
11

(12) United States Patent
Schnase et al.

(54) SYSTEM AND METHOD FOR PROVIDING A
CLIMATE DATA PERSISTENCE SERVICE

(71) Applicant: The United States of America
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, DC (US)

(72) Inventors: John L. Schnase, Laurel, MD (US);
Daniel Q. Duffy, Gambrills, MD (US);
Glenn S. Tamkin, Silver Spring, MD
(US); Mark McInerney, Chevy Chase,
MD (US); Denis Nadeau, Baltimore,
MD (US); John H. Thompson, Fairfax
Station, VA (US); Scott Sinno, Atlanta,
GA (US); Savannah L. Strong,
Stevensville, MD (US); William David
Ripley, I11, Highland, MD (US)

(73) Assignee: The United States of America, as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, DC (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 335 days.

(21) Appl. No.: 14/706,570

(22) Filed: May 7, 2015

(65) Prior Publication Data

US 2016/0328410 Al Nov. 10, 2016

(51) Int. Cl.
G06F 7/00 (2006.01)
G06F 17/00 (2006.01)

(Continued)

(52) U.S. Cl.
CPC G06F 17/30073 (2013.01); G06F 17/3007

(2013.01); G06F 17/30076 (2013.01); G06Q
50126 (2013.01)

(io) Patent No.: US 9,940,329 B2
(45) Date of Patent: Apr. 10, 2018

(58) Field of Classification Search
CPC G06F 17/30073; G06F 17/30076; G06F

17/3007; GO1W 1/00; G06Q 50/26

(Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

5,848,378 A * 12/1998 Shelton G01W 1/10
702/3

6,792,615 131 * 9/2004 Rowe G1113 27/031
348/E5.108

(Continued)

Primary Examiner Md I Uddin

(74) Attorney, Agent, or Firm Christopher O. Edwards;
Bryan A. Geurts; Mark P. Dvorscak

(57) ABSTRACT

A system, method and computer-readable storage devices
for providing a climate data persistence service. A system
configured to provide the service can include a climate data
server that performs data and metadata storage and man-
agement functions for climate data objects, a compute-
storage platform that provides the resources needed to
support a climate data server, provisioning software that
allows climate data server instances to be deployed as virtual
climate data servers in a cloud computing environment, and
a service interface, wherein persistence service capabilities
are invoked by software applications running on a client
device. The climate data objects can be in various formats,
such as International Organization for Standards (ISO) Open
Archival Information System (OAIS) Reference Model Sub-
mission Information Packages, Archive Information Pack-
ages, and Dissemination Information Packages. The climate
data server can enable scalable, federated storage, manage-
ment, discovery, and access, and can be tailored for particu-
lar use cases.

101 PERSISTENCE SERVICE 104

Ne1CDF KIT
INTERFACE

i
i
i
i
i
i

KIT ~i
i
i
i

DATA GRID
i

OS

CDS i
i

VM

COMPUTE—STORAGE
PLATFORM

16 Claims, 7 Drawing Sheets

US 9,940,329 B2
Page 2

(51) Int. Cl.
G06F 17/30 (2006.01)
G06Q 50126 (2012.01)

(58) Field of Classification Search
USPC 707/661, 662, 668; 715/772, 835
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,856,228 132* 12/2010 Lekutai GO 1W 1/02
340/601

2013/0014046 Al * 1/2013 Watts GO1W 1/00
715/772

2015/0046532 Al * 2/2015 Szczytowski G06F 11/3086
709/204

* cited by examiner

U.S. Patent

103

Apr. 10, 2018 Sheet 1 of 7 US 9,940,329 B2

100

10`1 PERSISTENCE SERVICE 104

NetCDF KIT

.

_ KIT

DATA GRID

OS

CDS

Vt!l

COMPUTE—STORAGE
PLATFORM

102

INTERFACE

104.1 104.2

U.S. Patent

200

Apr. 10, 2018 Sheet 2 of 7 US 9,940,329 B2

CLIMATE DATA SERVER

202.1 NetCDF KIT

0

202.2 GeoTIFF KIT

0

0

0

0

202.3 _— KIT

0

201 DATA GRID SW

203 OS

EzG. 2

U.S. Patent Apr. 10, 2018 Sheet 3 of 7

300 ---1 NetCDF KIT

UTILITIES LIBRARY

302

SERVICES LIBRARY
301 INGEST

Put()

QUERY
GetFileNameByAttribute()

DOWNLOAD
Get()
GetFileNameByAttribute()

EXECUTE

AddMetadataByName()
DeleteObject()

STATUS

CheckStatus()

US 9,940,329 B2

U.S. Patent Apr. 10, 2018 Sheet 4 of 7 US 9,940,329 B2

FEDERATED DATA GRID

401 402 403

INTERFACE

I
I
I

O O O IO O O
O O p I
O O p

I
I

opoo I
I
I
I

I
I
I

I
I

YCDS YCDS YCDS I
I
I

VM I

I

COMPUTE-STORAGE PLATFORM

FIG. 4

M

40
3

40
4

10
2

10
4.

1
10
4.
2

50
0

M

ht
tp
:/
/<
ur
l>
/i
ng
es
t.
ph
p?
se
rv
ic
e=
<P
S>
&

re
qu
es
t=
<P
ut
>&

,,
.-
►

ID

pa
ra

me
te

rs
=<

 ..
. >
;

ht
tp

:/
/<

ur
l>

/q
ue

ry
.p

hp
?s

er
vi

ce
=<

PS
>&

re
qu

es
t=

<G
et

Fi
le

Na
me

By
At

tr
ib

ut
e>

&
~,

.-
.

OB
JE
CT
 N

AM
E

pa
ra

me
te

rs
=<

 ..
. >
;

ht
tp

:/
/<

ur
l>

/d
ow

nl
oa

d.
ph

p?
se

rv
ic

e=
<P

S>
&

re
qu

es
t=

<G
et

>&
-•

DA
TA
 O

BJ
EC
T

pa
ra

me
te

rs
=<

 ..
. >
;

U.S. Patent Apr. 10, 2018 Sheet 6 of 7

START

PERFORMING DATA AND METADATA
STORAGE AND MANAGEMENT 602

FUNCTIONS FOR CLIMATE DATA OBJECT

PROVIDING THE RESOURCES NEEDED TO ~ 604
SUPPORT A CLIMATE DATA SERVER

PROVISIONING SOFTWARE THAT ALLOWS
CLIMATE DATA SERVER INSTANCES TO
BE DEPLOYED AS VIRTUAL CLIMATE 606

DATA SERVERS IN A CLOUD COMPUTING
ENVIRONMENT

INVOKING, VIA A SERVICE INTERFACE,
PERSISTENCE SERVICE CAPABILITIES BY

608SOFTWARE APPLICATIONS RUNNING ON
A CLIENT DEVICE

END

US 9,940,329 B2

76
0

S
I
G
-
 7

go
o

sro
rsa

cE
1

DE
VI

CE
1~

73

0
74
0

75
0

MO
D

1
76
2

79
0

IN
PU
T

MO
D
2

76
4

DE
VI

CE

ME
MO
RY

RO
M

RA
NI

MO
D
3

76
6

77
0-
,
O
U
T
P
U
T

~

BU
S

DE
VI

CE

CO
MM
UN
IC
AI
IO
N

78
0

IN
TE

RF
AC

E
71
0

7
2
2
4

CA
CH
E

PR
OC

ES
SO

R
72

0

US 9,940,329 B2

SYSTEM AND METHOD FOR PROVIDING A
CLIMATE DATA PERSISTENCE SERVICE

BACKGROUND

1. Technical Field
The present disclosure relates to climate data services and

more specifically to a particular combination of technologies
that can deliver climate data persistence as a service for large
climate datasets.

2. Introduction
Climate models generate data that are of great value to

society. Climate model outputs include retrospective analy-
ses that model the historical state of the climate, estimates of
current climate conditions, and projections of future climate
conditions. Climate data analytics as a service provides an
approach that makes it easier to access the data and perform
data analyses where the data are stored before moving
reduced, more usable products to the end user for further
study. The current technologies are deficient, however,
because no effective means exists for storing and managing
data products that are dynamically created by climate data
analytic systems. What is needed is an improved approach
that makes it easier to store and manage specialized collec-
tions of climate data and the dynamically created products
produced by climate data analytics.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example persistence service;
FIG. 2 illustrates an example climate data server;
FIG. 3 illustrates an example NetCDF kit;
FIG. 4 illustrates an example data grid including a col-

lection of federated virtual climate data servers;
FIG. 5 illustrates an exemplary use of a persistence

service;
FIG. 6 illustrates an example method embodiment; and
FIG. 7 illustrates an example system embodiment.

DETAILED DESCRIPTION

A system, method and computer-readable storage devices
are disclosed which deliver climate data persistence as a
service. The persistence service (PS) described here is an
example embodiment of a key component of an example
climate data analytics system. Various modifications and
changes may be made to this embodiment without departing
from the broader spirit and scope of the disclosure. In
particular, alternative data storage technologies may be used
as the basis for such a service.

FIG. 1 is a diagram showing the overall organization of
the example persistence service. The service 100 includes a
climate data server (CDS) 101 that performs the data and
metadata storage and management functions of the service,
a compute-storage platform 102 that provides the resources
needed to run the climate data server, virtualization and
provisioning software 103 that allows multiple climate data
server instances to be built as virtual machine images, and
service interface 104 whereby the capabilities of the persis-
tence are made available to client devices.

FIG. 2 is a diagram showing an example climate data
server (CDS) 200. CDS can implement the core function-
ality of the persistence service. The CDS can be a data server
software appliance specialized to the needs of a managed
collection of climate-related scientific data. CDS is designed
to take advantage of the flexible resource allocation capa-
bilities afforded by cloud computing. As described in greater

2
detail below, to allow for ease of collections integration and
support the full information lifecycle requirements of a
scientific archive, CDS should be built around using scalable
data grid technology.

5 The climate data server 200 used by the example persis-
tence service includes the Integrated Rule-Oriented Data
System (iRODS) data grid software 201 running in a SLES
11 SP3 operating system environment 203. Provisioning
software 103 can encapsulate the operating system and

io iRODS in a virtual machine image. Various application-
specific kits 202 are then used to specialize the CDS's
functionality for particular uses. The example CDS has a
Network Common Data Format (NetCDF) kit 202.1, a
GeoTIFF data management kit 202.2, and can include other

15 kits 202.3 with different formats and capabilities. In this
way, the system can provide a virtual climate data server
configured with application-specific kits.
FIG. 3 illustrates an example NetCDF kit 300 that might

be used in an embodiment of the climate data server. The
20 NetCDF kit includes a services library 301 that contains the

methods that implement the core functionality of the service
and a utilities library 302 that provides ancillary methods
that support the service functions. The system can organize
the NetCDF kit's methods to contribute to the integrated

25 analytics-archive management perspective of climate data
analytics as a service. The functional capabilities of the
service can correspond to the Open Archival Information
System (OAIS) Reference Model data flow categories of an
operational archive.

30 An OAIS is an archive associated with an organization of
people and systems that have accepted the responsibility to
preserve information and make that information available
for a designated community. The term OAIS also refers to
the International Standards Organization (ISO) OAIS Ref-

35 erence Model for an OAIS. While the OAIS model typically
refers to space agencies, the OAIS model can be useful in a
wide variety of other organizations and institutions with
digital archiving needs. OAIS provides a framework for the
understanding and increased awareness of archival concepts

4o needed for long-term digital information preservation and
access and provides the concepts needed by non-archival
organizations to be effective participants in the preservation
process.
The OAIS-based capability categories used to organize a

45 persistence service's methods are ingest, query, order, down-
load, execute, and status. "Ingest" methods input objects
into the system, "query" methods retrieve metadata relating
to data objects in the service, "order" methods dynamically
create data objects, and "download" methods retrieve

50 objects from the service. The execute and status categories
have been added to the OAIS functional model to accom-
modate the dynamic nature of a climate data analytics as a
service-type archive. "Execute" methods initiate service-
definable operations that can extend the functionality of a

55 service, and "status" methods check on the progress of
running operations.
In one example embodiment, the NetCDF kit's services

library contains five OAIS categories of capability: ingest,
query, download, execute, and status, which collectively

60 implement the classic "CRUD" operations of an archive:
create, read, update, and delete data objects and metadata
associated with the data objects. In further compliance with
the OAIS Reference Model, the data objects managed by the
NetCDF kit represent OAIS's Submission Information

65 Package, Archive Information Package, and Dissemination
Information Package abstractions. The NetCDF kit can treat
the persistence service's data objects as OAIS packages.

US 9,940,329 B2
3

In one example embodiment, the persistence service
includes or invokes a Put order method that stores a user-
specified payload and returns to the calling application a
session identifier, a one word status update, and a detailed
description of the session. A GetFileNameByAttribute query
method can perform a metadata search operation on the data
objects stored in the service according to user-specified
parameters. The service can include two download capabili-
ties: a Get method to download a previously ingested data
object according to user-specified parameters, and a Get-
FileNameByAttribute method to query for a data object
name according to user-specified parameters. In both cases,
the user-specified parameters include a file name for a data
object to be operated upon, a target destination path for an
output data object, and an optional overwrite specification
that stipulates whether the downloaded object destructively
writes over a previously downloaded version of the object.
An AddMetaDataByName execute method can add meta-

data to a stored data object according to user-specified
parameters including a file name for the target data object,
a name specification for the metadata key to be associated
with the target data object, a corresponding value for the key,
and an optional unit specification. Outputs from the opera-
tion can include a unique session ID, a one word status
message, and a detailed description of the session. A second
execute capability, a DeleteObject method, can remove a
stored data object for the service and returns a status
message. Finally, a CheckStatus status method can check on
the progress of service request based on an input session ID
and return a status update message. User-specified param-
eters of the DeleteObject method can include a file name for
the target data object and output can be a status update.

In one example embodiment, the NetCDF kit's utilities
library contains methods that enable the persistence service
to manage metadata in accordance with the OAIS Reference
Model's metadata taxonomy, which recognizes four catego-
ries of metadata: Representation Information, Preservation
Description Information, Policy Information, and Discov-
ered Metadata. Specifically, the NetCDF kit's utilities
library can contain a method that extracts the Representa-
tional Information and Preservation Description Information
embedded in the self-describing NetCDF files and stores that
information as a set of internal iRODS database tables
managed by method libraries. This externalized metadata
can facilitate discovery, and enable clients to perform
searches over the NetCDF data objects stored in the persis-
tence service without opening files to access embedded
metadata. The utilities library can also contain a method that
logs object-level actions, thereby enabling low-level system
performance monitoring and optimization.

FIG. 4 illustrates an example federated data grid 400
including a collection of federated virtual climate data
servers (vCDS) 401, 402, 403. In this example, the persis-
tence service includes an RPM Package Manager script for
automatically building and installing instances of the climate
data server software stack in various cloud computing
environments. vCDSs provisioned in the cloud in this way
can enable data access as Software-as-a-Service (SaaS).
Further, because of iRODS's data grid capabilities, multiple
vCDS instances can be federated to create cooperating
assemblages of collections tailored to a specific need or task.
In this way, the example federated data grid enables rapid
and agile deployment of persistence service capabilities, and
can be an important component of climate analytics as a
service, because analytic services dynamically create new
data objects and new, highly specialized collections.

4
Finally, the persistence service has a service interface 104

that exposes the capabilities of the service to external users
and applications. The interface 104 has two components: an
adapter module 104.1 that maps an incoming service request

5 to the appropriate method and invokes the method and a
representational state transfer (REST) module 104.2 that
implements a RESTful web server that external applications
can access over a network. In one example embodiment, the
RESTful interface 104.2 is implemented as a PHP program.

io The communications protocol implemented by the RESTful
service can also be based on the OAIS Reference Model's
data flow categories.
FIG. 5 illustrates the basic patterns of interaction 500

among the components of the persistence service. In an
15 example storage request, a user or application would submit

a RESTful ingest service request 400 along with a pointer to
the data object to be stored. The service interface 104 maps
the incoming service request to the appropriate method 405,
in this case the NetCDF kit's Put method 301, which would

20 store the object in iRODS's storage system 403, 404 and
return a session identifier 406 through the interface to the
calling application. Subsequent query, execute, and down-
load service requests would operate similarly.

Having disclosed some basic system components and
25 concepts, the disclosure now turns to the exemplary method

embodiment shown in FIG. 6. For the sake of clarity, the
method is described in terms of an exemplary system 500 as
shown in FIG. 5 configured to practice the method. The steps
outlined herein are exemplary and can be implemented in

so any combination thereof, including combinations that
exclude, add, or modify certain steps.
A system 100 configured according to this disclosure can

provide a climate data persistence service. The data persis-
tence service can include a climate data server that performs

35 data and metadata storage and management functions for
climate data objects (602). The climate data objects can be
International Organization for Standards (ISO) Open Archi-
val Information System (OAIS) Reference Model Submis-
sion Information Packages, Archive Information Packages,

4o and Dissemination Information Packages.
The data persistence service can include a compute-

storage platform that provides the resources needed to
support a climate data server (604). The data persistence
service can further include provisioning software that allows

45 climate data server instances to be deployed as virtual
climate data servers in a cloud computing environment
(606). The data persistence service can include a service
interface, wherein persistence service capabilities are
invoked by software applications running on a client device

50 (608).
The data persistence service can further include data grid

software that enables scalable, federated storage, manage-
ment, discovery, and access, one or more application- spe-
cific kits that tailor the climate data server to particular uses

55 and to particular file formats, and an operating system, such
as SUSE Linux Enterprise Server, that enables the climate
data server to run on the compute-storage platform. The data
grid software can be an open source enterprise-ready distri-
bution of the Integrated Rule-Oriented Data System Version

60 4.0 data management system. An application-specific kit can
be a Network Common Data Format kit. The Network
Common Data Format kit can include a services library,
wherein a set of software applications implements the capa-
bilities of the service, and a utilities library. The set of

65 software applications can implement the support functions
of the service. The services and utilities libraries can be, for
example, Python classes.

US 9,940,329 B2
5

The utilities library described above can include a func-
tion that extracts the embedded metadata in Network Com-
mon Data Format files and stores and manages the metadata
separate from the stored data objects, a function that builds,
populates, and manages the internal database tables of the
data grid software according to International Organization
for Standard Open Archival Information System Reference
Model metadata categories of Representation Information,
Preservation Description Information, Policy Information,
and Discovered Metadata, and a function that logs object-
level actions within the data grid software. In the services
library, the functions that implement the capabilities of the
service can correspond to International Organization for
Standards Open Archival information System Reference
Model data flow categories of an operational archive includ-
ing various capabilities. The capabilities can include ingest
capabilities that input data objects to the service, query
capabilities that retrieve metadata relating to data objects in
the service, order capabilities that dynamically creates data
objects in the service, download capabilities that retrieve
data objects from a service, execute capabilities that initiate
service-definable operations, and status capabilities that
check the progress of an order operation.
The ingest capability can include a Put method that stores

a user-specified input payload in the persistence service.
Output of the Put method can include a unique session
identifier for the ingest session, a one word status update,
and a detailed description of the session. The query capa-
bility can include or invoke a GetFileNameByAttribute
method that performs a metadata search operation on the
data objects stored in the persistence service according to
user-specified selection parameters. Output of the GetFile-
NameByAttribute method can include data object names
that have metadata attributes that match user-specified selec-
tion parameters.
The download capability can include a Get method that

downloads a previously ingested data object according to
user-specified parameters, and a GetFileNameByAttribute
method that queries for a data object name according to
user-specified parameters. The user-specified parameters
can include a file name for a data object to be operated upon,
a target destination path for an output data object, and an
optional overwrite specification. The output of the Get and
GetFileNameByAttribute methods can include the selected
data object. The execute capability can include anAddMeta-
DataByName method that adds metadata to a data object
stored in the persistence service according to user-specified
parameters, and a DeleteObject method that removes a data
object from the persistence service according to user-speci-
lied parameters. The user-specified parameters of AddMeta-
DataByName can include a file name for the target data
object, a name specification for the metadata key to be
associated with the target data object, a value to be associ-
ated with the specified key, and an optional unit specifica-
tion. Outputs of the AddMetaDataByName method can
include a unique session identifier for the execute session, a
one word status update, and a detailed description of the
session. The user-specified parameters of the DeleteObject
method can include a file name for the target data object and
output includes of status update.
The status capability can include a CheckStatus method

that checks on the progress of a service request according to
user-specified input parameters of a unique session identifier
for the target service request. The output of the CheckStatus
method can include a unique session identifier for the status
session, a one word status update of the session identified by
the input session identifier, and a detailed description of the

T
target session. The various capabilities can collectively
implement the classic create, read, update, and delete opera-
tions of an operational archive. The provisioning software
can be RPM Package Manager scripts that build instances of

5 the climate data server software stack in a cloud computing
environment.
The services interface can include an adapter module that

maps service requests from external client software appli-
cations to specific capabilities of the persistence service, and

io a representational state transfer server module that commu-
nicatively links the persistence service to external client
software applications. The adapter module can include a
service request-capability mapping based on the Interna-
tional Organization for Standards Archival Information Sys-

15 tem Reference Model data flow categories. In the represen-
tational state transfer module, the persistence service
communicates to external client software applications
through International Organization for Standards Open
Archival Information System Reference Model-based uni-

20 form resource locators including an ingest endpoint of the
general form http://<base URL>/ingest.php?service=
<service_name>&request=<operation>¶meters=
<parameters>, a query endpoint of the general form http://
<base URL>/query.php?service=<service_name>&

25 request=<operation>¶meters=<parameters>, an order
endpoint of the general form http://<base URL>/order.
php? service=<service_name>&request=<operation>
¶meters=<parameters>, a download endpoint of the
general form http://<base URL>/download.php?service=

30 <service_name>&request=<operation>¶meters=
<parameters>, an execute endpoint of the general form
http://<base URL>/execute.php?service=<service_name>&
request=<operation>¶meters=<parameters>, and a sta-
tus endpoint of the general form http://<base URL>/

35 status.php?service=<service_name>&request=
<operation>¶meters=<parameters>. The services inter-
face can be implemented as a PHP program.

Various embodiments of the disclosure are described in
detail below. While specific implementations are described,

40 it should be understood that this is done for illustration
purposes only. Other components and configurations may be
used without parting from the spirit and scope of the
disclosure.

With reference to FIG. 7, an exemplary system and/or
45 computing device 700 includes a processing unit (CPU or

processor) 720 and a system bus 710 that couples various
system components including the system memory 730 such
as read only memory (ROM) 740 and random access
memory (RAM) 750 to the processor 720. The system 700

50 can include a cache 722 of high-speed memory connected
directly with, in close proximity to, or integrated as part of
the processor 720. The system 700 copies data from the
memory 730 and/or the storage device 760 to the cache 722
for quick access by the processor 720. In this way, the cache

55 provides a performance boost that avoids processor 720
delays while waiting for data. These and other modules can
control or be configured to control the processor 720 to
perform various operations or actions. Other system
memory 730 may be available for use as well. The memory

6o 730 can include multiple different types of memory with
different performance characteristics. It can be appreciated
that the disclosure may operate on a computing device 700
with more than one processor 720 or on a group or cluster
of computing devices networked together to provide greater

65 processing capability. The processor 720 can include any
general purpose processor and a hardware module or soft-
ware module, such as module 1 762, module 2 764, and

US 9,940,329 B2
7

module 3 766 stored in storage device 760, configured to
control the processor 720 as well as a special-purpose
processor where software instructions are incorporated into
the processor. The processor 720 may be a self-contained
computing system, containing multiple cores or processors,
a bus, memory controller, cache, etc. A multi-core processor
may be symmetric or asymmetric. The processor 720 can
include multiple processors, such as a system having mul-
tiple, physically separate processors in different sockets, or
a system having multiple processor cores on a single physi-
cal chip. Similarly, the processor 720 can include multiple
distributed processors located in multiple separate comput-
ing devices, but working together such as via a communi-
cations network. Multiple processors or processor cores can
share resources such as memory 730 or the cache 722, or can
operate using independent resources. The processor 720 can
include one or more of a state machine, an application
specific integrated circuit (ASIC), or a programmable gate
array (PGA) including a field PGA.
The system bus 710 may be any of several types of bus

structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. A basic input/output (BIOS) stored in ROM
740 or the like, may provide the basic routine that helps to
transfer information between elements within the computing
device 700, such as during start-up. The computing device
700 further includes storage devices 760 or computer-
readable storage media such as a hard disk drive, a magnetic
disk drive, an optical disk drive, tape drive, solid-state drive,
RAM drive, removable storage devices, a redundant array of
inexpensive disks (RAID), hybrid storage device, or the like.
The storage device 760 can include software modules 762,
764, 766 for controlling the processor 720. The system 700
can include other hardware or software modules. The stor-
age device 760 is connected to the system bus 710 by a drive
interface. The drives and the associated computer-readable
storage devices provide nonvolatile storage of computer-
readable instructions, data structures, program modules and
other data for the computing device 700. In one aspect, a
hardware module that performs a particular function
includes the software component stored in a tangible com-
puter-readable storage device in connection with the neces-
sary hardware components, such as the processor 720, bus
710, display 770, and so forth, to carry out a particular
function. In another aspect, the system can use a processor
and computer-readable storage device to store instructions
which, when executed by the processor, cause the processor
to perform operations, a method or other specific actions.
The basic components and appropriate variations can be
modified depending on the type of device, such as whether
the device 700 is a small, handheld computing device, a
desktop computer, or a computer server. When the processor
720 executes instructions to perform "operations", the pro-
cessor 720 can perform the operations directly and/or facili-
tate, direct, or cooperate with another device or component
to perform the operations.

Although the exemplary embodiment(s) described herein
employs the hard disk 760, other types of computer-readable
storage devices which can store data that are accessible by
a computer, such as magnetic cassettes, flash memory cards,
digital versatile disks (DVDs), cartridges, random access
memories (RAMS) 750, read only memory (ROM) 740, a
cable containing a bit stream and the like, may also be used
in the exemplary operating environment. Tangible com-
puter-readable storage media, computer-readable storage
devices, or computer-readable memory devices, expressly

8
exclude media such as transitory waves, energy, carrier
signals, electromagnetic waves, and signals per se.
To enable user interaction with the computing device 700,

an input device 790 represents any number of input mecha-
5 nisms, such as a microphone for speech, a touch-sensitive

screen for gesture or graphical input, keyboard, mouse,
motion input, speech and so forth. An output device 770 can
also be one or more of a number of output mechanisms
known to those of skill in the art. In some instances,

io multimodal systems enable a user to provide multiple types
of input to communicate with the computing device 700.
The communications interface 780 generally governs and
manages the user input and system output. There is no
restriction on operating on any particular hardware arrange-

15 ment and therefore the basic hardware depicted may easily
be substituted for improved hardware or firmware arrange-
ments as they are developed.
For clarity of explanation, the illustrative system embodi-

ment is presented as including individual functional blocks
20 including functional blocks labeled as a "processor" or

processor 720. The functions these blocks represent may be
provided through the use of either shared or dedicated
hardware, including, but not limited to, hardware capable of
executing software and hardware, such as a processor 720,

25 that is purpose-built to operate as an equivalent to software
executing on a general purpose processor. For example the
functions of one or more processors presented in FIG. 7 may
be provided by a single shared processor or multiple pro-
cessors. (Use of the term "processor" should not be con-

30 strued to refer exclusively to hardware capable of executing
software.) Illustrative embodiments may include micropro-
cessor and/or digital signal processor (DSP) hardware, read-
only memory (ROM) 740 for storing software performing
the operations described below, and random access memory

35 (RAM) 750 for storing results. Very large scale integration
(VLSI) hardware embodiments, as well as custom VLSI
circuitry in combination with a general purpose DSP circuit,
may also be provided.
The logical operations of the various embodiments are

40 implemented as: (1) a sequence of computer implemented
steps, operations, or procedures running on a programmable
circuit within a general use computer, (2) a sequence of
computer implemented steps, operations, or procedures run-
ning on a specific-use programmable circuit; and/or (3)

45 interconnected machine modules or program engines within
the programmable circuits. The system 700 shown in FIG. 7
can practice all or part of the recited methods, can be a part
of the recited systems, and/or can operate according to
instructions in the recited tangible computer-readable stor-

5o age devices. Such logical operations can be implemented as
modules configured to control the processor 720 to perform
particular functions according to the programming of the
module. For example, FIG. 7 illustrates three modules Modl
762, Mod2 764 and Mod3 766 which are modules config-

55 ured to control the processor 720. These modules may be
stored on the storage device 760 and loaded into RAM 750
or memory 730 at runtime or may be stored in other
computer-readable memory locations.
One or more parts of the example computing device 700,

60 up to and including the entire computing device 700, can be
virtualized. For example, a virtual processor can be a
software object that executes according to a particular
instruction set, even when a physical processor of the same
type as the virtual processor is unavailable. A virtualization

65 layer or a virtual "host' can enable virtualized components
of one or more different computing devices or device types
by translating virtualized operations to actual operations.

US 9,940,329 B2
9

Ultimately however, virtualized hardware of every type is
implemented or executed by some underlying physical hard-
ware. Thus, a virtualization compute layer can operate on
top of a physical compute layer. The virtualization compute
layer can include one or more of a virtual machine, an
overlay network, a hypervisor, virtual switching, and any
other virtualization application.
The processor 720 can include all types of processors

disclosed herein, including a virtual processor. However,
when referring to a virtual processor, the processor 720
includes the software components associated with executing
the virtual processor in a virtualization layer and underlying
hardware necessary to execute the virtualization layer. The
system 700 can include a physical or virtual processor 720
that receive instructions stored in a computer-readable stor-
age device, which cause the processor 720 to perform certain
operations. When referring to a virtual processor 720, the
system also includes the underlying physical hardware
executing the virtual processor 720.
Embodiments within the scope of the present disclosure

may also include tangible and/or non-transitory computer-
readable storage devices for carrying or having computer-
executable instructions or data structures stored thereon.
Such tangible computer-readable storage devices can be any
available device that can be accessed by a general purpose
or special purpose computer, including the functional design
of any special purpose processor as described above. By way
of example, and not limitation, such tangible computer-
readable devices can include RAM, ROM, EEPROM, CD-
ROM or other optical disk storage, magnetic disk storage or
other magnetic storage devices, or any other device which
can be used to carry or store desired program code in the
form of computer-executable instructions, data structures, or
processor chip design. When information or instructions are
provided via a network or another communications connec-
tion (either hardwired, wireless, or combination thereof) to
a computer, the computer properly views the connection as
a computer-readable medium. Thus, any such connection is
properly termed a computer-readable medium. Combina-
tions of the above should also be included within the scope
of the computer-readable storage devices.

Computer-executable instructions include, for example,
instructions and data which cause a general purpose com-
puter, special purpose computer, or special purpose process-
ing device to perform a certain function or group of func-
tions. Computer-executable instructions also include
program modules that are executed by computers in stand-
alone or network environments. Generally, program mod-
ules include routines, programs, components, data struc-
tures, objects, and the functions inherent in the design of
special-purpose processors, etc. that perform particular tasks
or implement particular abstract data types. Computer-ex-
ecutable instructions, associated data structures, and pro-
gram modules represent examples of the program code
means for executing steps of the methods disclosed herein.
The particular sequence of such executable instructions or
associated data structures represents examples of corre-
sponding acts for implementing the functions described in
such steps.

Other embodiments of the disclosure may be practiced in
network computing environments with many types of com-
puter system configurations, including personal computers,
hand-held devices, multi-processor systems, microproces-
sor-based or programmable consumer electronics, network
PCs, minicomputers, mainframe computers, and the like.
Embodiments may also be practiced in distributed comput-
ing environments where tasks are performed by local and

10
remote processing devices that are linked (either by hard-
wired links, wireless links, or by a combination thereof)
through a communications network. In a distributed com-
puting environment, program modules may be located in

5 both local and remote memory storage devices.
The various embodiments described above are provided

by way of illustration only and should not be construed to
limit the scope of the disclosure. For example, the principles
herein apply generally to climate data, but can also apply to

l0 other non-climate data sets. Various modifications and
changes may be made to the principles described herein
without following the example embodiments and applica-
tions illustrated and described herein, and without departing

15 from the spirit and scope of the disclosure. Claim language
reciting "at least one of a set indicates that one member of
the set or multiple members of the set satisfy the claim.

We claim:
20 1. A system for providing a climate data persistence

service,
the system comprising:
a climate data server that performs data and metadata

storage and management functions for climate data
25 objects;

a compute-storage platform that provides a number of
resources needed to support a climate data server;

provisioning software that allows climate data server
instances to be deployed as virtual climate data servers

30 in a cloud computing environment; and
a service interface, wherein persistence service capabili-

ties are invoked by software applications running on a
client device;

wherein the climate data server further comprises:
35 a computer-readable storage device having stored therein

data grid software which, when executed by a proces-
sor, causes the processor to enable scalable, federated
storage, management, discovery, and access;

one or more application-specific kits that tailor the climate
40 data server to particular uses and to particular file

formats; wherein at least one of the one or more
application-specific kits comprises a Network Common
Data Format kit; wherein the Network Common Data
Format kit comprises:

45 a services library, wherein a plurality of software appli-
cations implement the capabilities of the service; and

a utilities library, wherein a plurality of software appli-
cations implement the support functions of the service;
wherein the utilities library further comprises:

50 a first function that extracts the embedded metadata in
Network Common Data Format files and stores and
manages the metadata separate from the stored data
obj ects;

a second function that builds, populates, and manages the
55 internal database tables of data grid software according

to International Organization for Standards Open
Archival Information System Reference Model meta-
data categories of Representation Information, Preser-
vation Description Information, Policy Information,

60 and Discovered Metadata; and
a third function that logs object-level actions within the

data grid software; and
an operating system that enables the climate data server to

run on the compute-storage platform.
65 2. The system of claim 1, wherein the climate data objects

represent at least one of International Organization for
Standards (ISO) Open Archival Information System (OAIS)

US 9,940,329 B2
11

Reference Model Submission Information Packages,
Archive Information Packages, and Dissemination Informa-
tion Packages.

3. The system of claim 1, wherein the data grid software
comprises an open source enterprise-ready distribution of
the Integrated Rule-Oriented Data System Version 4.0 data
management system.

4. The system of claim 1, wherein the operating system is
SLES 11, SP 3.

5. The system of claim 1, wherein the services library and
the utilities library comprise Python classes.

6. The system of claim 1, wherein the services library
comprises methods that implement capabilities of the ser-
vice that correspond to the International Organization for
Standards Open Archival information System Reference
Model data flow categories of an operational archive com-
prising:

ingest capabilities that input data objects to the service;
query capabilities that retrieve metadata relating to data

objects in the service;
order capabilities that dynamically create data objects in

the service;
download capabilities that retrieve data objects from a

service;
execute capabilities that initiate service-definable opera-

tions; and
status capabilities that check on the progress of an order

operation.
7. The system of claim 6, wherein the ingest capabilities

further comprise a Put method that stores a user-specified
input payload in the persistence service.

8. The system of claim 7, wherein outputs from the Put
method comprise a unique session identifier for an ingest
session, a one word status update, and a detailed description
of the ingest session.

9. The system of claim 6, wherein the query capabilities
further comprise a GetFileNameByAttribute method that
performs a metadata search operation on the data objects
stored in the persistence service according to user-specified
selection parameters.

12
10. The system of claim 9, wherein output of the Get-

FileNameByAttribute method comprises data object names
that have metadata attributes that match user-specified selec-
tion parameters.

5 11. The system of claim 6, wherein the download capa-
bilities further comprise:

a Get method that downloads a previously ingested data
object according to user-specified parameters; and

a GetFileNameByAttribute method that queries for a data
10 object name according to user-specified parameters.

12. The system of claim 11, wherein the user-specified
parameters comprise:

a file name for a data object to be operated upon;
15 a target destination path for an output data object; and

an optional overwrite specification.
13. The system of claim 11, wherein output of the Get

method and the GetFileNameByAttribute method comprises
a selected data object.

20 14. The system of claim 6, wherein the execute capabili-
ties further comprise:
an AddMetaDataByName method that adds metadata to a

data object stored in the persistence service according
to user-specified parameters; and

25 a DeleteObject method that removes a data object from
the persistence service according to user-specified
parameters.

15. The system of claim 14, wherein the user-specified
parameters of the AddMetaDataByName method comprise:

30 a file name for the target data object;
a name specification for the metadata key to be associated

with the target data object;
a value to be associated with the specified key; and
an optional unit specification.

35 16. The system of claim 14, wherein output of the
AddMetaDataByName method comprises a unique session
identifier for the execute session, a one word status update,
and a detailed description of the session.

	9940329-p0001.pdf
	9940329-p0002.pdf
	9940329-p0003.pdf
	9940329-p0004.pdf
	9940329-p0005.pdf
	9940329-p0006.pdf
	9940329-p0007.pdf
	9940329-p0008.pdf
	9940329-p0009.pdf
	9940329-p0010.pdf
	9940329-p0011.pdf
	9940329-p0012.pdf
	9940329-p0013.pdf
	9940329-p0014.pdf
	9940329-p0015.pdf

