National Aeronautics and Space Administration

B L E M B N D S

ILLUMA-T (Integrated LCRD LEO User Modem and Amplifier Terminal) Payload Antonios Seas, Zachary Gonnsen, Timothy Yarnall

Laser-Enhanced Mission Communications Navigation and Operational Services

Exploration & SPACE Communications

Introduction

- Objectives & L1 Requirements
- High Level System Architecture
- Operational Characteristics
- Schedule
- Conclusion

LEMNOS Overview

LEMNOS: Laser-Enhanced Mission Communications Navigation and Operational Services LEMNOS Project:

Implement Optical Communications on NASA spaceflight missions starting with demonstrations of operational utility on Orion EM-2 (O2O) and ISS (ILLUMA-T).

Orion EM2 Optical Communications Terminal (O2O)

Objective:

O2O provides the first optical communications payload on a human exploration mission

Partners:

HQ/HEO, GSFC, MIT-LL, JSC/Orion, Orion/Lockheed Martin, GSFC Space Network, JPL

Funding Source: HEO

Integrated LCRD LEO (Low-Earth Orbit) User Modem and Amplifier – Terminal (ILLUMA-T) <u>Objective</u>:

First LEO user terminal of LCRD relaying data using GEO satellite

Partners:

HQ/SCaN, GSFC, LCRD, MIT-LL, JSC/ISS, JAXA, <u>Funding Source:</u> SCaN

ILLUMA-T Introduction

- Space-based Optical Comm demonstrated on LADEE LLCD
- LCRD is a Optical Comm Pathfinder.
- ILLUMA-T will establish a complete Optical Comm System

LLCD Laser Comm

** LLCD: Lunar Laser Communication Demonstration ** LCRD: Laser Communication Relay Demonstration ** O2O: Orion EM2 Optical Communications Terminal ** ILLUMA-T: Integrated LCRD LEO (Low-Earth Orbit) User Modem and Amplifier Terminal ** LEMNOS: Laser-Enhanced Mission Communications Navigation and Operational Services

ILLUMA-T Overarching Objective

Develop an optical communications user terminal to demonstrate data transfer between low Earth orbit and the ground through a geosynchronous relay

Introduction

- Objectives & L1 Requirements
- High Level System Architecture
- Operational Characteristics
- Schedule
- Conclusion

<u>Objective</u>: The ILLUMA-T project shall develop an optical communications user terminal to demonstrate data transfer between low Earth orbit and the ground through a geosynchronous relay

1.1	The ILLUMA-T project shall demonstrate a duplex optical communications link from the ILLUMA- T terminal located on the ISS to a ground station via the LCRD satellite
1.2	The ILLUMA-T user terminal shall operate at defined LCRD data rates including 1.244 Gbit/s on the return link (ISS via relay to ground) and 51 Mbps on the forward link (Ground via relay to ISS)
1.3	The ILLUMA-T protoflight terminal shall be developed using an approach that includes participation of commercial companies and enables the transfer of optical communications technology to industry
1.4	The ILLUMA-T terminal orientation shall support line of sight to a ground station
1.5	The ILLUMA-T terminal shall support a bi-directional data connection of at least 1.0 Gbit/s (i.e., 100/1000 Mbps Ethernet connection)

- Introduction
- Objectives & L1 Requirements
- High Level System Architecture
- Operational Characteristics
- Schedule
- Conclusion

ILLUMA-T Architecture

ILLUMA-T Payload

ILLUMA-T Location on ISS

ILLUMA-T Transceiver FOV Blockages

Introduction

- Objectives & L1 Requirements
- High Level System Architecture

Operational Characteristics

- Schedule
- Conclusion

ILLUMA-T Optical Terminal

Gimbal Field Of Regard (FOR), 90° to -30° by 360°

- NGT has two mechanical angular pointing restrictions:
 - Keyhole, within 5 degrees of NGT +Z
 - Low elevation, 30 degrees
 below the XY-plane

Factors Impacting Link Access*

- Orbit
- Sun in Field Of View (FOV) of the acquisition/track sensor
 - OM will not operate when the sun is within 10° of the Line Of Sight (LOS) to LCRD
- Keyhole at gimbal mount zenith (±5°)
 Very small fraction of passes (TBD)
- Gimbal Field Of Regard (FOR) (90° to -30° by 360°)
- ISS Body Mask
- Laser Clearing House (LCH) Keep Out Cone (KOC)

*Access := A time period during which all conditions for the establishment and operation of a link are satisfied

ILLUMA-T Field Of View

ILLUMA-T Gimbal Up/Down 180° FOV Hemispheres Definition

Figure 3. ILLUMA-T Gimbal Up/Down 180° FOV Hemispheres Definition

Overview of Optical Sensor FOV with ISS USOS Solar Array Sweep VV at N2z **Optical Telescope FOV** Radiator VV at N2f ----VV at N2n

CAMMP Analysis of Field of Regard (FOR)

- Mounting of ILLUMA-T on 65 degree plate
- FOR modeled by CAMMP
 - Green -> Persistent Line Of Sight (LOS) from ISS
 - Blue -> Solar panel swept solid

ILLUMA-T Performance w/ Solar Panel Swept So

Weekly Access Statistics with Solar Panel Swept Solid and 10 degrees solar exclusion

- 91 accesses
- 22 minute mean duration
- 33.5 hrs/week

22 minute contact → Return: 1.642 Tbits (0.205 TBytes) Forward: 67 Gbits (8.375 GBytes)

33.5 Hours weekly → Return: 150.03 Tbits (18.76 TBytes) Forward: 6 Tbits (0.75 TBytes)

ILLUMA-T Performance with w/o Solar Panel Swept S

LCRD weekly access statistics without solar panel swept solid and 10 degrees solar exclusion angle

- 125 accesses
- 29 minute mean duration
- 61 hours per week

29 minute contact → Return: 2.164 Tbits (0.27 TBytes) Forward: 88.74 Gbits (11.1 GBytes) 33.5 Hours weekly → Return: 273.2 Tbits (34.15 TBytes) Forward: 11.2 Tbits (1.4 TBytes)

Introduction

- Objectives & L1 Requirements
- High Level System Architecture
- Operational Characteristics
- Schedule
- Conclusion

ILLUMA-T Schedule

								3/16/	/18
WBS	ILLUMA-T (ISS)	2017		2018	2019	2020	2021	2022	
		JFMAMJJAS	ONDJF	MAMJJAS	ONDJFMAMJJAS	ONDJFMAMJJAS	ONDJFMAMJJAS	ONDJFMAMJJAS	OND
			Phase B		Phase C Ph	ISO D		3/23	<u> </u>
		Combine		Combined	Combined			Launch to ISS	
2	ILLUMA-T / Mission Milestones	SRR 8/15		PDR 0/13	CDR V 1/16	Sint. Start	O ILLUMA O ILLUMA PSR 12/16 4/22		
1.0	Management								
2.0	Systems Engineering								
3.0	Safety & Mission Assurance								
4.0	Science / Technology								
5.0	ILLUMA-T Payload								
5.1	ILLUMA Modem (GSFC)		Vendor Selection		ISS Mode	Deliver to Integration	ILLUMA-T Maj	or Milestones	
5.2.1	NGT Optical Terminal (MIT)					•	I&T Start 3/3/20)	
5.2.1.1	Latch & Gimbal Assy (LGA)		RFP	Contract	abal Assy 9/13	LGA	80 days of sched	dule reserve	
5.2.1.2	NGT Telescope Relay Assy	EDU Telescope	R	Contract Contract	Relay Assy 5/6 TRA		months before L	_aunch)	
5.2.1.3	Back End Optical Assy (BOA)	EDU BOA-1	A PFU Qty 2 DU BOA-2	¢ I	10/7	BOA	Predicted Drago	n Launch 3/23/22	I
5.2.2	OM Controller Electronics		RFP	CE EDU	CE PFU's	C.E. for ILLUM/			
5.4	Optical Module Harness Test/Flight			[Fit / Test Harness ILLUMA				
5.3	Power Converter Unit (GSFC)		PCU E	ou .	PCU to ILLUM				
5.6	ILLUMA-T Payload Housing (GSFC)				Housing Deliver to V 7/1	Start System	30 Days Reserve	50 Days Reserve	
5.10.1	ILLUMA-T I&T - (MIT)		NGT EDU	1	ILLU	3/3 Test 8/12	Terminal 12/7 Complete		
5.10.2	ILLUMA-T I&T (GSFC)					Start Env. Tes	PER Ship t	o KSC Dragon	
8.0	ISS Payload Integration						7/5	Launch landover V 3/23	
9.0	Ground Data Systems (GSFC)		1			1	I		
	LCRD (For Reference)				LCRD Begin Experimentation		LCRD Transition to Ops 🔷		

- Introduction
- Objectives & L1 Requirements
- High Level System Architecture
- Operational Characteristics
- Schedule

Conclusion

Conclusion

- The ILLUMA-T team represents a world recognized group aiming to the demonstration of an end-to-end optical communications system between a LEO terminal and the ground through a GEO relay
- ILLUMA-T is an important opportunity for NASA to further enhance its reputation and skills in high bandwidth optical communications
- The ILLUMA-T project has been established on solid foundation and the ILLUMA-T team is working well together. The team is on track to deliver the optical terminal on schedule
- ILLUMA-T is a great mission that demonstrates key characteristics of optical communications based relay system and is a natural precursor to the planned deployment of the next generation communications relay system

BACKUP SLIDES

Acronyms

ILLUMA-T	Integrated LCRD LEO L	Jser Modem and Amplifier T	Ferminal
----------	-----------------------	----------------------------	-----------------

- LLCD Lunar Laser Communication Demonstration
- LCRD Laser Communication Relay Demonstration
- O2O Orion EM2 Optical Communications Terminal
- LEMNOS Laser-Enhanced Mission Communications Navigation and Operational Services
- HOSC Huntsville Operations Support Center
- LMAC Lasercom Mission Analysis Center
- LSTC Lasercom Space Terminal Console
- LMOC Lasercom Mission Ops Center
- ISS International Space Station
- OGS Optical Ground Station
- JEM-EF Japanese Experiment Module Exposed Facility
- TDRS Tracking and Data Relay Satellite
- CATS Cloud-Aerosol Transport System
- SCaN Space Communications and Navigation
- NGT New Generation Terminal
- LEO Low-Earth Orbit
- MIT-LL Massachusetts Institute of Technology Lincoln Laboratory

- GEO Geostationary Earth Orbit
- S&MA Safety and Mission Assurances