

+---

AUVSI XPONENTIAL 30 April 2018

Jak Linkel & Russell Wolfe Modern Technology Soluti<u>ons, Inc.</u>

 This study is being performed on behalf of the NASA Aeronautics Research Mission Directorate (ARMD). The team assembled to conduct this effort includes various representatives from government and industry; National Aeronautics and Space Administration (NASA), Modern Technology Solutions, Inc. (MTSI), and Aerospace Corporation.

Purpose / Scope / Assumptions

<u>Purpose</u>

 To develop an analytical tool designed to calculate projections for the demand and economic benefit from operating civil and commercial unmanned aircraft systems (UAS) within the National Airspace System (NAS).

<u>Scope</u>

- Region: US-based Markets only
- Airspace: All Airspace Classes
- *Use Cases*: Commercial and civil (excludes military and hobbyist)
- **Duration**: Projections should look out far enough to observe forecast stabilization

Assumptions

- Federal, State and local authorities won't establish unfriendly laws preventing the adoption of UAS (assumes Federal Pre-emption)
- The FAA will continue to move forward with UAS Policy / Regulation implementation
- Standards Development Organizations will create the necessary standards needed to certify UAS airspace integration enabling technologies

Study Approach & Timeline

UAS demand forecast accuracy is highly dependent on the ability to receive quality inputs from the <u>entire</u> UAS community to include: government, industry and broad commercial-user interest groups.

Research & Analytical Framework

Objective: To gain an appreciation for the vast array of UAS business cases and key drivers that will impact demand and market adoption.

Approach:

- Conduct Literature Search
- Review previous UAS Forecasts
- Interview Gov't and Industry Stakeholders

Results / Benefits:

- Most likely UAS business cases identified
- Key drivers impacting adoption timeframe (e.g. Public Acceptance, Technology Maturity, Levels of Automation, Regulatory Timeframe)
- How to handle different UAS CONOPs (e.g. multi-day missions vs dozens of flights per day)
- Best Analytical Framework for study defined
- Best metrics used to quantify UAS demand & economic benefit

Category		Definition	
ls*	Privately Owned	General Aviation Aircraft owned and operated by individuals or corporations (e.g. Cessna, Piper Cub, Learjet)	
Traditional Market	Airlines	Commercial air carriers that offer a service to transport people to and from airports across the country and internationally (e.g. United, American, Delta, SouthWest)	
	For Hire	Aircraft that is rented by the hour, day, week to provide a service to anyone willing to pay the negotiated fee (e.g. sightseeing helicopter, NetJets)	
	Cargo	Aircraft used to transport freight to and from airports across the country and internationally (e.g. FedEx, DHL, UPS)	
New UAS Enabled Markets**	HALE	Expanding unmanned aircraft market that operates over both rural and urban settings, well above traditional manned aircraft at high altitudes (>60K ft), for very long endurance (days/weeks/months) missions.	
	IFR-Like	Expanding UAS market that increases traditional densities of the NAS, performs long distance and/or long endurance missions at a higher altitudes (18K ft - 60K ft); integrating exclusively with cooperative aircraft.	
	VFR-Like	Early UAS market that will operate BVLOS over rural and populated areas at altitudes below critical NAS infrastructure (10K ft – 18K ft); routinely integrating with cooperative and non-cooperative general aviation aircraft.	
	Urban Passenger Transport	Newly emerging market that requires high density VTOL operations for on demand, affordable, quiet, fast, transportation of people in a scalable and conveniently accessible verti-port network .	
	Low Altitude Urban	Rapidly expanding market that uses fixed wing and VTOL UAS operating below 400 ft and BVLOS to deliver packages and offer a wide range of services to high density urban settings.	
	Low Altitude Rural	Emerging market that includes fixed wing and VTOL UAS, ranging in size and capability, that operate beyond visual line of sight (BVLOS) in Class G airspace and above low-risk rural locations.	
	VLOS	Growing existing market, partially enabled by Far Part 107, that includes visual line-of-sight (VLOS) fixed wing and VTOL UAS (<55 lb) operating below 400 ft.	

*Traditional Markets are the categories the FAA has historically tracked for manned aviation.

** UAS Enabled Market Categories are based largely on projected topics for periodic policy / regulatory releases

UAS-Enabled Market Categories used in Study

Objective: To develop an analytical tool that facilitates the forecasting of UAS demand and economic benefit across various UAS market categories.

Approach:

- **UAS Demand**: Utilize a standard S-curve technology adoption calculation reliant on 4 variables
 - Estimated start year of new technology
 - B) Estimated fast-growth year (~10% of market)
 - Control Estimated takeover year (~90% of market)
 - Estimated total market saturation level (Either as a percentage of the existing market or estimated total of a new market)
- *Economic Benefit*: Modify the existing Aerospace Corporation-developed Cumulative UAS Benefit to the Economy (CUBE) Tool

Results / Benefits:

- Tool allows for quick prediction adjustments by simply adjusting the input variables
- Input values can be based upon subject matter expert (SME) input or from rigorous business-casebased demand projections

UAS Demand

Economic Benefit

Objective: To generate defensible UAS demand forecasts for each aviation market category based on community supplied inputs and rationale. Periodically update UAS Demand forecasts as new data becomes available.

Approach:

- Ph. 1: Develop notional demand curves for each category to validate tool works properly
- Ph. 2: Work with Gov't & Industry to elicit inputs related to specific markets and business cases
- Ph. 3: Adjust UAS demand forecasts based on Ph. 2 inputs & validate results

Results / Benefits:

- Ability to visualize projected growth rates across categories
- Assess impacts to traditional aviation markets
- Identify opportunities to enable faster growth and adoption

Objective: To determine the forecasted economic benefit and return on investment (ROI) for each aviation market. Compare results of the economic analysis across markets to identify the markets that provide the largest overall benefit to the nation.

Approach:

- **Ph. 1**: Conduct financial analysis to determine ROI multipliers for each UAS business case
- **Ph. 2**: Develop initial ROI curves for each category to validate the tool works properly
- **Ph. 3**: Work with Gov't & Industry to elicit inputs; use to refine tool & validate results

Results / Benefits:

- Ability to convert use-case demand values into economic revenue
- Provides insight into which aviation markets provide the largest return on investment potential
- Tool allows different economic multipliers to be used for each unique business case

Sample Results for 2 Representative Use Cases

Use Case		Market Category
	Package Delivery	Low Altitude Urban
	Internet Service Provider	HALE

UAS Demand: Package Delivery

Use Case: Package Delivery

Supporting Research:

Sub Use Cases	Calculated Estimates	
Parcels	38.5 million per day	
Prepared Food	3 million per day	
Groceries	166 thousand per day	
Flowers	82 thousand per day	
TOTAL D	41.8 million per day	

UAS Demand:

Date Projections:

Start year	2019 (Initial ops, trial cases)
10% Growth 🔋	2026 (Regs/Infrastructure finalized)
90% Growth 🧿	2040 (Country-wide ops)
Total Saturation	2044+ (Market saturation)

Assumptions:

- Vehicle design life = 1 yr
- Av. delivery time = 0.5 hrs
- Return/Recharge time = 1.5 hrs
- Utilization = 60%
- Operational days/yr = 365
- Vehicle specifications
 - VTOL
 - Distribution hub to receiving vessels or custom location
 - Distance: 10 mile radius
 - Speed: Up to 50 mph
 - Altitude: 200-500 feet
 - Payload capacity: 5 lbs
- Not Included:
 - Development Costs
 - Infrastructure Costs
 - Sunk costs

Key Findings:

- Feasible for Business case to close
- Closure timing dependent on customer willingness to pay delivery surcharge
- Other...

Economic Benefit Plots:

UAS Demand: HALE Internet Service Provider

Use Case: HALE Internet Service Provider

Economic Benefit:

UAS Demand:

Key Findings:

- The Internet Service Provider (ISP) Use Case does not close for a single payload HALE system
- For this Use Case to be viable, consider the following:
 - Add additional payloads to have multiple funding streams
 - Charge higher service charge (may not be feasible if there are cheaper alternatives)
 - Business case may be limited to areas of world without existing infrastructure.

UAS Enabled Market Representative Use Cases

Progress to Date

TRADITIONAL MARKETS							
Existing	📕 Airlines- % of Existing Routes	For Hire- % of Existing Routes					
Routes	🔚 Cargo- % of Existing Routes	Η Gen Aviation- % of Existing Routes					
NEW MARKETS							
HALE	🖶 High Alt. ISP/Comm	High Alt. Science Monitoring					
	Regional Cargo	🖶 sUAS Monitoring					
	🔡 ISP/Comm	🔡 Thin/Short Haul Passenger					
	New Intermediate Cargo	Η Area Science Monitoring					
VERLiko	🔚 Area First Responder	H Area Infrastructure Surveillance					
VFR-LIKE	🔚 Border Patrol	Η Area Science Monitoring					
	💾 Area Surveillance						
	🔚 Rural Package Delivery	Precision First Responder					
Low Alt	🔚 Linear Infrastructure Inspection	H Precision Science Monitoring					
Rural	Photogrammetry	Advertising					
	🔚 Agriculture						
Urban	믐 Urban Air Taxi (Point to Point)	H Urban Vehicle (Owner Operated)					
Passenger	💾 Urban Commuter (Set Routes)	H Urban Ambulance					
Low Alt	🔚 Urban Package Delivery	🔚 Urban Surveillance/Traffic/News					
Urban	🔡 Urban Infrastructure Inspection	🔚 Urban First Responders					
	Η Aerial Photography	Becurity/Emergency Mgmt					
VLOS	Η Aerial Filming/News	Advertising/Entertainment					
	Structural/Inspection/Survey						

Initial Research 🔚 Dema

Data Validation

Questions

Points of Contact:

Jak Linkel jak.linkel@mtsi-va.com 703-564-3842

Jennifer Noble jennifer.j.noble@aero.org

703-812-0614

• Only use the 2 slides that follow if we receive the final Cargo economic benefit data in time for the conference.

Sample Results for 3 Representative Use Cases

Use Case		Market Category
	Package Delivery	Low Altitude Urban
	Internet Service Provider	HALE
	Regional Cargo Transport	IFR-Like

UAS Demand: Regional Cargo Transport

Use Case: Regional Cargo Transport

Economic Benefit:

UAS Demand:

Key Findings:

- Tbd
- Tbd