National Aeronautics and Space Administration

Commercial Off-The-Shelf (COTS) Electronics Reliability for Space Applications

Jonathan Pellish

NASA / Goddard Space Flight Center Greenbelt, MD USA

Acronyms

Abbreviation	Definition
CMOS	Complementary Metal Oxide Semiconductor
COTS	Commercial off-the-shelf
FPGA	Field Programmable Gate Array
GOES	Geostationary Operational Environmental Satellite
GSFC	Goddard Space Flight Center
IEEE	Institute of Electrical and Electronics Engineers
ISS	International Space Station
MBMA	Model-Based Mission Assurance
MMS	Magnetospheric MultiScale
NASA	National Aeronautics and Space Administration
NEPP	NASA Electronic Parts and Packaging (Program)
NOAA	National Oceanic and Atmospheric Administration
NSREC	Nuclear and Space Radiation Effects Conference
SOHO	Solar and Heliospheric Observatory
SSR	Solid-State Recorder

Purpose

- Describe the accelerating use of COTS parts in space applications
- Understand component reliability and threats in the context of the mission, environment, application, and lifetime
- Provide overview of traditional approaches applied to <u>COTS parts</u> in flight applications
- Discuss challenges and potential paths forward for <u>COTS systems</u> in flight applications – it's all about data!

Outline

- COTS parts from a space user's perspective
- Accelerating use of COTS parts
- Traditional use of COTS parts in space applications
- Evolving approaches for COTS parts and systems in space applications
- Conclusions

Near-Earth Space Environment

Image credit: NASA Galactic **Cosmic Rays** Trapped Protons & **Solar Protons** Electrons & Heavy lons

Radiation

Servicing limitations

Trajectory / Orbit

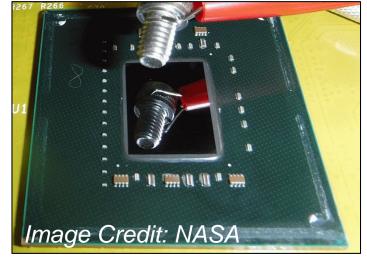
Et cetera

Can induce a variety of cumulative degradation effects as well as soft and hard errors

To be published on nepp.nasa.gov.

Thermal

Vacuum


Launch

Lifetimes

What Are COTS Parts?

Space Users' Perspectives

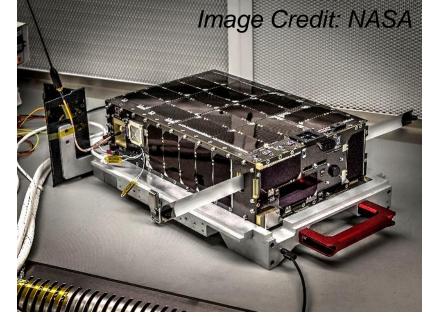
- Parts designed for applications where the specifications, materials, etc. are established solely by the manufacturer / vendor pursuant to market forces
- Parts not explicitly designed for space applications
 - May have additional requirements imposed by users or external organizations
 - Assess product quality (screening) and reliability (qualification)

Xilinx Virtex-7 FPGA prepared for radiation testing

Spacecraft and Payloads Are Still Largely Custom-Built

- Assembly techniques have advanced considerably, however...
- Touch labor and significant testing for validation
- Traditionally, little to no economy of scale

COTS Parts in Space



Artist's rendering of GOES-R Spacecraft

Launched: 19-Nov-2016 Operational as GOES-16

COTS parts

NASA GSFC Dellingr CubeSat

Released to Orbit: 20-Nov-2017

Mostly COTS systems

Accelerating Use of COTS Parts in Space Applications

Secondary payloads (e.g., CubeSats) launched each year, including commercial constellations

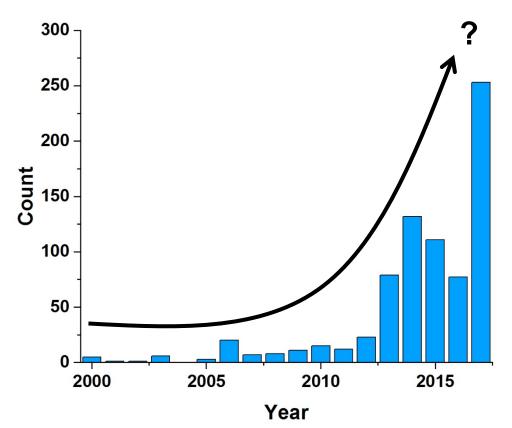
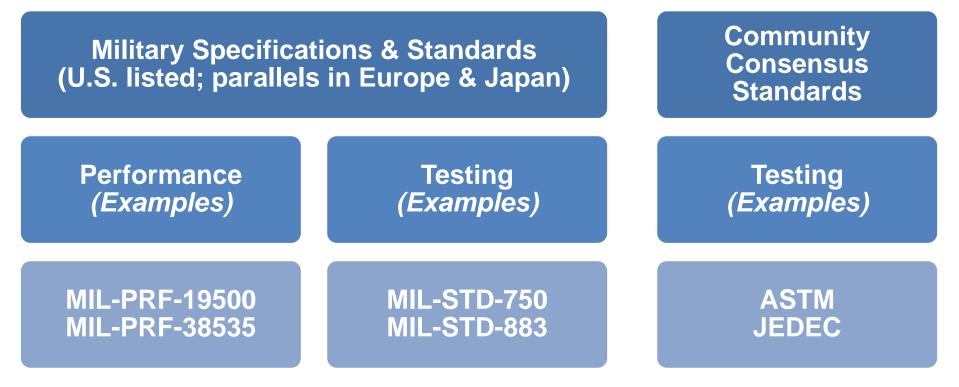



Chart adapted from: M. Swartwout, "Online CubeSat Database," https://sites.google.com/a/slu.edu/swartwout/home/cubesat-database (20-Dec-2017)

Traditional Use of COTS Parts

NASA Users' Perspectives

- Provided detailed and relevant knowledge about the performance and reliability of the actual parts to be flown
- Nearly-closed ecosystem leveraged to maximize reliability

Traditional Use of COTS Parts

NASA Users' Perspectives

- Up until early 1990s, only used COTS parts when there was no Military / Aerospace option to fulfill requirements – or in non-critical applications
- Key performance requirements (*e.g.*, size, weight, power, etc.) drove COTS parts into the mainstream

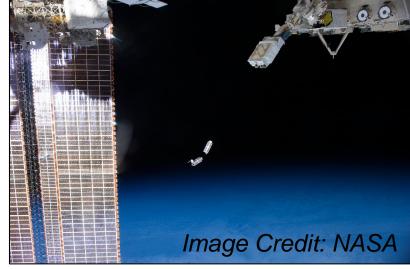
Magnetospheric Multiscale (MMS) observatories processed for launch

Early use of NAND flash in solid state recorder; launched 12-Mar-2015

Traditional Use of COTS Parts

NASA Users' Perspectives

- Upscreening is the classic approach used for deploying COTS electronics in flight systems
 - Perform a series of tests over extended parameters, coupled with application information, to determine if a part can meet a mission's reliability & availability requirements
 - Includes temperature, vacuum, radiation, shock, vibration, etc.


Expert-Friendly

Effective mapping of part-level requirements to mission expectations is essential

Mission Requirements
Part Requirements
Reliability Availability

In many newer systems using COTS parts...

- Schedule is critical
- Budget is limited
- Size, weight, and power are limited
- Performance or availability were likely sole reasons for COTS parts selection
- If not possible to qualify by analysis, that leaves testing, but...

CubeSat launch from ISS

 Higher risk tolerance ≠ lower qualification budget

Adapted from R. Ladbury, IEEE NSREC Short Course, New Orleans, LA, 2017.

Intentional Operational Feedback

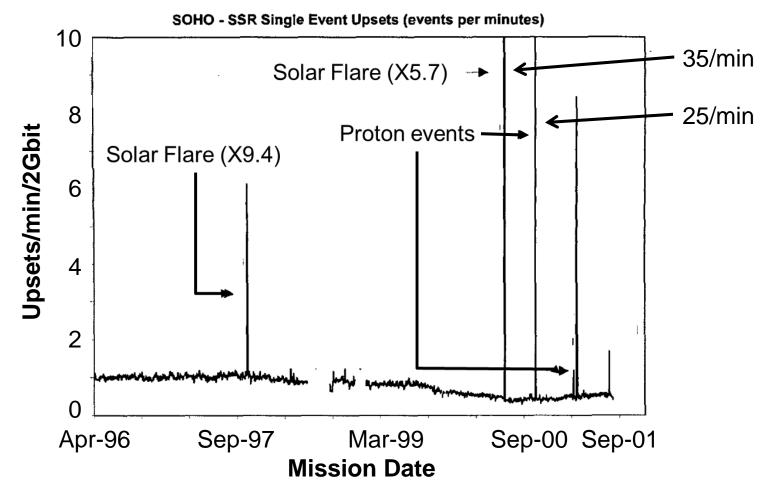
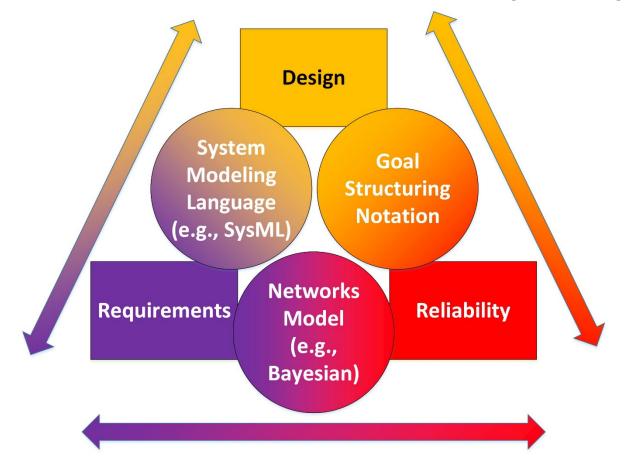



Figure adapted from R. Harboe-Sorensen *et al.*, *RADECS*, 2001. R. Kwasnick *et al.*, *IEEE International Reliability Physics Symposium*, 2017.

Model-Based Mission Assurance (MBMA)

J. Evans *et al.*, *IEEE Reliability and Maintainability Symposium*, 2016. Figure after A. F. Witulski *et al.*, *NEPP Electronics Technology Workshop*, 2017. R. A. Austin *et al.*, *IEEE Reliability and Maintainability Symposium*, 2017.

Cross-Organization Data Sharing

- Advocate for a community-consensus electronic part data exchange standard
- Bootstrap from other implementations (e.g., Health Level-7) can still protect intellectual property
- Aggregate data to avoid being data-starved statistical significance

Conclusions

- Innovation requires an increasing number of COTS-based space applications
- Understanding component reliability and availability requirements in the context of mission expectations remains a key challenge
- Operational telemetry enables us to stumble / fail smart and improve our models
- Sharing and aggregating component data enables more design creativity