

Global Soil Moisture Estimation from L-Band Satellite Data: Impact of Radiative Transfer Modeling in Assimilation and Retrieval Systems

Gabriëlle De Lannoy, Rolf Reichle, Alexander Gruber, Michel Bechtold, Jan Quets, Jasper Vrugt, Jean-Pierre Wigneron

KU Leuven, Department of Earth and Environmental Sciences, Division Soil and Water Management

Global Modeling and Assimilation Office (Code 610.1), NASA/GSFC, Greenbelt, MD, USA

University of California, Irvine, Department of Civil and Environmental Engineering, Irvine, CA, USA

ISPA, INRA Bordeaux, France

5 April 2018

Land Surface System - HPC KU Leuven

System

System

L-band

SMOS Retrieval

SMOS Assimilation

Conclusions

KU Leuven HPC Tier2:

Observing and modeling:

1		1		
50	260	270	280	290

Surface (0-5 cm) "Root zone (0-100 cm)

L-Band Data

L-band (1.4 GHz) brightness temperatures (Tb) are sensitive to soil moisture and temperature in the surface layer (5 cm)

System

L-band

Data Model

Parameters

Complexities

SMOS Retrieval

SMOS Assimilation

Conclusions

L-Band Radiative Transfer Modeling

Tb strongly depends on parameters (e.g. h, roughness)

Parameter Estimation

Complexities

System

- L-band
- Data Model
- Parameters
- Complexities
- SMOS Retrieval
- SMOS Assimilation
- Conclusions

Enhance the RTM for specific land cover types, e.g. peatlands:

- Soil moisture dynamics:
 - improved physical processes in peatland
- **RTM w/ dielectric model:**
 - Wang & Schmugge (1980) for mineral soils versus Bircher et al. (2016) for organic soils

Open water:

incl. open water reduces bias in Tb forward modeling

 $Tb = f_{land}.Tb_{land} + f_{SOW}.Tb_{SOW} + f_{DOW}.Tb_{DOW}$

land + static (land mask) + dynamic open water (AMSR2)

(Michel Bechtold, Simon De Canniere)

Complexities

Time series correlation [-]

Dielectric model only has minor impact (Bircher vs Wang & Schmugge) PEAT-CLSM outperforms CLSM for both soil moisture and Tb simulations Adding dynamic open water fraction further improves the results

System

L-band

Data Model

Parameters

Complexities

SMOS Retrieval

SMOS Assimilation

Conclusions

(Michel Bechtold)

System

L-band

SMOS Retrieval

Retrieval

SM

VOD

SMOS Assimilation

Conclusions

SMOS Retrievals

Global Soil Moisture (SM) and VOD Retrievals

System

L-band

SMOS Retrieval

Retrieval

SM

VOD

SMOS Assimilation

Conclusions

SMOS (quasi-)operational retrieval products:

- SMOS L2/L3
 - only retrieval for nominal fraction, low vegetation/forest
 - (SM,VOD)=f(Tb^{SMOS}, MODIS LAI, ECMWF Ts, Tb^{ECMWF}_{notnominal}, RTM)
- ◆ **SMOS-IC** (*Fernandez-Moran et al., 2017*)
 - homogenous pixels
 - (SM,VOD)=f(Tb^{SMOS}, ECMWF Ts, RTM)
- SMOS-LPRM in ESA CCI
 - homogenous pixels
 - VOD=f(MPDI^{SMOS}, ω), and SM=f(Tb^{SMOS}, VOD, model Ts, RTM)
- **SMOS research products**: physically-based, neural network, various RTMs, ...
 - homogenous pixels
 - ◆ VOD=f(Tb^{SMOS}, MERRA2 Ts, MERRA2 SM, RTM), or SM=f(Tb^{SMOS}, MERRA2 Ts, MERRA2 LAI, RTM)

SM Retrievals

In situ validation (CalVal sites)

System

L-band

SMOS Retrieval

Retrieval

SM

VOD

SMOS Assimilation

Conclusions

- all operational products do better than model simulations
- much simpler SMOS-IC product performs as good as complex SMOS L2

RTM calibrated for forward modeling could serve for SM retrievals Lit3 (fwd modeling) is inferior for retrievals 10 / 28

VOD Retrievals

Representative site evaluation (11 vegetation classes)

System

L-band

SMOS Retrieval

Retrieval

SM

VOD

SMOS Assimilation

Conclusions

limited (anomaly) correlations: L-band VOD contains other information than optical vegetation indices (VI) SMOS-IC performs better than operational SMOS L2 (anomaly R) RTM calibrated for forward modeling could serve for τ retrievals Lit3 (fwd modeling) is inferior for retrievals

(Michiel Van Gompel)

System

L-band

SMOS Retrieval

SMOS Assimilation Data assimilation SM DA Tb DA RTM impact

Conclusions

SMOS Data Assimilation

Data Assimilation

System

L-band

SMOS Retrieval

SMOS Assimilation Data assimilation SM DA Tb DA **RTM** impact

Conclusions

SMOS Obs (footprint)

NASA GEOS-5 Land Surface Modeling (36 km)

- Catchment land surface model
- MERRA surface meteorology

Observation operator:

- spatial aggregation
- radiative transfer model* only in case of Tb assimilation

Data Assimilation

L-band

SMOS Retrieval

SMOS Assimilation Data assimilation SM DA Tb DA **RTM** impact

Conclusions

- filter parameters*
- Surface soil moisture (\sim top 5 cm)
- Root zone soil moisture (\sim top 1 m)
- Other consistent geophysical fields, with error estimates
- \Rightarrow * calibration using long-term SMOS record

NASA GEOS-5 Land Surface Modeling (36 km)

- only in case of Tb assimilation

Land Surface Modeling

System

L-band

SMOS Retrieval

SMOS Assimilation Data assimilation SM DA Tb DA RTM impact

Conclusions

SM Data Assimilation

System

L-band

SMOS Retrieval

SMOS Assimilation Data assimilation SM DA Tb DA RTM impact

Conclusions

 Observation-minus-forecast (O-F, innovation), footprint-scale
Increment, model grid
Analysis, model grid
3D EnKF: smooth transitions, no swath edges in analysis

Tb Data Assimilation

System

L-band

SMOS Retrieval

SMOS Assimilation Data assimilation SM DA

Tb DA

RTM impact

Conclusions

SM Observation or Innovation Bias

System

L-band

SMOS Retrieval

SMOS Assimilation Data assimilation SM DA

Tb DA

RTM impact

Conclusions

SM is relatively stationary

Example: at one location,

- at any time, replace an observed SM of 0.08 m³/m³ with a value of 0.10 m³/m³

CDF based on 5 years, all seasons

separate rescaling for ascending (6 am) and descending (6 pm) times

Tb Observation or Innovation Bias

System

L-band

SMOS Retrieval

SMOS Assimilation Data assimilation SM DA

Tb DA

RTM impact

Conclusions

Tb has a strong seasonal pattern

Example: at one location,

- at pentad 7, correct the observed Tb_H for a bias of 237-241 K
- at pentad 36, correct the observed Tb_H for a bias of 262-260 K
- at pentad ..., correct ...

mean-only, 5 year-average, per pentad

separate rescaling for ascending (6 am) and descending (6 pm), 7 angles, 2 polarizations

Normalized Tb or SM Innovations

System

L-band

SMOS Retrieval

SMOS Assimilation Data assimilation SM DA

Tb DA

RTM impact

Conclusions

Δ wtot Increments

System

L-band

SMOS Retrieval

SMOS Assimilation Data assimilation SM DA

Tb DA

RTM impact

Conclusions

SM DA (b) m=0.76, s=0.19 [-] 0.4 0.6 0.8 10 15 5

$\Delta wtot$ Increments

System

L-band

SMOS Retrieval

SMOS Assimilation Data assimilation SM DA

Tb DA

RTM impact

Conclusions

Δ wtot Increments

System

L-band

SMOS Retrieval

SMOS Assimilation Data assimilation SM DA

Tb DA

RTM impact

Conclusions

\triangle wtot Increments (mm)

System

L-band

SMOS Retrieval

SMOS Assimilation Data assimilation SM DA

Tb DA

RTM impact

Conclusions

unbiased system

Tb DA introduces more large increments than SM DA \sim Tb DA has larger innovations than SM DA different information extracted during Tb DA and SM retrieval process?

(De Lannoy and Reichle, 2016, HESS)

In Situ Evaluation

L-band

SMOS Retrieval

SMOS Assimilation Data assimilation SM DA

Tb DA

RTM impact

Conclusions

S.m. Root-zone

S.M

Surface

SM retrieval **DA** (b) ΔRMSD_{ub} =-0.003 [m³/m³] (143/187 improved)

(d) ΔRMSD_{ub} =-0.001 [m³/m³] (121/187 improved)

Blue=better

Red=worse

In Situ Evaluation

L-band

SMOS Retrieval

SMOS Assimilation Data assimilation SM DA

Tb DA

RTM impact

Conclusions

largest soil moisture improvements in favorable areas similar averaged skill statistics for Tb and SM DA

(De Lannoy and Reichle, 2016)

Effect of RTM on Tb DA

Repeat the Tb_7ang DA experiment, but with lookup table RTM parameters:

1.2

1

0.15

System

L-band

SMOS Retrieval

SMOS Assimilation Data assimilation SM DA Tb DA RTM impact

Conclusions

Calibrated

Lookup (SMAP L2)

0

0.6

0.8

0.2

0

0.4

Effect on Tb obs predictions:

primary: different seasonal bias \rightarrow Tb rescaling secondary: different anomalies?

(Alexander Gruber)

Effect of RTM on Tb DA

Repeat the Tb_7ang DA experiment, but with lookup table RTM parameters:

System

L-band

SMOS Retrieval

SMOS Assimilation Data assimilation SM DA Tb DA RTM impact

Conclusions

Lookup (SMAP L2)

Effect on Tb obs predictions:

primary: different seasonal bias \rightarrow Tb rescaling secondary: different anomalies?

(Alexander Gruber)

Tb Innovations

L-band

SMOS Retrieval

SMOS Assimilation Data assimilation SM DA Tb DA RTM impact

Conclusions

obvious seasonal bias RTM calib vs lookup after rescaling: similar Tb anomalies for RTM calib and lookup different variance in Tb obs and Tb fct anomalies (for both RTM calib and lookup) Tb anomaly innov variance is slightly larger for RTM calib (not over forests)

(Alexander Gruber)

$\Delta wtot$ Increments

Increments [mm]

unbiased system

both Tb DA schemes correct soil moisture trajectories similarly
calibrated RTM introduces more large increments than lookup RTM

 \sim Tb (anomaly) innovation variance

System

L-band

SMOS Retrieval

SMOS Assimilation Data assimilation SM DA Tb DA RTM impact

Conclusions

(Alexander Gruber) 26 / 28

In Situ Evaluation

System

L-band

SMOS Retrieval

SMOS Assimilation Data assimilation SM DA Tb DA

RTM impact

Conclusions

In situ surface and root-zone soil In situ surface soil moisture (SCAN+USCRN, strictly QC-ed) moisture (ISMN, not strictly QC-ed)

DA always performs better than OL (even when forced with qualitative MERRA2) similar averaged skill statistics for Tb DA using RTM calib and lookup

> (Alexander Gruber) 27 / 28

Conclusions

System

L-band

SMOS Retrieval

SMOS Assimilation

Conclusions

Conclusions

SMOS (or SMAP) Tb to soil moisture via radiative transfer modeling

very different RTM parameterizations available for forward and inverse modeling

- optimized parameters for retrievals work for data assimilation (fwd RTM)
- optimized parameters for fwd modeling work for retrievals (inverse RTM)
- Tb estimates much improved when accounting for open water in RTM **Data assimilation:**
- SM DA and Tb DA both improve surface and root-zone soil moisture
- SM DA and Tb DA add different increments to products
- seasonal bias mitigation in Tb DA effectively overcomes shortcomings in RTM parameterization (calibrated or not)
- to do: spatio-temporal optimization of Tb (obs and forecast) errors

gabrielle.delannoy@kuleuven.be