Contingency Management with Human Autonomy Teaming

HAT Lab Presentation to the Emergent Aircraft Systems and the Dispatcher Workshop March 14, 2018

Contingency Management

- Operations in the NAS are becoming increasingly automated
 - Flight planning software for dispatch
 - Flight management systems, and autoland for pilots
 - Conflict detection, spacing tools for ATC
 - Proposals for UTM and UAM are highly automated
- However, for the foreseeable future, none of these jobs can be fully automated
 - "No matter how powerful it [the AI] is, we always find a case where the car will be stuck." – Carlos Ghosn, Chairman and (then) CEO of Nissan
 - Humans need to oversee critical decisions
 - Human needs to be brought into the loop when automation comes close to its boundaries
- ⇒ Contingency Management
 - Operator steps in to handle contingencies

Who Monitors the Automation?

Problem 1: If people are monitoring, it will take a lot of them Problem 2: People are very bad at monitoring for rare Frequency events (vigilance) Solution: Automation can detect slightly elevated risks

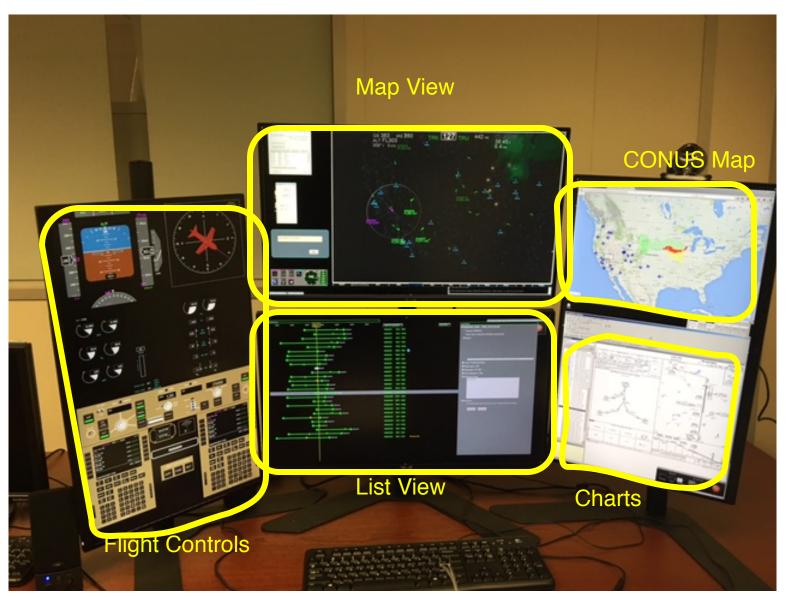
-Nominal

-Off-Nominal

Perceived/Calculated Risk

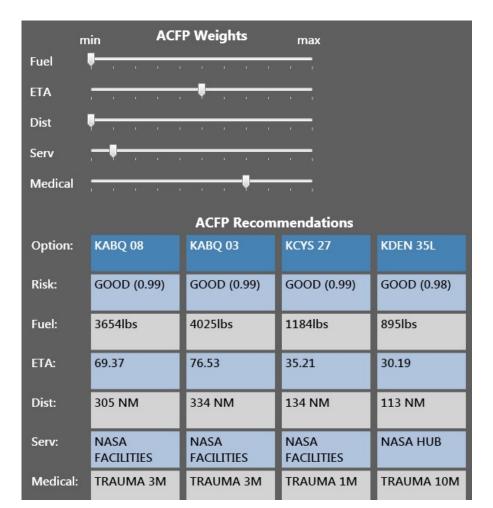
Human Autonomy Teaming (HAT)

- Traditionally automation is handed a set of tasks to do on its own
- With HAT, the automation and operator work together on tasks
- Example:
 - Currently a dispatcher will get a flight plan from the automation and modify it, with no feedback from automation about why it did what it did
 - With HAT operator and human interact. E.g., the automation might point out inefficiencies in the modified flight plan; the operator might request fewer waypoints


Key HAT Concepts

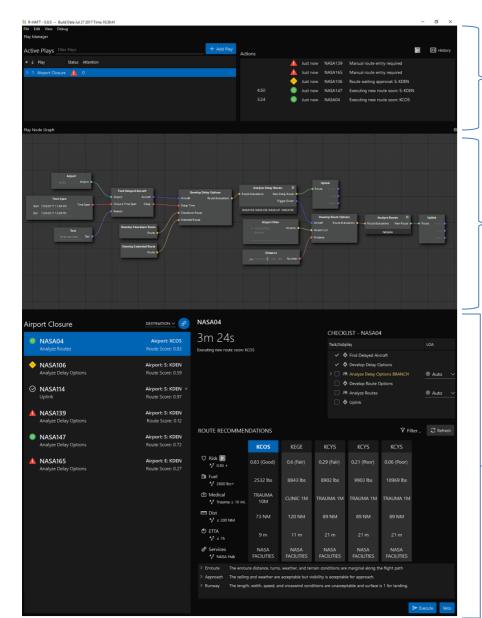
- Bi-directional Communications
 - Procedures and interfaces for gathering and integrating information
 - Crew Resource Management (CRM) for automation
- Working Agreements/Plays
 - Procedures and roles and responsibilities for specific situations
 - Standard Operating Procedures (SOPs)
 - Roles and responsibilities can shift based on factors such as workload

HAT and Contingency Management in a Flight Following Context


- Ground support of pilots under reduced crew operations
 - Looking primarily at flight following/re-routing
 - ConOps: automation does more flight planning; dispatchers aided by automation and real time information do more tactical decisionmaking
- Alerted pilots when
 - They go off path or fail to comply with clearances
 - Significant weather events affect their trajectory
 - They fail to act on EICAS alerts
- Rerouted aircraft when:
 - Weather impacts their route
 - System failures or medical events force diversions

Ground Station Layout

Bi-directional Communication


A recommender system shows divert reasoning and factor weights. Operator can alter weights and request ratings for other airports.

HAT Concept Feedback

- Table
 - Participants liked having the table (rated 8.33 out of 9).
 - They felt the table was helpful in making divert decisions (rated 7.67 out of 9)
 - "This [the table] is wonderful.... You would not find a dispatcher who would just be comfortable with making a decision without knowing why."
- Weights
 - Participants liked having the weights (rated 8.33 out of 9)
 - They felt they were useful in making divert decisions (rated 8.33 out of 9)
 - And that they improved the automation's ability to handle unusual situations (rated 7.83 out of 9)
 - "The sliders was [sic] awesome, especially because you can customize the route.... I am able to see what the difference was between my decision and [the computer's decision]."

Plays/Working Agreements

Play Manager

- See all active plays
- View actions requiring operator input
- View actions that have been performed
- Invoke Play Selector to configure and launch new play

Play Node Graph

- Visual representation of a play's structure
- Modify ALTA and override LOAs
- Displays progress of play

Recommendation Panel

- Lists ac involved in play and status
- Provides recommendation table with transparency information
- Shows selected ac's working agreement with dynamic checklist
- Used to execute recommendations
- Can be used to constrain LOA determinations

Working Agreements: Automation Level-Based Task Allocation (ALTA)

- A model to achieve contextually aware dynamic LOA determinations
- After a problem has been detected or handed to the agent, the agent will conduct an Evaluation Phase
 - Agent requests potential solutions from automated recommender
 - Evaluates on multiple dimensions (e.g., risk, flight delay, fuel)
 - Takes into account user-defined thresholds for each dimension's LOA
 - Sorts solutions by highest LOA first, then user-identified primary criterion

ALTA Action Phase

Working agreements specify, based on predetermined factors, which of the following the automation will do:

- Auto: autonomously executes and informs operator
- Veto: presents solutions one of which will be autonomously executed unless the operator intervenes
- Select: presents multiple options for operator selection
- Manual: task to be performed by operator

Aircraft List	Callsign 🗸 🤪
⊘ NASA114	New route executed Route rating : Excellent
NASA147	Executing new route in 1m 58s Route rating : Good
🔶 NASA166	Route waiting approval Route rating : Acceptable
A NASA167	Manual route entry required Route rating : Unacceptable
NASA170	Calculating recommendations

Route Recommendations

Recommended									
	KRNO(16R)	KSJC(12R)	KSMF(16L)	KSMF(16R)	KLAS(25L)	KONT(08L)	KLAS(25R)		
♥ Risk *2 0.950 +	0.990 (Acceptable)	0.990 (Acceptable)	0.990 (Acceptable)	0.990 (Acceptable)	0.990 (Acceptable)	0.980 (Acceptable)	0.990 (Acceptable)		
By Fuel ▲ 12000 lbs+	<u>7944 lbs</u>	7526 lbs	6675 lbs	6660 lbs	5005 lbs	4637 lbs	4492 lbs		
🔁 Medical ^ूर्य Inactive	Trauma 3 M	Trauma 6 M	Trauma 10 M	Trauma 10 M	Trauma 3 M	Hospital 1 M	Trauma 3 M		
→ Dist AC-APT *2 ≤ 300 NM	51 NM	233 NM	163 NM	163 NM	321 NM	397 NM	321 NM		
ETTA P ⁴ √ ≤ 1h 30m	26m	1h 10m	48m	49m	1h 10m	1h 14m	1h 21m		
Path Stretch *2 ≤ 400 NM	-809 NM	-633 NM	-665 NM	-664 NM	-550 NM	-523 NM	-505 NM		
☆ Facilities か Nasa Hub	Nasa Facilities	Nasa Facilities	Nasa Facilities	Nasa Facilities	Nasa Hub	Nasa Facilities	Nasa Hub		

Working Agreements: A Path to Full Autonomy

- Over time automation improves
 - Fewer "risky" situations occur
 - Therefore situations detected requiring operator intervention
- Over time reliability of automation better understood
 - Margin of error can be reduced
 - Therefore fewer situations where operators need to step in to verify safety