# Signals of Opportunity Airborne Demonstrator (SoOp-AD)

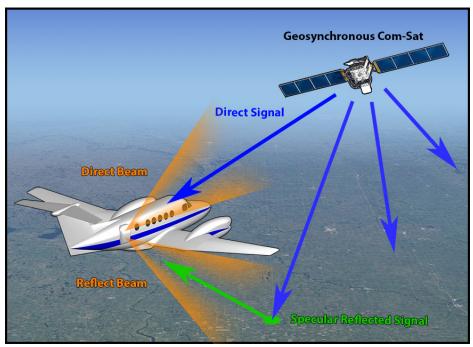
Earth Science Technology Forum

2014 ESTO Instrument Incubator Program (IIP)

June 25<sup>th</sup>, 2015







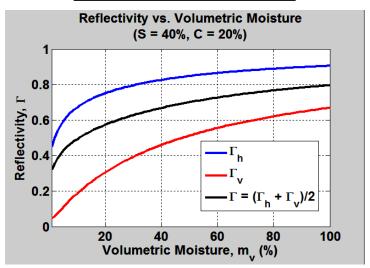

## Outline

- Overview
- Project Team
- Science Background and Motivations
- P-Band Signal Details
- Instrument Architecture
- Measurement Simulation
- Next Steps

### Measurement Overview

#### **P-Band Reflectometry**




We propose to measure Root Zone Soil Moisture (RZSM) through cross-correlation of direct and reflected P-Band geosynchronous communication satellite signals.

#### **Expected Performance**

| Parameter           | SoOP Airborne                      | SoOP Spaceborne                    |  |
|---------------------|------------------------------------|------------------------------------|--|
| Resolution*         | 100m                               | 870m                               |  |
| Sensing Depth       | 0-30cm                             | 0-30cm                             |  |
| Sensing Precision** | 0.04m <sup>3</sup> /m <sup>3</sup> | 0.04m <sup>3</sup> /m <sup>3</sup> |  |
| Biomass Saturation  | > 350 t/ha                         | > 350 t/ha                         |  |
| Antenna Size        | 75 x 75 cm                         | 75 x 75 cm                         |  |

<sup>\*</sup>Specular Reflection Assumed

#### **Basis of Measurement**



<sup>\*\*</sup>SMAP Requirement

## **Project Team**

- Purdue University
  - Simulation, Retrieval Algorithms, Requirements Def.
    - PI: Jim Garrison (Assoc. Prof)
    - Georges Stienne (Post-doc)
    - Yao-Cheng "Zenki" Lin (PhD candidate)
- NASA GSFC
  - Systems Engineering, RF Design, Aircraft Integration
  - Co-I: Jeff Piepmeier (555)
  - Co-I: Joe Knuble (555)
  - Ken Hersey (AS&D)
  - Cornelus Du Toit (AS&D)
  - Co-I: Alicia Joseph (617)

- Exelis, Inc

  Digital Receiver Design
  - George Alikakos
  - Co-I: Steve O'Brien
- Langley Research Center
   Aircraft Operations
  - Bruce Fisher
- Dr. Stephen Katzberg Consultant Scattering Model, Signal Processing

## Scientific Motivation

- Root Zone Soil Moisture (RZSM):
  - Water in top ~meter of soil
  - Critical link between surface hydrology and deeper process
  - Drainage and absorption by plant roots
  - Connection between near-term precipitation and longterm availability of fresh water
- Biomass: a related measurement
  - Carbon storage in vegetation key part of CO<sub>2</sub> balance
  - Raw material and source of 9-13% of World's energy

## **Current Sensing Limitations**

#### L-Band

- L-band (SMAP) penetrates only few cm of soil
- Saturation at L-band limits the ability to sense soil moisture through vegetation
- SMAP Level 4 data product to estimate RZSM

#### P-band radar

- Difficult to find allocation in heavily utilized spectrum
- ESA-BIOMASS cannot operate in North America or Europe due to interference with Space Object Tracking Radar
- 4G mobile network may also cause problems
- Expensive from space

## SoOp Solution

- We propose to use the principles of reflectometry and reflected SATCOM signals to measure RZSM.
  - Cross correlation of direct and reflected signals will be used to measure reflection coefficient.
  - SoOP-AD will first measure RZSM from an aircraft.
- SoOP-AD will use the geostationary P-band satcom systems
  - 225-420MHz allocation for government use, SoOP will focus on 240-270MHz band: 18 25KHz channels, 20 5KHz channels.
  - Continuous use by US since 1978
  - SoOP-AD method measures correlation of direct and reflected signals does not require demod / decode of the transmission.

# SoOp-AD Mission Highlights

SoOP-AD

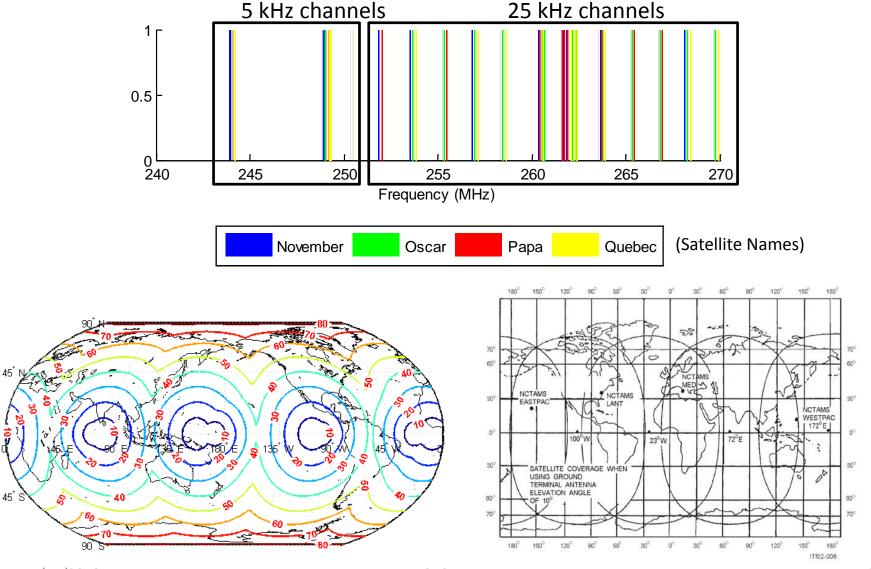
#### • IIP Timeline

- Awarded in April '14.
- Subsystem I&T at GSFC this summer.
- Science flights in Fall of '16.

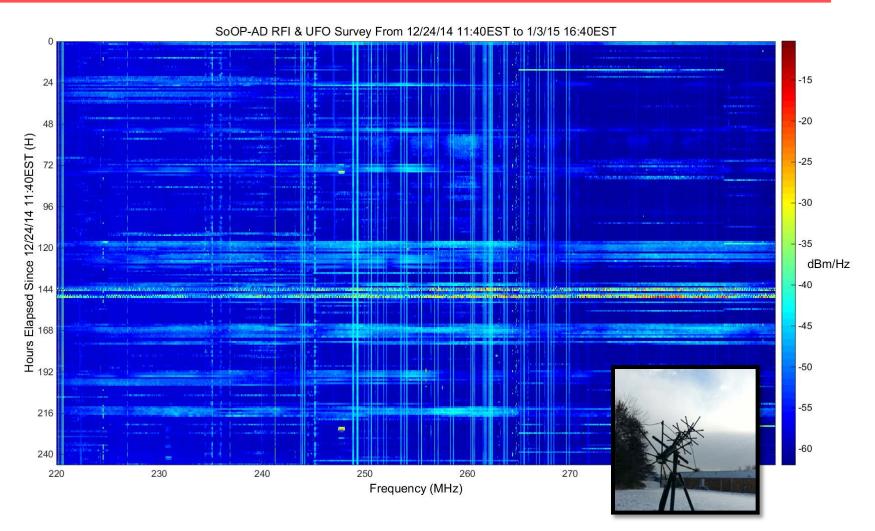
#### Instrument

- Antennas: Patch, Dual Linear Pol, Null Steering
- Receivers: Standard P-Band Receivers w/ internal calibration. S-Band receiver for XM Radio included. Brassboard and compact card.
- Digital System: FPGA based. 7TB Storage: 1 hour of raw data or many days of processed data.

#### Aircraft Campaign


- Flying on NASA Langley B200.
- Co-Flying with SLAP instrument (GSFC's Active / Passive L-Band).
- Science flights over the St. Joseph's Watershed.
- Two aircraft racks: 12U Total



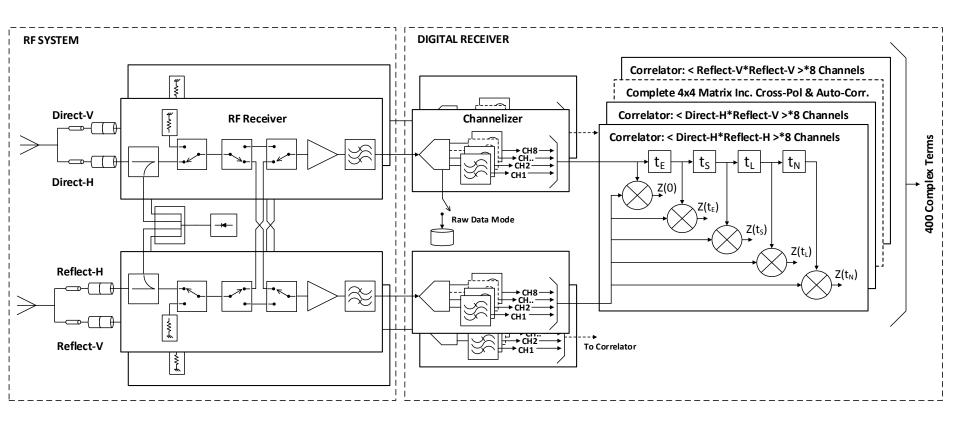





# Signal Bands and Coverage



# Measured Signal Details & RFI




Waterfall spectrum measured at GSFC over 11 days. Note persistence of satcom signals and broad-band RFI.

# **Direct Signal Link Budgets**

|                        | P-Band       |            | S-Band                |         |  |
|------------------------|--------------|------------|-----------------------|---------|--|
| EIRP (dBW)             | 26           |            | 68                    |         |  |
| Frequency (MHz)        | 240-270      |            | 2332.5-2045.0         |         |  |
| Bandwidth              | 25 kHz       |            | 1.886 MHz             |         |  |
| Longitude (deg)        | -99.2        | -105.6     | -85                   | -105    |  |
| Distance (km)          | 38128        | 38512      | 37447                 | 38474   |  |
| Path loss (dB)         | -172.44      | -172.53    | -191.31               | -191.54 |  |
| Atmospheric loss (dB)  | -1 dB        |            |                       |         |  |
| Sky-view antenna gain  | 7 dB         |            |                       |         |  |
| Sky-view antenna noise | 145.0 K      |            |                       |         |  |
| Pre-switch noise       | 212.2 K      |            |                       |         |  |
| Post-switch noise      | 350.0 K      |            |                       |         |  |
| Total noise            | 707.2 K / -1 | .56.12 dBW | 707.2 K / -137.35 dBW |         |  |
| SNR (dB)               | 15.7         | 15.6       | 20.1                  | 19.8    |  |

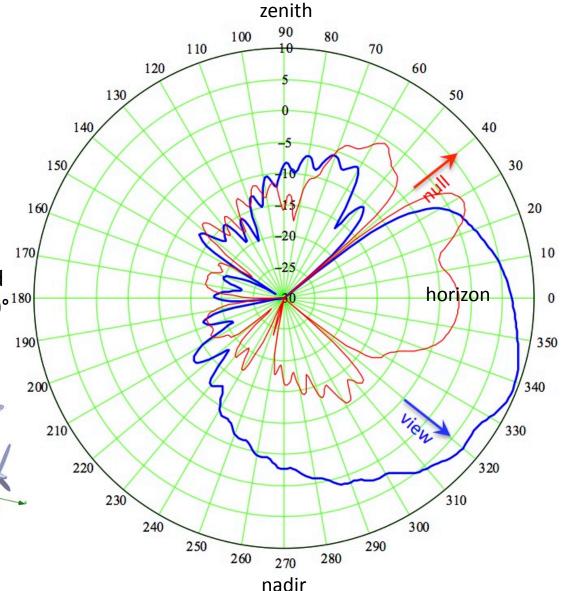
# SoOp-AD System Architecture



## Antenna System Considerations

 Direct-to-Reflect Isolation is Driving Requirement

 Using "Smart Antenna" to steer a null as necessary in postprocessing.

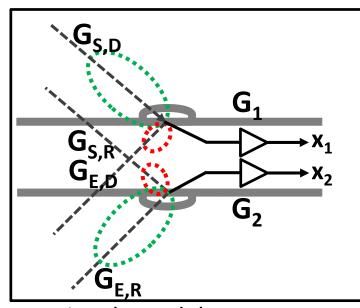

Simulation: Earth View Beam

Co-pol (blue): LHCP

– X-pol (red): RHCP

5/15/2018

 Results simulate a post-processed pattern with a null steered to +40°<sup>180</sup>




## **Measurement Simulation**

#### Purpose:

- Science requirement flow-down to technology requirements
- Error budget
- First generation retrieval algorithms
- Two Methods: Synthetic (IF) Signal Generator (forward) and Extended Kalman Filter (inverse estimator)
- Evaluate Error Sources against 0.04m<sup>3</sup>/m<sup>3</sup> Precision Req.
  - SNR
  - Direct signal leakage into reflect antenna (easier in orbit!)
  - Multiple Satellite Interference / Isolation
  - Antenna Pattern Knowledge
  - Aircraft Position & Attitude Knowledge
  - Number of correlation delays
  - Terrain Height Fluctuation
  - RFI

## **Modelling Details**



Space signals models:

$$x_D(t) = \sqrt{C_D} a(t - \tau_D) e^{j\omega_b t} e^{-j\omega_e \tau_D}$$

$$x_R(t) = \sqrt{C_R} a(t - \tau_R) e^{j\omega_b t} e^{-j\omega_e \tau_R}$$

Receiver channels signals models:

$$x_{1}(t) = f_{RF} \left( \sqrt{G_{1}G_{S,D}} x_{D}(t) + \sqrt{G_{1}G_{S,R}} x_{R}(t) + n_{1}(t) \right)$$

$$x_2(t) = f_{RF} \left( \sqrt{G_2 G_{E,D}} x_D(t) + \sqrt{G_2 G_{E,R}} x_R(t) + n_2(t) \right)$$

Measurements are made on samples of  $Z_{11}$  (autocorrelation of channel 1),  $Z_{22}$  (autocorrelation of channel 2) and  $Z_{12}$  (cross-correlation between channel 1 and channel 2)



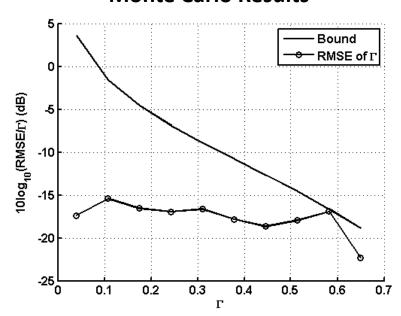
## Extended Kalman Filter Method

Measurements: signals auto- and cross- correlations

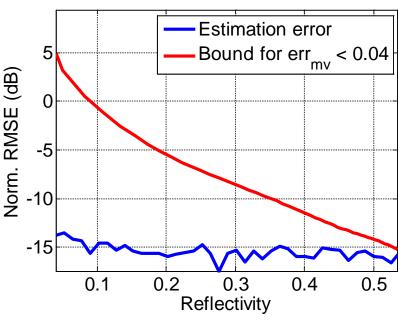
$$Z_{1,1}(\tau) = \left\langle x_1(t)x_1^*(t-\tau) \right\rangle$$

$$Z_{1,2}(\tau) = \left\langle x_1(t)x_2^*(t-\tau) \right\rangle = f(g_{1D}, g_{1R}, g_{2D}, g_{2R}, \sigma_1, \sigma_2, \tau_{RD})$$

$$Z_{2,2}(\tau) = \left\langle x_2(t)x_2^*(t-\tau) \right\rangle$$
Extended Kalman Filter state vector


Chosen delays:  $\tau = 0$ ,  $\tau_{RD} - \Delta \tau$ ,  $\tau_{RD}$ ,  $\tau_{RD} + \Delta \tau$  => 12 complex measurements (22 real + imaginary parts)

the transfer switch or noise source


## **Modelling Results**

Results including limited antennas directivities, interference from a second milsat satellite, uncertainty on aircraft position and attitude, 14dBW EIRP, and using 4 samples per correlation, 1s integration time. Good margin on measurement requirements so far.

#### **Monte Carlo Results**



#### **EKF Results**



$$NRMSE_{dB} = 10log_{10} \left( \frac{1}{\Gamma} \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{\Gamma}_i - \Gamma)^2} \right)$$

## **Next Steps**

- Continue Model Refinement
- Perform I&T at GSFC this Summer
- Field campaign using a tower
- Aircraft campaign