiometer (AVHRR) because of its long record (e.g., ≈ 30 years). 47 

Vegetation indices are good surrogate measures of photosynthetically functioning vegetation 48 
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(Tucker and Choudhury 1987). Because drought hinders the photosynthetic activity of plants, 49 

large-scale reduction in NDVI over a region (e.g., statewide) can be associated with droughts. 50 

After completing the 10 years in orbit, the products of NASA's Moderate Resolution Imaging 51 

Spectroradiometer (MODIS) have been also used to monitor droughts (Yagci et al. 2012; Deng et 52 

al. 2013). MODIS acquires observations in narrower bands than the AVHRR instrument, 53 

successfully avoiding the water vapor absorption in the Visible-RED (RED) and Near-Infrared (NIR) 54 

region of the electromagnetic spectrum. Therefore, MODIS-NDVI products attain relatively larger 55 

values and better accuracy in exhibiting temporal profiles of forests than the AVHRR-NDVI data 56 

(Huete et al. 2002).  57 

In addition to NDVI, ability of surface brightness temperature (Tb) or land surface 58 

temperature (LST) to track drought has been successfully tested and validated against the crop 59 

yields in the state of Texas, U.S.A (Yagci et al. 2011) and around the globe (Kogan 2001). LST is 60 

better indicator of surface temperature conditions than Tb since it is corrected for surface 61 

emissivity and estimated from surface radiance, i.e., atmospherically corrected surface radiance 62 

reaching the sensor. LST is a proxy for moisture availability and evapotranspiration conditions 63 

such that water depletion in the plant root zone leads to stomatal closure, reduced transpiration 64 

and subsequently elevated canopy temperatures (Anderson and Kustas 2008). Drought detected 65 

by NDVI and LST products is  referred to as vegetative drought or agricultural drought. 66 

In recent years, a new way has surfaced to monitor drought through analysis of the terrestrial 67 

water storage (TWS) anomalies. The monthly variations in the Earth's gravitational signal 68 

measured by twin satellites of the Gravity Recovery and Climate Experiment (GRACE) have been 69 

shown to relate to monthly TWS changes with roughly 1.5 cm accuracy at regional scales (Wahr 70 
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et al. 2004). GRACE-derived TWS is coarsely resolved and contains vertically-integrated 71 

information about surface and sub-surface water conditions, therefore its spatial, temporal, and 72 

vertical decomposition into soil moisture and groundwater components achieved through data 73 

assimilation into the Catchment Land Surface Model (CLSM) aids in its  interpretation and 74 

application to drought monitoring (Houborg et al. 2012; Rodell 2012). The resulting groundwater 75 

and soil moisture wetness fields are appropriate for hydrological and agricultural drought 76 

monitoring applications, respectively. 77 

 USDM is a collaborative effort by the National Drought Mitigation Center of the University 78 

of Nebraska—Lincoln, the Departments of Commerce and Agriculture and outside experts to 79 

summarize weekly drought conditions across the U.S. (Svoboda et al. 2002). Despite the fact that 80 

USDM is the premier drought product for the U.S., it does have certain shortcomings such as a 81 

tendency towards overestimation of drought areal coverage and difficulty in representing the 82 

local-scale (e.g., county-scale) conditions, which have been highlighted by several studies (Brown 83 

et al. 2008; Tadesse, Brown, and Hayes 2005).  84 

The conterminous U.S. experienced a vast costly drought in 2012 which caused disastrous  85 

impacts on agriculture and livestock industries, totaling nearly $30 billion losses (Rippey 2015). 86 

The drought of 2012 was similar to the drought of 1988 in terms of cost and the mega-drought 87 

of the 1950s in terms of areal coverage (Rippey 2015). In this study, characteristics of the 2012 88 

drought are examined using the drought maps derived from the aforementioned approaches. 89 

Each method is rather distinct in terms of input type and source, theoretical background and level 90 

of complexity. Their results are inter-compared in 2012, and their similarities and discrepancies 91 

are also highlighted in Southeast US.  92 
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2. Data and Methods 93 

2.1. NDVI 94 

NDVI is a measure of vegetation greenness, ranging from -1 to 1. Presence of chlorophyll 95 

pigments in plant leaves causes visible sunlight in RED region of the spectrum to be absorbed for 96 

photosynthesis and sunlight in NIR region of spectrum is substantially reflected due to cell 97 

structure of the leaves. Therefore, green healthy functioning vegetation, always attains larger 98 

NDVI value than brown stressed vegetation. Swain et al. (2011) demonstrated that NDVI in the 99 

drought year of 2002 was considerably smaller than NDVI during the non-drought year, 2007 100 

over the croplands and grasslands of Nebraska, U.S. The 16-day composite MODIS-NDVI products 101 

(Collection 5) were retrieved from the NASA's Land Processes Distributed Active Archive Center 102 

(LP DAAC). The level-3 NDVI products, abbreviated as MOD13A2.005, are compiled from 103 

radiometrically-, geometrically- and atmospherically-corrected surface reflectances and have 1-104 

km spatial resolution. The compositing algorithm, the constrained view angle maximum value 105 

composite (CV-MVC), picks the best available NDVI observation that is non-cloudy and closest to 106 

nadir view to represent the vegetation conditions during the 16-day period (Solano et al. 2010).  107 

2.2. LST 108 

LST is a proxy variable for moisture availability and evapotranspiration conditions (Anderson 109 

and Kustas 2008). Elevated LSTs are typical during drought years as opposed to LSTs observed in 110 

normal or wet years since plants are not transpiring to cool off the canopy. Likewise, Swain et al. 111 

(2011) demonstrated that LST increased during the 2002 drought year in comparison to the 2007 112 

normal year in the croplands (corn) and grasslands of Nebraska. The collection 5 daytime MODIS-113 
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LST products were retrieved from the NASA's LP DAAC. The level-3 LST products, abbreviated as 114 

MYD11A2.005, are composited over a 8-day period with 1-km spatial resolution and calculated 115 

from radiometrically-, geometrically- and atmospherically-corrected surface radiances. Unlike 116 

16-day NDVI composites, the 8-day LST composite is the average of all non-cloudy LSTs during 117 

the 8-day period (Wan 2007). 118 

2.3. Vegetation Condition Index (VCI)  119 

The Vegetation Condition Index (VCI) was introduced to separate the annually varying NDVI 120 

component due to prevailing weather conditions from long-term component of NDVI (e.g., 121 

climate, soil and land cover type) (Kogan 1997). The index ranges from 0 to 100 and can be 122 

calculated with the following formula: 123 

 
𝑉𝐶𝐼𝑐 = 100 ×

𝑁𝐷𝑉𝐼𝑐  −  𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥  − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
 

(1) 

where 𝑁𝐷𝑉𝐼𝑚𝑖𝑛  and 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 are the multi-year minimum and maximum NDVI values, 124 

respectively, and 𝑁𝐷𝑉𝐼𝑐 is the NDVI value of the compositing period of interest. For instance, if 125 

VCI of the 177th day of 2012 is the interest, then 𝑁𝐷𝑉𝐼𝑐 is the NDVI value of  the 177th day of 126 

2012. VCI values of 0 and 100 indicate the worst and best vegetation conditions, respectively. 127 

Prior to VCI calculation, low-quality NDVI pixels that are covered with cloud, cloud shadows and 128 

adjacent to clouds were removed based on quality flags in the corresponding quality assurance 129 

(QA) layers that come with the NDVI products. The resulting gaps in NDVI products were filled by 130 

interpolation. NDVI observations from two preceding and following 16-day periods along with 131 

their corresponding day of year (DOY) information were used to interpolate gaps and downscale 132 
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to 8-day temporal resolution. The VCI-based drought maps were compiled by the percentile-133 

based classification scheme given in Table 1.  134 

2.4. Temperature Condition Index (TCI) 135 

Similar to VCI, TCI was designed to highlight LST changes due to prevailing weather conditions 136 

(Kogan 1997). It ranges from 0 to 100 and can be calculated with the following formula: 137 

 
𝑇𝐶𝐼𝑐 = 100 ×  

𝐿𝑆𝑇𝑚𝑎𝑥  −  𝐿𝑆𝑇𝑐

𝐿𝑆𝑇𝑚𝑎𝑥  − 𝐿𝑆𝑇𝑚𝑖𝑛
 

(2) 

where 𝐿𝑆𝑇𝑚𝑖𝑛  and 𝐿𝑆𝑇𝑚𝑎𝑥 are the multi-year minimum and maximum LST values, respectively, 138 

and 𝐿𝑆𝑇𝑐 is the LST value of the compositing period of interest. For instance, if TCI of the 177th 139 

day of 2012 is the interest, then 𝐿𝑆𝑇𝑐 is the LST value of the 177th day of 2012. Minimum and 140 

maximum TCI values (e.g., 0 and 100) indicate the worst and best vegetation conditions, 141 

respectively. Prior to TCI calculation, LST products underwent a masking process where all cloudy 142 

LST observations were removed. The incomplete LST time series were filled by temporal 143 

interpolating using LST observations from two preceding and following 8-day compositing 144 

periods. The TCI-based drought maps were categorized by the drought classification scheme in 145 

Table 1 to identify drought-affected areas.  146 

2.5. United States Drought Monitor (USDM) 147 

The team of roughly 15 authors of the USDM combines meteorological, agricultural and 148 

hydrological drought indicators such as Palmer Drought Severity Index (PDSI), Climate Prediction 149 

Center (CPC) soil moisture model, US Geological Survey (USGS) weekly streamflow, Standardized 150 

Precipitation Index (SPI) and other drought indices to produce weekly drought maps, by focusing 151 
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on broad-scale conditions (e.g., state-level). In turn, it may not be used to infer local-scale (e.g., 152 

county-level) conditions. Drought is classified by percentiles into 5 different severities, 153 

abnormally dry, moderate, severe, extreme and exceptional drought, as outlined in Table 1 (The 154 

National Drought Mitigation Center 2016). In the end, a blend of drought indicators with different 155 

weights determined subjectively by the experts contributes to the final drought map (Svoboda 156 

et al. 2002), and this map is updated weekly and disseminated via the USDM website 157 

(http://droughtmonitor.unl.edu/Home.aspx). 158 

Table 1 - USDM Drought Classification Scheme 159 

Category Description Percentiles 

D0 Abnormally Dry 21 to 30 

D1 Moderate Drought 11 to 20 

D2 Severe Drought 6 to 10 

D3 Extreme Drought 3 to 5 

D4 Exceptional Drought 0 to 2 

2.6. GRACE-based Drought indicators 160 

Earth’s gravity field varies in space and time as a result of heterogeneities and movements of 161 

mass at the surface, including redistribution of terrestrial water storage (TWS). GRACE detects 162 

these gravitational variations as they perturb the orbits of its twin satellites (Tapley et al. 2004; 163 

Wahr et al. 2004), and uses them to infer monthly changes in TWS at regional scales (>150,000 164 

km2) (Swenson et al. 2006). In addition to its coarse spatial and temporal resolutions, GRACE 165 

alone cannot separate changes in groundwater, soil moisture, surface waters, and snow/ice 166 

(Rodell and Famiglietti 1999). Zaitchik, Rodell, and Reichle (2008) proposed a data assimilation 167 
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method based on the Catchment Land Surface Model (Koster et al. 2000) to downscale and 168 

vertically decompose GRACE-based TWS. Later, Houborg et al. (2012) applied this data 169 

assimilation approach to GRACE-derived TWS and produced drought indicators for surface soil 170 

moisture (SFSM), root-zone soil moisture (RTSM) and ground water storage (GWS) in 0.125 171 

degree resolution, which conformed to the percentile ranges proposed by the USDM (Table 1), 172 

thus delineating drought-affected areas across the continental U.S.. SFSM and RTSM are 173 

indicative of agricultural drought, whereas GWS can be used to map the extent and severity of 174 

hydrological drought. These experimental GRACE-based products are now incorporated into the 175 

USDM and disseminated weekly via this website, 176 

http://drought.unl.edu/monitoringtools/nasagracedataassimilation.aspx. 177 

2.7. Study area 178 

The study area is the southeastern U.S., where a humid warm temperate climate is prevalent 179 

according to Köppen-Geiger climate classification (Kottek et al. 2006). The land cover is mainly 180 

dominated by forests (mostly deciduous), cultivated crops and hay/pasture according to the 181 

National Land Cover Database 2011 (NLCD 2011). Summers are characteristically hot and wet 182 

with frequent thundershowers. Evaporative demand is high during summers, which makes the 183 

region very susceptible to drought when seasonal rainfall is delayed.  184 

Basins in the study area (Figures 1 and 2) were retrieved from the website of the Watershed 185 

Boundary Dataset (WBD) (http://nhd.usgs.gov/wbd.html) to compare the drought indicators on 186 

the basin-level. The WBD contains boundaries of drainage areas developed by the collaborative 187 

effort among the US federal agencies in consistent with national federal standards, and 188 



10 
 

topographic and hydrologic features across the US and territories (U.S. Geological Survey and the 189 

U.S. Department of Agriculture, Natural Resources Conservation Service 2013). Each basin in the 190 

WBD is defined as the level-3 hydrological unit and assigned a unique identifier, hydrological unit 191 

code (HUC). In this paper, we follow the naming conventions of hydrological units established in 192 

the WBD, Region (Level-1), Basin (Level-3) and Watershed (Level-5), in the descending order with 193 

respect to areal size. 194 

Various crops such as corn, soybeans, rice, winter wheat, sorghum, cotton and peanuts are 195 

grown in the study area, particularly in lower Mississippi region along Mississippi river (Figure 1). 196 

During hot seasons, crops are irrigated to support crop growth and ensure high crop yields, and 197 

irrigation is primarily concentrated over Lower Mississippi region (Figure 3) according to the 198 

irrigation map, extracted from the MODIS Irrigated Agriculture Dataset for the US (MIrAD-US). 199 

Pervez and Brown (2010) developed a geospatial model by combining remote sensing inputs such 200 

as MODIS-NDVI and NLCD products with US Department of Agriculture (USDA) Census of 201 

Agriculture irrigated area statistics to produce 2012 irrigated-agriculture areas dataset at 250-m 202 

resolution. 203 
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 204 

Figure 1 - Study area and boundaries of basins defined in the Watershed Boundaries Dataset (WBD). The 205 
background image is the land cover/land use subset from the National Land Cover Database 2011 (NLCD 2011). 206 
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 207 

Figure 2 - Irrigated areas in 2012 with respect to basins in the study area. Irrigation map is the subset of the 208 
MODIS-based Irrigated Areas Database (MIrAD 2012) 209 

3. Results 210 

The spatial extent and severity of the 2012 drought are mapped by all drought indicators as 211 

described in Section 2. The identical classification scheme (Table 1) is employed to indentify 212 

drought-affected regions and quantify severity of drought, ensuring that they are all in same 213 

units. Therefore, percentile-based classification allows us to visually and quantitatively analyze 214 

the drought results and draw meaningful conclusions. Visual comparison is necessary to analyze 215 

the spatial extent of drought reported by all drought indicators, while quantitative examination 216 

enables to inter-compare results with respect to drought onset, end and intensity. It is crucial to 217 
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re-emphasize that drought maps based on GWS percentiles is an indicator of hydrological 218 

drought, while VCI-, TCI-, RTZSM- and SFSM-based drought maps provide agricultural drought 219 

conditions. On the other hand, USDM-based drought maps collectively contain information about 220 

hydrological, meteorological and agricultural drought. 221 

3.1. Spatial Representation of Drought 222 

GRACE- and MODIS-based maps are shown side-by-side in Figure 3 along with the USDM map 223 

on August 6, 2012. These maps are valid for the week of 6-12 August, 2012, except that USDM 224 

map is valid for the week of 7-13 August, 2012. Good correspondence between TCI- and VCI-225 

based maps was observed, although VCI indicated relatively large drought extent. Both maps 226 

were also generally in good agreement with the USDM map and GRACE-SFSM, although they 227 

displayed more extensive drought extent than MODIS-based drought indices. One stark 228 

discrepancy among all indicators was seen in Georgia where both GRACE-derived indices and 229 

USDM suggested severe-to-exceptional agricultural drought, while VCI and TCI did not indicate 230 

any drought. Over Central US, drought extent reported by all indicators were in complete 231 

agreement. Of all the indicators, the largest drought extent was reported by GRACE-GWS and -232 

RTZSM on August 6, 2012 (Figure 3). 233 

Another disagreement in indices was observed over Lower Mississippi region where the land 234 

is cultivated for agricultural production. Crops in this region were irrigated in 2012 according to 235 

irrigated agriculture map (Figure 2). Over this region, VCI did not report widespread reduced 236 

vegetation activity (Figure 4), and TCI did not indicate elevated LST in comparison to other years, 237 

both indicating a response of the respective index to the irrigation signal. On the other hand, 238 
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severe-to-exceptional drought was reported in the USDM and GRACE-derived SFSM over the St. 239 

Francis basin (Figure 4), indicating that their broader-scale indices did not capture the local 240 

irrigation practices that were taking place in 2012. 241 

According to GRACE-based maps, ground water, root-zone and surface soil moisture all 242 

deviated negatively from their historical averages throughout the study area, further signaling 243 

both agricultural and hydrological drought throughout Southeast US. In Georgia where VCI and 244 

TCI did not detect drought on August 6, 2012, both USDM and GRACE-based drought indicators 245 

detected severe-to-exceptional drought. Over irrigated agriculture of Lower Mississippi region, 246 

GRACE-based drought indicators were in agreement with USDM, but not with the MODIS-based 247 

indicators (Figure 3 and 4). Disagreements between MODIS and GRACE indices were generally 248 

situated along Appalachians Mountains (e.g., Blue Ridge mountains, and Ridge and Valley), 249 

Piedmont Plateau and Atlantic Coastal Plains. Over these regions, GRACE drought indicators 250 

reported severe-to-exceptional groundwater and soil moisture depletion in 2012. Drought 251 

reported by GRACE-SFSM was not seen in VCI and TCI maps along Appalachians Mountains. 252 

Broadly, discrepancies between GRACE-SFSM and MODIS indices seemed to be concentrated 253 

over highly elevated areas along Appalachians Mountains (i.e., Blue Ridge Mountains). 254 

There is a well-known lagged response of vegetation (i.e., NDVI) to precipitation (Di, 255 

Rundquist, and Han 1994), and Ji and Peters (2003) suggested 3-month lag of NDVI to 256 

precipitation deficit. For this reason, 3-month Percent of Normal Precipitation for the time period 257 

of June-August of 2012 (Figure 5) was retrieved from the NOAA's National Climatic Data Center 258 

(NCDC) (http://www.ncdc.noaa.gov/temp-and-precip/). This precipitation deficit map broadly 259 
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matched drought extent indicated by VCI on August 6, 2012, while smaller drought extent was 260 

reported by TCI. Both USDM and GRACE-SFSM indicated comparatively larger drought extent. 261 
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 262 

Figure 3 - GWS-based (A), RTZSM-based (B), SFSM-based (C), TCI-based (D), VCI-based (E) and USDM (F) drought maps. The USDM drought map is valid 263 
from August 7 to August 13, 2012, and all other maps are valid between August 6 and August 12, 2012. 264 

 265 
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 266 

 267 

Figure 4 - The close-up view of the drought maps over three basins on August 6, 2012 (USDM map is on August 7, 2012). Basin names are given in both 268 
Figures 1 and 2. The order of drought maps is same as the order in Figure 3. 269 
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 270 

Figure 5 - 3-month Percent of Normal Precipitation for the time period of June- August, 2012 (NOAA-271 
National Climatic Data Center 2012). 272 

3.2. Drought intensity 273 

Aside from analysis of spatial extent of drought, quantitative examination of drought intensity 274 

is essential to reveal similarities and differences across indices. The comparison is conducted 275 

based on the basin-level averages of drought indicators. The location of three basins in the study 276 

area, Coosa-Tallapoosa (HUC6=031501), St. Francis (HUC6= 080202) and Upper White (HUC6= 277 

110100) can be seen in both Figures 1 and 2. Coosa-Tallapoosa basin was selected for analysis 278 

because MODIS-based drought indicators did not indicate any drought on August 6, 2012, in 279 

contrast to USDM and GRACE-derived indicators (Figure 4). St. Francis basin was impacted by the 280 

irrigation signal seen only in VCI and TCI, and all drought indicators were in good agreement in 281 
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Upper White basin. Using basin boundaries, time series of VCI, TCI, RTZM, SFSM and GWS were 282 

constructed between April 30, 2012 and October 1, 2012 on a weekly basis (Figures 6 and 7).  283 

The results (Figure 6a) show that VCI was relatively constant above the drought threshold 284 

(>30, Table 1) in St. Francis basin throughout 2012 where agriculture is irrigated (Figure 2). 285 

Similarly, VCI didn't report any drought throughout the 2012 growing season in Coosa-Tallapoosa 286 

basin where precipitation deficit was not seen between June and August of 2012 (Figure 5). 287 

However, TCI fluctuated substantially around the drought threshold throughout 2012 in St. 288 

Francis basin (Figure 7a) unlike Upper White (Figure 7b), indicating drought from May 14 to May 289 

27, no drought from May 28 to June 17, drought from June 18 to July 8 and no drought from July 290 

9 to July 15. Moreover, TCI was reported drought during the late June and early July of 2012 291 

(Figure 7c) and at other times, no drought was indicated by TCI in Coosa-Tallapoosa basin. From 292 

early June to late August in 2012, good correspondence was observed between all GRACE-based 293 

and MODIS-based drought indicators in Upper White basin (Figure 6b and 7b), identifying 294 

drought conditions. GRACE-derived indicators implied that all three basins experienced severe-295 

to-exceptional drought during the 2012 growing season. 296 
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 297 

Figure 6 -  Basin averages of Vegetation Condition Index (VCI), Groundwater Storage (GWS), Root-Zone Soil 298 
Moisture (RTZSM) and Surface Soil Moisture (SFSM) in St. Francis (A), Upper White (B) and Coosa-Tallapoosa (C). 299 
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 300 

Figure 7 - Basin averages of Temperature Condition Index (TCI), Groundwater Storage (GWS), Root-Zone Soil 301 
Moisture (RTZSM) and Surface Soil Moisture (SFSM) in St. Francis (A), Upper White (B) and Coosa-Tallapoosa (C). 302 



22 
 

Correlation analysis was conducted using the time series of drought indicators in 2012. Each 303 

time series is composed of 23 weekly observations spanning from April 30 to October 1, 2012. 304 

The results revealed that TCI had higher statistically significant relationship at 0.01 significance 305 

level with both SFSM and RTZSM than GWS in St. Francis and Upper White basins (Table 2). TCI 306 

did not display any relation to groundwater variations in all basins. On the other hand, VCI 307 

exhibited statistically significant relationship with GWS, RTZSM and SFSM only in Upper White 308 

basin. Finally, there was no statistically significant correlation among any MODIS- and GRACE-309 

based indicators in Coosa-Tallapoosa basin. 310 

Lagged response of NDVI and NDVI-based drought indices to soil moisture at various depths 311 

up to 100cm was reported by other studies (Peng, Deng, and Di 2014; Adegoke and Carleton 312 

2002) such that response of plants to soil moisture changes is not concurrent, rather exhibits 313 

some time lag. Time lags up to 7 weeks are considered, and additional basin averages of GRACE-314 

derived GWS, RTZSM and SFSM are computed starting from January 16 until October 1, 2012, 315 

ensuring that correlation coefficients are always computed from 23 weekly observations of all 316 

drought indicators and the time period matches the growing season when vegetation is not 317 

dormant (i.e., April 30 to October 1). The results (Table 3) show that correlations among drought 318 

indicators improved considerably, thus suggesting that VCI exhibited lagged response to changes 319 

in surface and root-zone soil moisture in St. Francis and Upper White basins. On the other hand, 320 

no lag was found between TCI and GRACE-based RTZSM and SFSM, thus suggesting that LST 321 

varies simultaneously with SFSM and RTZSM during dry years. Again, there was no significantly 322 

lagged relationship among all indicators in Coosa-Tallapoosa basin. Overall, VCI lagged behind 323 

RTZSM and SFSM about 2 weeks in St. Francis and Upper White basins. Therefore, TCI responded 324 
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to changes in SFSM and RTZSM more quicker than VCI in St. Francis and Upper White basins. 325 

Furthermore, the results pointed out that VCI and TCI had positive relationship in all basins, yet 326 

only statistically significant at 0.01 level in Upper White basin (Table 3). Time delay of 3 weeks 327 

between VCI and TCI was observed in Upper White basin. 328 

Table 2- Correlation coefficients (r) between VCI, TCI, SFSM, RTZSM and GWS in St. Francis, Upper White and  329 
Coosa-Tallapoosa basins. Time series are composed of observations time series between April 30 and October 1, 330 

2012. Statistically significant r at 0.01 significance level (α = 0.01) are underlined. The critical r value is 0.53 at 331 
0.01 significance level. 332 

N=23 St. Francis Upper White Coosa-Tallapoosa 

r=0.53 VCI TCI VCI TCI VCI TCI 

GWS 0.46 -0.08 0.64 -0.13 -0.26 -0.08 

RTZSM 0.43 0.75 0.67 0.71 0.07 0.17 

SFSM 0.52 0.78 0.67 0.64 0.17 0.23 

TCI 0.44   0.44   0.40   

 333 

Table 3 - The lags and their correlation coefficients (r) between VCI, TCI, SFSM, RTZSM and GWS in St. 334 
Francis, Upper White and  Coosa-Tallapoosa basins. Statistically significant r and lag at 0.01 significance level (α 335 

= 0.01) are underlined. The critical r value is 0.53 at 0.01 significance level. 336 

N=23 St. Francis Upper White Coosa-Tallapoosa 

r=0.53 VCI TCI VCI TCI VCI TCI 

  lag r lag r lag r lag r lag r lag r 

GWS 0 0.46 0 -0.08 0 0.64 0 -0.13 7 0.14 0 -0.08 

RTZSM 2 0.55 0 0.75 2 0.87 0 0.71 0 0.07 0 0.17 

SFSM 1 0.57 0 0.78 2 0.83 0 0.64 0 0.17 0 0.23 

TCI 1 0.46     3 0.84     1 0.50     
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The correlation analysis among GRACE-derived SFSM, RTZSM and GWS revealed that SFSM 337 

was strongly correlated with RTZSM and GWS in all basins (Table 4), although relationship was 338 

relatively less strong in Coosa-Tallapoosa basin in 2012. SFSM relation to RTZSM was concurrent, 339 

while time lag of 4 weeks was observed between SFSM and GWS in all basins (Table 4). The results 340 

also suggested that there was a strong lagged-relationship between RTZSM and GWS in all basins, 341 

and the lag was 5 weeks in St. Francis and Upper White basin and 3 weeks in Coosa-Tallapoosa 342 

basin. 343 

Table 4 - The lags and their correlation coefficients (r) among GRACE-derived drought indicators in St. 344 
Francis, Upper White and  Coosa-Tallapoosa basins. The critical r value is 0.46 at 0.01 significance level. 345 

N=31 SFSM 

r=0.46 St. Francis Upper White Coosa-Tallapoosa 

  lag r lag r lag r 

RTZSM 0 0.93 0 0.97 0 0.75 

GWS 4 0.89 4 0.89 4 0.69 

  RTZSM 

GWS 5 0.94 5 0.93 3 0.81 

4. Discussion 346 

Over irrigated agriculture in Lower Mississippi region, VCI did not report any drought although 347 

USDM clearly indicated drought in 2012. Especially in St. Francis basin, VCI provided more 348 

consistent results as opposed to TCI because LST responds more rapidly to prevailing weather 349 

conditions and irrigation events than NDVI. Furthermore, there was no discernible variation in 350 

SFSM, RTZSM and GWS unlike that observed in TCI over irrigated fields of St. Francis basin. It can 351 

be concluded that when agricultural fields were irrigated in 2012, LST decreased rapidly, and 352 
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subsequently TCI signaled no drought. When the surface became dry before the next irrigation 353 

event, TCI reported drought after the sudden increase in LST (Figure 7a). In conclusion, 354 

discrepancy between MODIS- and GRACE-based results in St. Francis can be easily explained by 355 

irrigation, where irrigation is not considered in the decomposition of GRACE-based TWS into 356 

SFSM, RTZSM and GWS (Houborg et al. 2012).  357 

Correlation analysis revealed that the relationship between VCI and GRACE-based SFSM and 358 

RTZSM is not concurrent, rather lagged in St. Francis and Upper White basins, whereas TCI had 359 

concurrent positive relationships with both GRACE-derived SFSM and RTZSM. Approximately, VCI 360 

exhibited 2-week lag to surface and root-zone soil moisture in 2012. Such conclusions with NDVI-361 

based indices were achieved by other studies (Peng, Deng, and Di 2014; Adegoke and Carleton 362 

2002), as well. Correlations between VCI and other drought indicators were statistically 363 

significant at 99% confidence level and improved considerably when lag effect is taken into 364 

consideration in St. Francis and Upper White basins. However, the results of the correlation 365 

analysis in St. Francis basin should be interpreted with caution since transfer of groundwater to 366 

surface through irrigation and subsequently infiltration of that water down to root-zone is not 367 

explicitly handled in CLSM. Besides, the land is heavily subject to anthropogenic effects (e.g., 368 

irrigation, harvesting of crops and farming practices) and timing of these events can vary 369 

annually. Therefore, such drivers could be partly responsible for poorer correlation of VCI to 370 

SFSM, RTZSM and TCI in St. Francis basin in comparison to Upper White basin. In Coosa-371 

Tallapoosa, no statistically significant relationship observed between VCI and TCI could be 372 

attributed to frequent thundershowers, a common weather activity in summers across this 373 

region. We demonstrated that TCI fluctuated substantially throughout the 2012 growing season 374 
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as opposed to VCI because LST responds wetting events (e.g., irrigation and thundershowers) 375 

more quicker than NDVI. 376 

We theorize that the timing of irrigation events can be detected by LST or TCI where LST 377 

responds rapidly to irrigation event as sharp changes were seen in TCI time series in St. Francis 378 

as opposed to Upper White basin. The methodology developed by Pervez and Brown (2010) only 379 

decides whether or not a pixel is irrigated, but doesn't supply any information about the timing 380 

of watering events. We suspect that sudden changes in the time series could be sign of irrigation 381 

as depicted with arrows in Figure 6-A. However, LST products must be combined with MIrAD 382 

irrigation dataset to eliminate likely errors because sharp fluctuations observed in Coosa-383 

Tallapoosa (Figure 7c) could lead to false-positives (i.e., Type I error). More research is needed to 384 

validate our claim. 385 

Utility of VCI to monitor meteorological drought was investigated by Quiring and Ganesh 386 

(2010), however we demonstrated that although USDM indicated drought conditions (i.e., 387 

meteorological drought) over irrigated agriculture in Lower Mississippi region, drought was not 388 

reported by VCI during the 2012 growing season (Figure 6-A). Therefore, VCI may not be a reliable 389 

indicator of meteorological drought, but agricultural drought. 390 

Our analysis of the 2012 drought in the Southeastern US demonstrated that the agreements 391 

and disagreements over the extent and intensity of the 2012 drought exist among USDM, GRACE- 392 

and MODIS-based drought indicators. We demonstrated that precipitation between June and 393 

August (Figure 5) was at normal levels where disagreements between MODIS, GRACE and USDM 394 

were seen over Georgia. Additionally, two principal factors, irrigation and lagged response of 395 

vegetation to variations in soil moisture, could be partially responsible for these disagreements. 396 
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Another factor that may contribute to these disagreements is the type of drought reported by 397 

these indicators such that GRACE-GWS is a measure of hydrological drought indicator, while the 398 

rest could be more suitable in depicting agricultural drought conditions.  399 

5. Conclusions 400 

USDM, GRACE- and MODIS-based drought maps were successful in depicting the drought of 401 

2012 despite disagreements over its extent and intensity, and they all indicated that Southeast 402 

US experienced severe-to-exceptional drought in 2012. Both MODIS-based and GRACE-SFSM 403 

drought maps closely mimicked the surface conditions depicted in the USDM maps except over 404 

irrigated areas, Georgia and along Appalachians Mountains (e.g., Blue Ridge mountains, and 405 

Ridge and Valley). However, short-term precipitation deficit map agreed with MODIS indices in 406 

these regions, indicating normal precipitation conditions compared to long-term average 407 

conditions. GRACE-based GWS implied that majority of the southeastern US experienced 408 

moderate-to-extreme hydrological drought, thus suggesting that groundwater sources severely 409 

depleted during the drought of 2012. We demonstrated that disagreements over the extent and 410 

intensity of the 2012 drought across all drought indicators could result from irrigation, complex 411 

lagged response of vegetation to precipitation and soil moisture and the type of drought these 412 

indicators report (e.g., meteorological, agricultural and hydrological drought).  413 
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