

# NASA Centers and Universities collaborate through Smallsat Technology Partnerships

Jim Cockrell

Chief Technologist

NASA STMD Small Spacecraft Technology Program

Presentation to CubeSat Developers Workshop
April 20, 2018

# NASA's Space Technology Mission Directorate Small Spacecraft Technology Program

Develops and demonstrates small spacecraft capabilities to:

 Achieve science, exploration missions in unique and more affordable ways

 Enable new mission architectures using small spacecraft

Expand reach of small spacecraft to new destinations

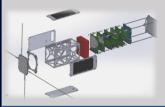
 Augment existing assets and future missions with small spacecraft support

# Why University – NASA Partnerships?

- Advance novel technologies for Smallsats useful to NASA and industry
- Leverage unique talents, fresh perspectives of the university community
- Share NASA experience and expertise in relevant university projects
- Engage NASA personnel in rapid, agile and cost-conscious small spacecraft approaches that characterize university teams
- Foster a new generation of innovators for NASA and the nation.



## What are Smallsat Technology Partnerships (STPs)?


- U.S.-based university and NASA center, PI-lead cooperative agreements
- Competitive solicitations
  - Specific technology topics vary
- Grants for max duration of two years
  - Year-2 option after first annual review
- 4 "classes" to-date: 2013, 2015, 2016, 2018



| Grant Award Caps   |                             |                                                                                                         |  |  |  |  |
|--------------------|-----------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|--|
| STP Proposal Class | University                  | NASA/JPL FTE                                                                                            |  |  |  |  |
| 2013, 2015, 2016   | \$100k / year<br>2-year max | <ul> <li>1.0 FTE for NASA/JPL partner,</li> <li>\$25k procurement to NASA/JPL in second year</li> </ul> |  |  |  |  |
| 2018               | \$200k / year<br>2-year max | <ul> <li>0.5 FTE for NASA/JPL partner</li> <li>\$25k procurement to NASA/JPL in second year</li> </ul>  |  |  |  |  |

# STP Technology Topics

| STP Class                | 2013                               | 2015                      | 2016                                                             | 2018                                                             |
|--------------------------|------------------------------------|---------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
|                          | Communications                     | Avionics/C&DH Subsystem   | Enhanced Power Generation and Storage                            | Instruments for SmallSats incl. Multiple SmallSats               |
| SO                       | GN&C                               | Communication Subsystem   | Cross-linking Communications Systems                             | Technologies That Enable Large<br>Swarms of Small Spacecraft     |
| Topi                     | Propulsion                         | Ground Data Systems       | Relative Navigation for Multiple<br>Small Spacecraft             | Technologies That Enable Deep<br>Space Small Spacecraft Missions |
| Technology Topics        | Power                              | GN&C/ADCS Subsystem       | Instruments and Sensors for<br>Small Spacecraft Science Missions |                                                                  |
| lour                     | Science Instrument<br>Capabilities | Payloads                  |                                                                  |                                                                  |
| Tecl                     | Advanced Manufacturing             | Power Subsystem           |                                                                  |                                                                  |
|                          |                                    | Propulsion Subsystem      |                                                                  |                                                                  |
|                          |                                    | Structures and Mechanisms |                                                                  |                                                                  |
| # Proposals<br>Submitted | n/a                                | 109                       | 80                                                               | 111                                                              |
| # Grants<br>Awarded      | 13                                 | 8                         | 8                                                                | 8                                                                |



Subsystem-Oriented,
Manufacturing
Instruments

**System-Oriented** 

LEO

Instruments

**Mission-Oriented** 

Deep Space, Multi-Spacecraft

Instruments

## **Annual Solicitation Process**

Solicited through NASA NSPIRES and reviewed by SME teams

#### **Evaluation Criteria** (2018):

| Relevance and Impact            | 45% |
|---------------------------------|-----|
| Technical & Management Approach | 45% |
| Cost                            | 10% |



NRA Appendix

- 13 proposals selected
- 2 spaceflight demonstrations
  - CSUN, CSUNSat1, OA-7, (May 2015)
  - MSU, RadSat, ISS, (May 2018)
- 1 patent applied for
  - Space Optical Communications Using Modulating Retro-Reflectors (MRR) with Vertical Cavity Semiconductor Optical Amplifiers (VCSOA)
- 6 Technical Topics:
  - Communications
  - GN&C
  - Propulsion
  - Power
  - Science Instrument Capabilities
  - Advanced Manufacturing

| Project                                                                        | Topic                                 | PI                  | University                                    | NASA/JPL                                                                              | NASA/JPI      |
|--------------------------------------------------------------------------------|---------------------------------------|---------------------|-----------------------------------------------|---------------------------------------------------------------------------------------|---------------|
| High Rate CubeSat X-band/S-<br>band Communication System                       | Comm                                  | Scott Palo          | University of<br>Colorado,<br>Boulder         | Sarah Melssen, Gary Crum,<br>ALTUNC, SERHAT, Scott<br>Schaire, Steven Bundick,        | GSFC/<br>MSFC |
| Space Optical Communications<br>Using Laser Beam Amplification                 | Comm                                  | Govind<br>Agrawal   | University of Rochester                       | Peter Goorjian                                                                        | ARC           |
| Development of Novel Integrated<br>Antennas for CubeSats                       | GN&C                                  | David<br>Jackson    | University of<br>Houston                      | Patrick Fink                                                                          | JSC           |
| SmallSat Precision Navigation with Low-Cost MEMS IMU Swarms                    | GN&C                                  | John<br>Christian   | West Virginia<br>University                   | Darryl Mary                                                                           | JSC           |
| CubeSat Autonomous<br>Rendezvous & Docking Software<br>(CARDS)                 | Science<br>Instrument<br>Capabilities | Glenn<br>Lightsey   | University of<br>Texas, Austin                | Christopher D'Souza, Darryl<br>Mary, James Casey                                      | JSC           |
| Radiation Tolerant, FPGA-based<br>SmallSat Computer System                     |                                       | Brock<br>LaMeres    | Montana State<br>University,<br>Bozeman       | Tom Flatley                                                                           | GSFC/<br>MSFC |
| An Integrated Precision Attitude Determination and Control System              | GN&C                                  | Norman<br>FitzCoy   | University of Florida, Gainsville             | Zhiqiang Zhou, Carlos<br>Roithmayr, Natalie Clark                                     | LaRC          |
| Propulsion System and Orbit<br>Maneuver Integration in<br>CubeSats             | Propulsion                            | Jennifer<br>Hudson  | Wester Michigan<br>University,<br>Kalamazoo   | Damon Landau, Charles<br>Vanelli, Eric Gustafson,<br>Richard Hfofer, Sara<br>Spangelo | JPL           |
| Film-Evaporation MEMS Tunable Array for PicoSat Propulsion and Thermal Control | Propulsion                            | Alina<br>Alexeenko  | Purdue University                             | Eric Cardiff                                                                          | GSFC          |
| SmallSat Low Mass, Extreme<br>Low Temperature Energy<br>Storage                | Power                                 | Sharlene<br>Katz    | California State<br>University,<br>Northridge | Naomi Palmer, William West,                                                           | JPL           |
| Compressive Sensing for<br>Advanced Imaging and<br>Navigation                  | GN&C                                  | Richard<br>Kurtwitz | Texas Engineering Experiment Station          | Paul Manhart, Glenn Hines,                                                            | LaRC          |
| Mini Fourier-Transform<br>Spectrometer for CubeSat-<br>Based Remote Sensing    | Science<br>Instrument<br>Capabilities | John Allen          | Appalachian<br>State University               | Shahid Aslam, Patrick<br>Roman, Qian Gong                                             | GSFC          |
| Printing the Complete CubeSat                                                  | Advanced<br>Manufacturing             | Craig Kief          | University of New<br>Mexico                   | Kyla Sorensen, Brian Zufelt,<br>Susan De Los Sanots                                   | GRC           |

- 109 proposals submitted
- 8 grants awarded
- 2 Spaceflight demonstrations:
  - UofA, ARKSAT-1, CSLI (in dev)
  - UofIllinois, CAPSat, CSLI (fall 2018)
- 2 NTRs/Patents Applied for:
  - Film-Evaporation MEMS Tunable Array thruster
  - Method for Inflating In-space Gossamer Structures with Solid-State Gas Generator Arrays
- 4 Technical Topics
  - Precise attitude control and pointing systems for CubeSats (33)
  - Power generation, energy storage, and thermal management systems (30)
  - Simple low cost deorbit systems (14)
  - Communications and tracking systems and networks (32)

| Project                                                                                            | Topic            | PI                            | University                                                     | NASA/JPL                                              | Center |
|----------------------------------------------------------------------------------------------------|------------------|-------------------------------|----------------------------------------------------------------|-------------------------------------------------------|--------|
| Solid State Inflation Balloon<br>Active Deorbiter                                                  | Prop             | Adam Huang                    | University of<br>Arkansas,<br>Fayetteville                     | David Mayer<br>Robin Beck<br>Kimberly Hines           | ARC    |
| Miniaturized Phonon Trap<br>Timing Units for PNT of<br>Cubesats                                    | GN&C             | Mina Rais-Zadeh,<br>Associate | University Of<br>Michigan, Ann<br>Arbor                        | Serhat Altunc                                         | GSFC   |
| Design and Validation of<br>High Date Rate Ka-Band<br>Software Defined Radio of<br>Small Satellite | Comm             | Tian Xia<br>Xinming Huang     | University of<br>Vermont<br>Worcester<br>Polytechnic Institute | Wai fong, Wing<br>Lee                                 | GSFC   |
| Propellantless attitude control of solar sail technology utilizing reflective control devices      | GN&C             | Jeremy Munday                 | University of<br>Maryland, College<br>Park                     | Tiffany Russell                                       | MSFC   |
| Integrated Solar-Panel<br>Antenna Array for<br>CubeSats (ISAAC)                                    | Power            | Reyhan Baktur                 | Utah State<br>University                                       | Serhat Altunc                                         | GSFC   |
| Small Spacecraft Integrated<br>Power System with Active<br>Thermal Control                         | Power<br>Thermal | Alexander Ghosh               | University Of<br>Illinois, Urbana-<br>Champaign                | David Mayer                                           | ARC    |
| MEMS Reaction Control<br>and Maneuvering for<br>Picosat beyond LEO                                 | GN&C             | Alina Alexeenko               | Purdue University                                              | Eric Cardiff                                          | GSFC   |
| Active CryoCubeSat                                                                                 | Thermal          | Charles Swenson               | Utah State<br>University                                       | Douglas Hofmann<br>Jose Rodriguez<br>A J Mastropietro | JPL    |

- 80 Proposals Submitted
- 8 Grants Awarded
- 1 New Technology Report
  - Solid-State Structural Battery Composite Materials
- 6 Balloon / Spaceflight Demos Planned
  - Highly-integrated THz Rx, GUSTO balloon
  - · Low-resource magnetometer, M-BARC (planned)
  - Miniature Tether Electrodynamics Experiment, MITEE-1, ELaNa 2018
  - MOCT, CLICK, 2020? (plan)
  - · Ominidirectional Optical Comm (intent to fly)
  - Smoothing-Based Relative Nav, ISS exp
- 4 Technical Topics
  - Enhanced Power Generation and Storage (18)
  - Cross-linking Communications Systems (24)
  - Relative Navigation for Multiple Small Spacecraft (13)
  - Instruments and Sensors for Small Spacecraft Science Missions (25)

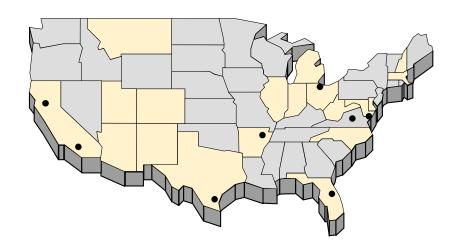
| Project                                                                                          | Topic                                | Speaker/PI            | Univ.                                        | NASA/JPL                             | Center     |
|--------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------|----------------------------------------------|--------------------------------------|------------|
| Highly Integrated THz Receiver<br>Systems for Small Satellite Remote<br>Sensing Applications     | Instrument                           | Christopher<br>Groppi | Arizona Sate<br>University                   | Jose Siles                           | JPL        |
| Development of New Low-Resource<br>Magnetometers for Small Satellites                            | Instrument                           | Mark<br>Moldwin       | Univ. of Mich.<br>Ann Arbor                  | Eftyhia<br>Zesta                     | GSFC       |
| Precision GNSS-Based Navigation<br>and Timekeeping for Miniaturized<br>Distributed Space Systems | Navigation                           | Simone<br>D'Amico     | Stanford<br>University                       | Neerav<br>Shah                       | GSFC       |
| Smoothing Based Relative<br>Navigation & Coded Aperature<br>Imaging                              | Navigation                           | Alvar Saenz<br>Otero  | Massachuset<br>ts Institute of<br>Technology | Carl<br>Liebe,<br>Norbert<br>Sigrist | JPL        |
| Fast, power efficient pulsed modulators and receivers for space-to-space optical communications  | Comm                                 | John<br>Conklin       | Univ. of<br>Florida,<br>Gainsville           | Belgacem<br>Jaroux                   | ARC        |
| Development of Lightweight<br>Cubesat with Multifuncitonal<br>Structural Battery Systems         | Power                                | Ryan<br>Karkkainen    | Univ. of<br>Miami, Coral<br>Gables           | Luke<br>Roberson                     | GRC<br>KSC |
| Omnidirectional Inter-satellite Optical Communicator                                             | Cross                                | Ozdal<br>Boyraz       | UC Irvine                                    | Jose<br>Velazco                      | JPL        |
| Demonstration of a Nano-Enabled<br>Space Power System                                            | Enhanced<br>Power<br>Gen/<br>Storage | Ryne<br>Raffaelle     | Rochester<br>Institute of<br>Technology      | Geoffrey<br>Landis                   | GRC        |

- 111 proposals submitted
- 8 grants awarded
- 4 Technology Topics:
  - Instrument Technologies for Small Spacecraft
    - Incl. multipoint measurements from multiple SmallSats
  - Technologies that Enable Large Swarms of Small Spacecraft
  - Technologies that Enable Deep Space Small Spacecraft Missions

| Project                                                                                                                    | Торіс         | PI                   | University                                         | NASA                                   | Center        |
|----------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|----------------------------------------------------|----------------------------------------|---------------|
| Autonomous Nanosatellite Swarming using Radio Frequency and Optical Navigation                                             | Swarms        | Simone<br>D'Amico    | Stanford                                           | Charles "Scott"<br>Richey              | ARC           |
| SPRINT: Scheduling Planning Routing<br>Intersatellite Network Tool                                                         | Swarms        | Kerri Cahoy          | MIT                                                | Jeremy Frank                           | ARC/<br>GSFC  |
| Application of Machine-learning Algorithms for On-board Asteroid Shape Model Determination and Spacecraft Navigation       | Deep<br>Space | Dante<br>Lauretta    | University of<br>Arizona                           | William Cutlip                         | GSFC          |
| Milli-Arcsecond (MAS) Imaging with<br>Smallsat-Enabled Super-resolution                                                    | Instruments   | Farzad<br>Kamalabadi | University Of<br>Illinois,<br>Urbana-<br>Champaign | Joseph Davila                          | GSFC          |
| Distributed Attitude Control and Maneuvering for Deep Space SmallSats                                                      | Deep<br>Space | Alina<br>Alexeenko   | Purdue<br>University                               | Khary Parker,<br>Andy Heaton<br>(MSFC) | GSFC/<br>MSFC |
| Active Thermal Architecture for Cryogenic Optical Instruments                                                              | Instruments   | Charles<br>Swenson   | Utah State                                         | lan McKinley                           | JPL           |
| High Specific-impulse Electrospray Explorer for Deep-space (HiSPEED)                                                       | Instruments   | Paulo Lozano         | MIT                                                | Swati Mohan                            | JPL           |
| Move to Talk, Talk to Move: Tightly<br>Integrated Communication and Controls for<br>Coordinated Swarms of Small Spacecraft | Swarms        | Qi Han               | Colorado<br>School of<br>Mines                     | Jean-Pierre de<br>la Croix             | JPL           |

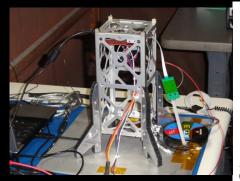
## STP Summary

#### • Investments:

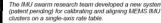

- Over \$20,569,000 awarded
- 8 of 10 NASA Centers partnered
- 24 Universities in 19 states
- 37 partnerships in 4 class years

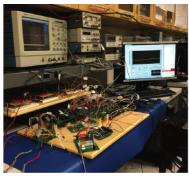
#### • Results:

- 4 New Technology Reports / Patents
- 10 flight demonstrations planned
- 27+ Conference presentations
- 46+ Papers published
- 100+ Students involved
- Many TRLs raised


#### 24 Universities in 19 States

#### 8 NASA Centers





2013 \$6,500,000 17 awards; 13 Y2 option 2015 \$3,590,150 8 awards; 8 Y2 option 2016 \$4,676,693 8 awards; 8 Y2 option 2018 \$5,802,500 8 awards; TBD Y2 option

## **STP Successes**

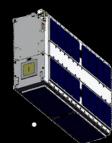








CSUNSat1 Flatsat with Solar Simulator


#### **Goals** Results

- Advanced novel technologies for SmallSats useful to NASA and industry
- Leverage unique talents, fresh perspectives of the university community
- Share NASA experience and expertise in relevant university projects
- Engage NASA personnel in rapid, agile and cost-conscious small spacecraft approaches that characterize university teams
- Foster a new generation of innovators for NASA and the nation.

- ✓ Many patents, licenses, papers, presentations, flight demonstrations, TRLs elevated
- Broad range of novel and innovative technologies developed
- ✓ Students gained hands-on experience; access to NASA test facilities, processes, expertise and launch opportunities; often students work alongside NASA staff
- ✓ NASA benefits from access to broad array of investigations, quick results, validation of low-cost components, and diverse skills and expertise of university teams
- ✓ More than 100 students participated. Students pursue careers in STEM in industry, academia – and at NASA?

## Future of Smallsat Technology Partnerships

- NASA will focus on lunar exploration and beyond
- Deep-space-capable Smallsats will contribute
- SST will continue to engage with universities to accelerate Smallsat capabilities
- Stay tuned to SSTP and NSPIRES



https://www.nasa.gov/directorates/spacetech/small\_spacecraft/index.html https://nspires.nasaprs.com/external