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Highlights. 

 

 We analyze frequency-domain electromagnetic scattering by an 

arbitrary finite object.  

 The presence of arbitrarily distributed impressed source currents 

is explicitly accounted for. 

 The volume integral equation formulation of electromagnetic 

scattering is used, coupled with the notion of the transition opera-

tor and its fundamental symmetry property.    

 The resulting theoretical formalism is general and self-contained.  
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ABSTRACT 

Although free space cannot generate electromagnetic waves, the majority of ex-

isting accounts of frequency-domain electromagnetic scattering by particles and 

particle groups are based on the postulate of existence of an impressed incident 

field, usually in the form of a plane wave. In this tutorial we discuss how to ac-

count for the actual existence of impressed source currents rather than impressed 

incident fields. Specifically, we outline a self-consistent theoretical formalism 

describing electromagnetic scattering by an arbitrary finite object in the presence 

of arbitrarily distributed impressed currents, some of which can be far removed 

from the object and some can reside in its vicinity, including inside the object. To 

make the resulting formalism applicable to a wide range of scattering-object 

morphologies, we use the framework of the volume integral equation formulation 

of electromagnetic scattering, couple it with the notion of the transition operator, 

and exploit the fundamental symmetry property of this operator. Among novel 

results, this tutorial includes a streamlined proof of fundamental symmetry (reci-

procity) relations, a simplified derivation of the Foldy equations, and an explicit 

analytical expression for the transition operator of a multi-component scattering 

object.  
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1.  Introduction 

Standard theoretical accounts of the frequency-domain scattering of electro-

magnetic waves by particles and particle groups in the framework of macroscop-

ic Maxwell’s electrodynamics have commonly been based on assuming the exist-

ence of an impressed incident field (see, e.g., Refs. [1–19]). The designation 

“impressed” (or “enforced”) implies that the incident field is independent of the 

total electromagnetic field existing in the presence of a scattering object. The 

standard line of thought has been that the scattering problem can be formulated 

assuming that the entire space is devoid of source currents and can be reduced to 

considering an inhomogeneous differential equation whose solution consists of 

two parts. The first one is a solution of the corresponding homogeneous equation, 

while the second one is a physically appropriate solution of the inhomogeneous 

equation. The former implies the absence of the scattering object and thus repre-

sents the impressed incident field in the form of an ad hoc free-space solution of 

the macroscopic Maxwell equations. More often than not, the incident field has 

been postulated to be a plane electromagnetic wave, although other types of wave 

have increasingly been considered [20].  

Such treatments obscure the inescapable fact that electromagnetic waves 

cannot be generated by a free space, and so there must be an actual source of the 

incident field. An advanced description of the emission of electromagnetic waves 

by elementary charges is supplied by quantum electrodynamics (QED) [21–27]. 

However, neither the QED treatment nor even the classical microscopic Max-

well–Lorentz electrodynamics [28–33] can realistically be applied to the analysis 

of electromagnetic scattering by exceedingly complex macroscopic objects con-

sisting of an enormous number of elementary charges. Hence the widespread use 

of macroscopic Maxwell’s electromagnetics [34–38] based on the premise that 

electromagnetic waves are created by macroscopic charge currents. It would 

therefore be highly desirable to have a self-consistent scattering formalism ex-

plicitly built on the existence of impressed (or enforced) source currents rather 

than impressed incident fields. The designation “impressed” again serves to indi-

cate that unlike the secondary conducting currents, the primary source currents 

are independent of the total electromagnetic field existing in the presence of a 

scattering object.          

The standard treatment based on the assumption of the existence of an im-

pressed incident field in the form of a plane electromagnetic wave is sometimes 

rationalized by referring to a situation wherein a point-like source current is lo-

cated at an exceedingly large distance from a finite scattering object (e.g., Ref. 

[37]). It can indeed be shown that in this case the free-space field generated by 

the current in the vicinity of the object is an outgoing spherical electromagnetic 

wave that can be considered a locally plane wave owing to the smallness of the 

solid angle subtended by the object as viewed from the remote source region. 

There are situations, however, when it is appropriate to assume the simultaneous 

existence of both remote and local impressed source currents, including those 
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residing inside the scattering object. Such situations arise, e.g., in the context of 

the semi-classical fluctuational electrodynamics which treats thermal emission of 

electromagnetic waves as being the result of impressed fluctuating currents inside 

an object having a positive absolute temperature [39–58]. If the object is also 

subjected to external illumination then one must explicitly solve the scattering 

problem featuring both remote time-harmonic and local fluctuating impressed 

currents. A typical geophysical example is a cloud of particles in a planetary at-

mosphere which can both be illuminated by the incident stellar light at near-

infrared wavelengths and emit its own near-infrared radiation [59–63].  

Consistent with the above discussion, the main objective of this tutorial is to 

outline a maximally general and self-consistent theoretical formalism describing 

electromagnetic scattering by an arbitrary finite object in the presence of arbitrar-

ily distributed impressed currents, some of which can be far removed from the 

object and some can reside in its vicinity, including inside the object. To explicit-

ly allow for internal inhomogeneity of the scattering object, we use the frame-

work of the volume integral equation (VIE) formulation of electromagnetic scat-

tering, couple it with the notion of the transition operator, and exploit the funda-

mental symmetry property of this operator. Some aspects of the resulting formal-

ism are scattered over the existing literature and some represent a relatively 

straightforward extension of previously published results (see, e.g., Refs. 

[11,42,44,54,57,64–68]). Yet given the compactness, uniformity, and generality 

of this formalism, it appears worthwhile to summarize it in the form of a self-

contained stand-alone tutorial. Moreover, we also discuss some novel results, 

including an elegant proof of fundamental symmetry (reciprocity) relations, a 

streamlined derivation of the Foldy equations, and an explicit expression of the 

transition operator of a multi-component object in terms of the corresponding 

individual-component transition operators.  

2.  Scattering problem 

The derivation of the macroscopic Maxwell equations from either the QED 

or the microscopic Maxwell–Lorentz equations is still incomplete [69]. There-

fore, we will invoke the former essentially as a set of phenomenological axioms 

[34–38]. In what follows, we imply the monochromatic exp( i )t  dependence 

of all fields and sources, where t is time,  is the angular frequency, and 
1 2i ( 1) .  Consider a fixed finite object embedded in an infinite medium that 

is assumed to be homogeneous, linear, isotropic, and potentially absorbing. Ac-

cordingly, the complex permittivity of the host medium 1  can have a non-zero 

imaginary part: 10 arg( ) . The object can be either a single connected 

body or a cluster consisting of a finite number N  of non-overlapping connected 

components; it occupies collectively an “interior” region INTV  defined by 
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INT INT
1

 ,
N

i

i

V V   (1) 

where INT
iV  is the volume occupied by the ith component (see Fig 

. 1). The object is surrounded by the infinite exterior domain EXTV  such that 

3
INT EXT ,V V  where 3  is the entire three-dimensional space. The interi-

or region is filled with isotropic, linear, and possibly inhomogeneous materials. 

Point O serves as the common origin of all position vectors.  

We assume that in addition to the object, there are 0 M  impressed 

source currents occupying finite connected non-overlapping volumes S .iV  As ex-

plained above, the term “impressed” means that these source currents are unaf-

fected by the resulting electromagnetic field existing in the presence of the scat-

tering object.  

Finally, we assume that both the infinite host medium and the finite scatter-

ing object are non-magnetic. Then the frequency-domain Maxwell curl equations 

for the monochromatic electromagnetic field can be written in SI units as fol-

lows: 

 

Fig. 1. Schematic representation of the scattering problem. 
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0

EXTS
1

( ) i ( )
    ,

( ) i ( ) ( )
V

E r H r
r

H r E r J r
 (2) 

0

INTS
2

( ) i ( )
    ,

( ) i ( ) ( ) ( )
V

E r H r
r

H r r E r J r
 (3) 

where ( )E r  is the electric and ( )H r  the magnetic field; 0  is the magnetic 

permeability of a vacuum; 2 ( )r  is the complex permittivity of the object; and 

S( )J r  is the impressed source current. We assume for simplicity that 2 ( )r  is a 

sufficiently smooth function of r inside each INT
iV  so that the interior of INT

iV  

contains no sharp optical interfaces. It is also clear that  

S( )J r 0  if S ,Vr   (4) 

where 0 is a zero vector and SV  is the total volume occupied by the impressed 

sources: 

S S
1

 .
M

i

i

V V   (5) 

The corresponding boundary conditions read:   

 
1 2

INT
1 2

ˆ [ ( ) ( )]
    ,

ˆ [ ( ) ( )]
S

n E r E r 0
r

n H r H r 0
  (6) 

where the subscripts 1 and 2 correspond to the exterior and interior sides of the 

boundary INTS  of the object, respectively, and n̂  is the local outward normal to 

INT .S  According to Eq. (1), INTS  is the union of the closed surfaces of the N 

connected components of the object: 

INT INT
1

 .
N

i

i

S S   (7) 

For simplicity, we assume INTS  to be sufficiently smooth (e.g., lacking sharp 

edges and corners). 

To guarantee the uniqueness of solution of the general scattering problem 

[70–73], we postulate that besides satisfying the boundary conditions (6), the to-

tal electromagnetic field satisfies the following condition at infinity:  

0 1lim ( ) ( ) ,
r

rr H r E r 0   (8) 

where r r  is the distance from the origin to the observation point (Fig. 1). 
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The limit (8) holds uniformly over all outgoing directions ˆ rr r  and is tradi-

tionally called the Sommerfeld [74,75] or Silver–Müller [2,76] radiation condi-

tion. 

The above-formulated scattering problem is well defined mathematically 

and, as stated, encompasses a broad range of scenarios in terms of the morpholo-

gy of the source regions and that of the scattering object. Yet it could be criti-

cized for not specifying explicitly what physical mechanisms are responsible for 

the impressed sources. This criticism may be especially relevant in the case of 

impressed source currents residing inside the object (see, e.g., the discussion in 

Ref. [77]). Microphysically this implies that the same elementary charges con-

tribute to the impressed currents as well as to the secondary conducting currents. 

As we have mentioned in the Introduction, this assumption is at the very heart of 

fluctuational electrodynamics. Nevertheless, it should be recognized that in some 

cases the model of internal impressed source currents may be pushing the classi-

cal macroscopic electromagnetics beyond its conceptual realm and may require 

an explicit derivation from quantum physics. A relevant mathematical issue can 

be the interchange of the order of averaging over a microscopic volume in the 

definition of both macroscopic fields and impressed currents.    

3.  Modified volume integral equation 

Eqs. (2) and (3) demonstrate that if ( )E r  is known everywhere in space then 

( )H r  can also be determined everywhere in space. We will therefore focus on 

the derivation of the modified VIE for the electric field only.  

Eqs. (2) and (3) imply the following vector wave equations for ( )E r : 

2 S
1 0 EXT( ) ( ) i ( ),     ,k VE r E r J r r  (9) 

2
2 0( ) ( ) ( )E r r E r

S
0 INTi ( ),     .VJ r r  (10) 

These two equations can be rewritten as a single inhomogeneous differential 

equation 

2 S 3
1 0( ) ( ) ( ) i ( ),     ,kE r E r j r J r r  (11) 

where 

( ) ( ) ( )Uj r r E r   (12)  

is the forcing function, 

EXT

2 2
2 0 1 INT

0,   ,
( )

( ) ,   

V
U

k V

r
r

r r
  (13) 

is the potential function, and 
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1 1 0k   (14) 

is the wave number in the host medium. A key property of the forcing function is 

that it vanishes everywhere outside the finite interior region INT .V  

We can now exploit the fact that any solution of the inhomogeneous linear 

differential equation (11) can be expressed as a sum of three parts: (i) a solution 

of the respective homogeneous equation with the right-hand side identically 

equal to zero; (ii) a particular solution of the inhomogeneous equation 

S 2 S S 3
1 0( ) ( ) i ( ),     ;kE r E r J r r  (15) 

and (iii) a particular solution of the inhomogeneous equation 

sca 2 sca 3
1( ) ( ) ( ),     .kE r E r j r r  (16) 

The first part defines the field that would exist in free space in the absence of 

the object and of the impressed sources. Based on physical grounds, it is postu-

lated to be equal to zero. In other words, we do not consider artificial impressed 

incident fields propagating from infinity (see also the discussion below). 

The second part corresponds to the situation with no scattering object pre-

sent. The physically appropriate particular solution of Eq. (15) satisfying the ra-

diation condition at infinity is well known [37,78,79]: 

S

S 3 S
0( ) i d ( , ) ( ),

V
GE r r r r J r   (17) 

where  

2
1

1
( , ) ( , )G I g

k
r r r r   (18) 

is the free-space dyadic Green’s function, I  is the identity (or unit) dyadic,  

denotes the dyadic product of two vectors, and 

1exp i
( , )

4

k
g

r r
r r

r r
  (19)  

is the scalar Green’s function. S( )E r  can be referred to as the free-space source-

generated field.   

The third part is the scattered field sca ( )E r  corresponding to the forcing 

function ( )j r  and satisfying the boundary conditions (6) as well as the radiation 

condition (8).     

We can now precisely follow the line of the derivation detailed in Section 4.3 

of Ref. [19] and deduce:  
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INT

sca 3 3( ) d ( , ) ( ),    .
V

GE r r r r j r r  (20)  

It is important to note that strictly speaking, Eqs. (17) and (20) imply a non-

integrable singularity when INTVr  and/or S.Vr  The standard implicit rem-

edy [37,80,81] is to assume that the integration is carried in the following specif-

ic principal-value sense: 

3d ( , ) ( )
V

G Fr r r r  

0 0

3

20 \
1

1
      lim d ( , ) ( ) ( ) ,

3V V V
G F F I

k
r r r r r  (21)  

where 0V  is a spherical exclusion volume around r. This aspect of the VIE for-

malism will be further discussed in the concluding section.  

The final step is to substitute Eq. (12) in Eq. (20), which yields   

S sca( ) ( ) ( ),E r E r E r   (22) 

where the scattered field is given by 

INT

sca 3( ) d ( ) ( , ) ( ).
V

U GE r r r r r E r  (23) 

Eqs. (17), (22), and (23) yield collectively the sought modification of the conven-

tional VIE explicitly accounting for the impressed source currents rather than 

impressed incident fields: 

S

3 S
0( ) i d ( , ) ( )

V
GE r r r r J r  

             
INT

3 3d ( ) ( , ) ( ),     .
V

U Gr r r r E r r  (24) 

The only formal difference of the modified VIE from its conventional coun-

terpart [19] is that the impressed incident field inc( )E r  in the latter has been re-

placed by the free-space source-generated field S( )E r  in the former. This result 

serves to provide justification to the common practice of “hiding” impressed 

sources by assuming that the impressed “incident” field they could generate is 

known a priori.  

Finally we note that owing to Eqs. (4) and (13), the integration domains in 

Eqs. (17), (23), and (24) can formally be extended to cover the entire space 
3.  
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4.  Transition dyadic 

As usual, we assume that the linearity of and the specific integration domain in 

Eq. (23) imply the possibility of expressing the scattered electric field linearly in 

terms of the source-generated field inside INT .V  In other words, we assume that 

for any S( ),E r  ( ) ( )U r E r  can be expressed in terms of S( )E r  via a linear inte-

gral operator (called the transition operator)  

INT

3 S
INT( ) ( ) d ( , ) ( ),   

V
U T Vr E r r r r E r r  (25) 

whose kernel ( , )T r r  is called the transition dyadic. This quantity was first in-

troduced in the framework of electromagnetic scattering by Tsang and Kong 

[65]. Substituting this expression in Eq. (23) yields 

INT INT

sca 3 3 S( ) d ( , ) d ( , ) ( ).
V V

G TE r r r r r r r E r    (26) 

Eqs. (22), (23), and (26) then imply that ( , )T r r  satisfies the following Lipp-

mann–Schwinger integral equation:  

( , ) ( ) ( )T U Ir r r r r  

                  
INT

3( ) d ( , ) ( ,  ).
V

U G Tr r r r r r  (27) 

A fundamental property of the transition dyadic explicit in Eq. (27) is that it 

is fully defined by the scattering object alone (i.e., by the spatial distribution of 

the electric permittivity throughout INT )V  and is completely independent of the 

impressed sources. In other words, ( , )T r r  serves as a unique and complete 

“scattering identifier” of the object. 

Eq. (27) defines the transition dyadic only inside the scattering object. It is 

convenient to complete the definition by assuming that    

( , ) 0T r r  unless INTVr  and INT ,Vr  (28) 

where 0  is a zero dyad. This implies that the integration domain in Eqs. (26) and 

(27) can formally be extended to the entire space 
3.  

5.  Additivity 

Based on the fundamental principle of superposition (i.e., the linearity of the 

electromagnetic scattering problem), we can expect the additivity of the total 

fields generated individually by different impressed sources. Indeed, the individ-
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ual total field generated by the ith source region S
iV  in the absence of all the oth-

er sources is the solution of the VIE 

S

3 S
0( ) i d ( , ) ( )

i

i

V
GE r r r r J r  

              
INT

3d ( ) ( , ) ( ).i

V
U Gr r r r E r  (29) 

Summing up these M fields yields Eq. (24) in which   

1

( ) ( ).

M
i

i

E r E r   (30) 

It is easily seen that the additivity of the total fields generated by different source 

regions is also implicit in Eq. (26). 

6.  Source Green’s dyadic 

Eqs. (17), (22), and (26) imply that the total field can be expressed in terms 

of the impressed sources S( )J r  according to 

S

3 S
0 S( ) i d ( , ) ( ),

V
GE r r r r J r   (31) 

where  

S( , ) ( , )G Gr r r r  

                    
INT

3d ( , )
V

Gr r r  

                     
INT

3d ( , ) ( , )
V

T Gr r r r r   (32) 

is the source Green’s dyadic.  

It is seen that like the transition dyadic, S( , )G r r  is completely independent 

of the impressed sources. Furthermore, Eq. (32) shows that S( , )G r r  is defined 

everywhere in 
3 ,  which eliminates the need to define separate source Green’s 

dyadics by considering points r  and  r  in pairs of specific domains.  

It is easy to verify that Eqs. (24) and (31) yield the following closed-form in-

tegral equation for the source Green’s dyadic [65]: 

S( , ) ( , )G Gr r r r
INT

3
Sd ( ) ( , ) ( , ).

V
U G Gr r r r r r  (33) 

As before, the integration domains in Eqs. (32) and (33) can formally be ex-
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tended to encompass the entire space. 

7.  Short-hand integral-operator notation 

Let us define the potential dyadic 

( , ) ( ) ( ) ,U U Ir r r r r   (34) 

where ( )r  is the three-dimensional delta function, and introduce short-hand in-

tegral-operator notation according to 

3

3ˆ d ( , ) ( )BE Br r r E r   (35) 

and 

ˆ ˆˆ ˆBC E B CE   (36) 

(note that this use of a caret above an Italic character to denote an integral opera-

tor should not be confused with a caret above a bold-face upright character de-

noting a unit vector). Then the main formulas of the preceding section can be re-

written as follows: 

S S
0

ˆiE GJ   (cf. Eq. (17)),  (37) 

S S
0

ˆ ˆ ˆˆ ˆiE GJ GUE E GUE    (cf. Eq. (24)),  (38) 

Sˆ ˆUE TE   (cf. Eq. (25)),  (39) 

S Sˆ ˆE E GTE   (cf. Eqs. (22) and (26)), (40) 

ˆˆ ˆ ˆ ˆT U UGT   (cf. Eq. (27)),  (41) 

S
0 S

ˆiE G J    (cf. Eq. (31)),  (42) 

S
ˆ ˆ ˆ ˆˆG G GTG   (cf. Eq. (32)),  (43) 

and 

S S
ˆ ˆ ˆ ˆˆG G GUG   (cf. Eq. (33)).  (44) 

where the order of the operators is essential and cannot be changed arbitrarily. 

Let us now define the pseudo-adjoint (transposed) integral operator tB̂  ac-

cording to Ref. [68]: 

3

T
t 3ˆ d ( , ) ( ),B E Br r r E r   (45) 

where T denotes the conventional transpose of a dyadic. It is analogous to the 
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(Hermitian) adjoint operator B̂  but is based on the pseudo inner product instead 

of the standard inner product of the vector space 2 3 3( )L  [68]. Alternatively, tB̂  

can be defined as  

tˆ ˆ ˆ ˆ ,B ZB Z   (46) 

where Ẑ  is the antilinear operator performing pointwise complex conjugation 

[82]. In particular ˆ ˆ ˆ,ZZ I  where the unit integral operator Î  has the dyadic 

I


)( rr   as its kernel. 

Taking pseudo adjoint of an operator has many properties analogous to those 

of matrix or dyadic transposition as well as those of the Hermitian adjoint. In par-

ticular, the dyadic identity 

T
T TBC C B   (47) 

(see, e.g., Appendix A in Ref. [19]) and Eq. (45) yield 

t
t tˆ ˆˆ ˆ ,BC C B   (48) 

which in turn implies 

1 t
t 1ˆ ˆ ,B B   (49) 

where one inverse exists and is bounded if and only if the other one exists and is 

bounded. Eq. (49) is derived by a direct multiplication of tB̂  by 
t

1B̂  in both 

possible orders (see also Ref. [68]). 

We call an integral operator pseudo self-adjoint if it is equal to its own pseudo 

adjoint, 
tˆ ˆ ,B B  which is equivalent to its dyadic kernel being (complex) sym-

metric, i.e., satisfying 

T

( , ) ( , ) ,B Br r r r   (50) 

which includes the interchange of the arguments as well as dyadic transposition. 

Note that pseudo self-adjoint is the simplest case of a “complex symmetric” line-

ar operator defined in Ref. [82] for a specific choice of ˆ ;Z  hence we use the for-

mer term to avoid ambiguity.  

Importantly, the free-space dyadic Green’s operator Ĝ  is pseudo self-adjoint, 

and the same is obviously true of Û  for isotropic (as considered in this tutorial) 

or, more generally, for any reciprocal media [83]. 

As discussed in Section 3, we assume that the VIE (38) has a solution, and 
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this solution is unique. This implies that the operator UGI ˆˆˆ   is (uniquely) in-

vertible. The invertibility of the operator UGI ˆˆˆ   ensures, in turn, the existence 

of a unique solution of Eq. (44). The operator GUI ˆˆˆ   is the pseudo adjoint of 

UGI ˆˆˆ   (as a consequence of the pseudo self-adjointness of the multiplicative 

factors and Eq. (48)) and, according to Eq. (49), is also invertible, thereby ensur-

ing the existence of a unique solution of Eq. (41).   

8.  Symmetry of the transition dyadic and of the source Green’s dyadic 

A fundamental and useful property of the transition dyadic is the symmetry 

relation which follows from the pseudo self-adjointness of the corresponding in-

tegral operator [57]: 

T
3( , ) ( , ) ,    , .T Tr r r r r r   (51) 

A somewhat informal way to infer Eq. (51) is to iterate Eq. (41): 

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ .T U UGU UGUGU     (52) 

Since each term in this expansion is pseudo self-adjoint, their sum must also be a 

pseudo self-adjoint operator. However, there is no guarantee that the series (52) 

always converges, which calls for a more formal proof of the symmetry relation 

(51). 

Taking pseudo adjoint of both sides of Eq. (41), recalling Eq. (48), and ac-

counting for the pseudo self-adjointness of Û  and Ĝ  yields 

t t ˆˆ ˆ ˆ ˆ .T U T GU   (53) 

Upon left-multiplying this formula by ˆˆ ˆI UG  we have 

t t t tˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆT UGT U UGU T GU UGT GU  (54) 

or 

t tˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ 0,T U UGT I GU   (55) 

where 0̂  is a zero operator. The invertibility of the operator ˆˆ ˆI GU  discussed 

in the preceding section implies 

t tˆˆ ˆ ˆ ˆ .T U UGT   (56) 

Thus tT̂  satisfies the same equation (41) as ˆ.T  Since this equation has a unique 

solution, we arrive at the symmetry relation 

tˆ ˆ ,T T   (57) 
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that is, Eq. (51).  

 It is also easily shown that Eq. (43) coupled with the symmetry relation (57), 

the pseudo self-adjointness of the free-space Green’s operator, and Eq. (48) im-

plies the pseudo self-adjointness of the source Green’s operator: 

t
S S

ˆ ˆ ,G G   (58) 

or, in terms of the source Green’s dyadic, 

T
3

S S( , ) ( , ) ,    , .G Gr r r r r r   (59) 

It is in fact remarkable how the straightforward use of the pseudo self-

adjointness of the transition operator allows one to completely bypass the cum-

bersome use of the Lorentz reciprocity in the derivation of the symmetry of the 

source Green’s dyadic (cf. Ref. [44]). The relation between reciprocity and pseu-

do self-adjointness of integral operators was discussed in Ref. [68], but without 

an explicit derivation for an arbitrary scattering object. 

9.  Far-field point-like source 

To give an instructive example of applying Eqs. (17) and (26), let us consider 

a point-like source located in the far zone of the entire volume INTV  and centered 

at Sr  (see Fig. 2): 

 

Fig. 2.  Impressed point-like source located in the far zone of the scattering object. 
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S S
S 0( ) ( ) .J r r r J   (60) 

To this end, we use the asymptotic formula  

1 S
S S S 1 S

S

exp(i )
ˆ ˆ ˆ( , ) exp i

4

k r
G I k

r
r r r r r r  (61) 

valid in the limit 1 S ,k r  S INT ,r R  and 2
S 1 INTr k R  (see 

Appendix B of Ref. [19]), where S Sr r  is the distance from the origin to the 

source; S S S
ˆ rr r  is the unit vector pointing from the origin to the source; and 

INTR  is the radius of the smallest circumscribing sphere of the object centered at 

O. Then for INT ,Vr  

S
0 1 Ŝ( ) i exp ikE r r r  

                 S1 S
S S 0

S

exp(i )
ˆ ˆ .

4

k r
I

r
r r J  (62) 

Obviously, S( )E r  is a transverse, homogeneous, locally plane electromagnetic 

wave 

S inc inc
0 1

ˆ( ) exp ikE r E n r   (63) 

propagating in the direction  

inc
S

ˆ ˆn r   (64) 

(see Fig. 2) and having the vector amplitude 

inc S1 S
0 0 S S 0

S

exp(i )
ˆ ˆi

4

k r
I

r
E r r J  (65) 

such that  

inc inc
0

ˆ 0.E n   (66) 

Then the result of evaluating Eq. (26) for the impressed source (60) is  

INT

sca 3( ) d ( , )
V

GE r r r r   

                 
INT

3 inc inc
0 1

ˆd ( , ) exp i .
V

T kr r r E n r    (67) 

This formula reproduces the result of the traditional approach to electromagnetic 
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scattering based on the postulate that the homogeneous plane wave inc( )E r  

inc inc
0 1

ˆexp ikE n r  is the impressed incident field [1,5,10,19]. This demonstrates 

how a sufficiently distant point-like impressed source can effectively be “hidden” 

by replacing it with an impressed field in the form of a homogeneous plane elec-

tromagnetic wave propagating in a source-free space. 

10.  Far-field and general scattering dyadics 

A well-known result of the conventional theory of electromagnetic scattering 

is the calculation of the scattered field generated by an impressed homogeneous 

plane electromagnetic wave in the far zone of the entire object (see, e.g., Refs. 

[1,5,10,19]). To recover this result, we use the assumptions and formulas of the 

preceding section and invoke the following asymptotic form of the first dyadic 

Green’s function on the right-hand side of Eq. (67): 

1
1

exp(i )
ˆ ˆ ˆ( , ) exp i ,

4

k r
G I k

r
r r r r r r  (68) 

where ,r r  ˆ ,rr r  and it is assumed that 1 ,k r  INT ,r R  and 

2
1 INT .r k R  The result is the scattered field in the form of a transverse 

outgoing spherical wave given by  

sca inc inc1
0

exp(i )
ˆ ˆ( )  , ,

k r
A

r
E r r n E   (69) 

where  

INT

inc 3
1

1
ˆ ˆ ˆ ˆ ˆ( ,  ) d exp i

4 V
A I kr n r r r r r        

                       
INT

3 inc incˆ ˆd ( , )
V

T Ir r r n n  

                       inc
1
ˆexp ik n r   (70) 

is the so-called far-field scattering dyadic, while the radial unit vector r̂  plays the 

role of the scattering direction. It is easily seen indeed that 

sca ˆ( ) 0.E r r   (71) 

Note that the dyadic factor 
inc incˆ ˆI n n  on the right-hand side of Eq. (70) 

does not follow directly from Eq. (67) and is included to make the far-field scat-

tering dyadic reciprocal as a direct consequence of the symmetry relation (51) 

and Eq. (47): 
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T
inc incˆ ˆ ˆ ˆ, , .A An r r n   (72) 

It is easily seen, however, that since the field (63) is a transverse plane electro-

magnetic wave, including this factor does not change Eq. (69) owing to Eq. (66):  
inc inc inc inc

0 0
ˆ ˆ .I n n E E   

Note that in contrast to Eq. (51), the reciprocity relation (72) additionally in-

cludes the reversal of the incidence and scattering directions. The reciprocity of 

the far-field scattering dyadic has been well known in the discipline of electro-

magnetic scattering since its original (and somewhat less straightforward) deriva-

tion by Saxon [84]. In fact, it serves as the very origin of many reciprocity rela-

tions in the theory of radiative transfer and coherent backscattering [13]. Fur-

thermore, it has routinely been used for testing the results of numerical simula-

tions of electromagnetic scattering (see, e.g., Ref. [85]). 

It is useful to generalize Eq. (69) by introducing the scattering dyadic 
incˆ,S r n  operating throughout the entire space:  

sca inc inc 3
0

ˆ( ) , ,    .SE r r n E r   (73) 

Eq. (67) then implies 

INT INT

inc 3 3ˆ, d ( , ) d ( , )
V V

S G Tr n r r r r r r     

                      inc inc inc
1

ˆ ˆ ˆexp i .I kn n n r    (74) 

Note again that the inclusion of the dyadic factor 
inc incˆ ˆI n n  is not strictly 

necessary, but serves to make Eq. (74) asymptotically consistent with Eq. (69), as 

follows: 

inc inc1exp(i )
ˆ ˆ ˆ ˆ,  , .

r

k r
S r A

r
r n r n   (75) 

11.  Far-zone source Green’s dyadic 

Eq. (32) and the symmetry relation (59) imply a fundamental relationship be-

tween the general scattering dyadic incˆ,S r n  introduced in the preceding sec-

tion and the far-zone limit of the source Green’s dyadic. Indeed, we first note that 

T

S 0 S 0( , ) ( , )G Gr r r r  

                      
INT

3
0 0( , ) d ( , )

V
G Gr r r r r  
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INT

3d ( , ) ( , ).
V

T Gr r r r r   (76) 

Let us now assume that 1 ,k r  INT ,r R  and 2
1 INT ,r k R  so 

that  

1
0 1 0

exp(i )
ˆ ˆ ˆ( , ) exp i

4

k r
G I k

r
r r r r r r  (77) 

and 

1
1

exp(i )
ˆ ˆ ˆ( , ) exp i .

4

k r
G I k

r
r r r r r r  (78) 

Then comparison with Eq. (74) makes it obvious that 

T
1

S 0 1 0 0

exp(i )
ˆ ˆlim ( , ) exp i ( , )

4r

k r
G k I S

r
r r r r r r      

                                ˆ ˆI r r   (79) 

or 

1
S 0

exp(i )
ˆ ˆ ˆlim ( ,  )

4r

k r
G r I

r
r r r r       

                               
T

1 0 0
ˆ ˆexp i ( , ) .k I Sr r r r              (80) 

In other words, the field generated by the object at a far-field observation point 

ˆrr  in response to the point-like source centered at an arbitrary 3
0r  can be 

expressed in terms of the total field at 0r  generated by the object in response to a 

far-field point-like source creating a homogeneous quasi-plane electromagnetic 

wave propagating in the direction r̂  (see Fig. 3). 

Eq. (80) generalizes Eq. (7.2.54) of Ref. [44] and can be considered an ex-

tension of Eq. (68). Interestingly, it can be used to calculate the energy radiated 

by a point-like source to infinity (as related to the radiative part of the enhance-

ment of the decay rate of the point emitter near a nanoparticle [86]) using any 

standard computer solver capable of calculating the distribution of ( )E r  in the 

vicinity of the particle (the so-called near-field) under the plane-wave excitation 

[87].  

Note also that the derivations in Sections 9–11 can be further streamlined by 

introducing additional operators. Proving their pseudo self-adjointness then im-

mediately implies the corresponding reciprocity relations, as will be reported 

elsewhere. 
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12.  Generalized Foldy equations 

Let us now assume that 2N  in Fig. 1 and generalize the famous Foldy 

equations [64] by making explicit use of the representation of the scattering ob-

ject as a collection of non-overlapping distinct components. Let us re-write Eq. 

(34) as follows: 

1

( , ) ( , ),

N

i

i

U Ur r r r   (81) 

where 

INT

INT

0,     ,
( , )  

( ) ( ) ,     .

i

i i

V
U

U I V

r
r r

r r r r
 (82) 

The next step is to introduce the ith-component transition dyadic ( , )iT r r  with 

respect to the common coordinate system centered at O as the one satisfying the 

individual Lippmann–Schwinger equation formulated for the ith component of 

the object as if all the other components did not exist: 

ˆˆ ˆ ˆ ˆ ,i i i iT U U GT   (83) 

where we again use the operator notation introduced in Section 7. We complete 

the definition of the component transition dyadic by setting 

 

Fig. 3.  Interpretation of Eq. (80). 
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( , ) 0iT r r  unless INT
iVr  and INT

iVr . (84) 

Let us further define the ith partial “exciting” field ( )iE r  according to  

ˆˆ ˆ
i iE I GT E   (85) 

(cf. Eq. (40)), where the invertibility of ˆˆ ˆ
iI GT  is discussed later in this section. 

Eqs. (83) and (85) then imply 

ˆ ˆ .i i iT E U E   (86) 

In other words, iE  is the field that is transformed by the ith component transition 

dyadic into the polarization density inside this component (cf. Eq. (39)). Sum-

ming up all such partial exciting fields and using Eqs. (38) and (81) yields 

S

1

ˆ ˆ .

N

i i

i

E E GT E   (87) 

This, together with Eq. (85), leads to the following closed system of N integral 

equations for iE :  

S

( ) 1

ˆ ˆ .

N

i j j

j i

E E GT E   (88) 

The electromagnetic Foldy equations (87) and (88) have been derived previ-

ously (see, e.g., Refs. [10,11,19,65]) but in a less straightforward way. It is easily 

seen that they imply the Neumann series 

S S S

1     1
( ) 1

ˆ ˆ ˆˆ ˆ ˆ
N N

i i j

i i
j i

E E GT E GT GT E   

         S

    1
( ) 1
( ) 1

ˆ ˆ ˆˆ ˆ ˆ .

N

i j l

i
j i
l j

GT GT GT E    (89) 

which has often been cited as revealing “multiple scattering” by a multi-

component object. It has been argued, however, that in the frequency domain, 

multiple scattering is a mathematical idealization rather than an actual physical 

phenomenon [88,89]. Another problem with the Neumann expansion is that it 

can be divergent [90,91]. 

Let us further rewrite Eqs. (41) and (83) as follows: 
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1
ˆˆ ˆ ˆ ˆ ,U T I GT   (90) 

1
ˆˆ ˆ ˆ ˆ .i i iU T I GT   (91) 

The invertibility of the operator ˆˆ ˆI GT  follows from  

ˆ ˆˆ ˆ ˆ ˆ ˆ,I GU I GT I   (92) 

which is a direct consequence of Eq. (41), and the invertibility of UGI ˆˆˆ   dis-

cussed in Section 7, while the invertibility of ˆˆ ˆ
iI GT  is proven analogously.  

Equations (81), (90), and (91) lead to a compact implicit relation between the 

total transition operator of the entire N-component object,  ˆ ,T  and the individual-

component transition operators :ˆ
iT  

1 1

1

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ .

N

i i

i

T I GT T I GT       (93) 

The explicit expression for T̂  follows from Eqs. (41), (81), and (91):  

1
ˆˆ ˆ ˆ ˆT I UG U  

    

1
1 1

1 1

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ .

N N

i i i i

i i

I T I GT G T I GT   (94) 

Let us now define 

1
ˆ ˆˆ ˆ ˆ ˆ ˆ .i iX I GT I GT   (95) 

Together with Eq. (93), this yields 

1

ˆ ˆ ˆ
N

i i

i

T T X   (96) 

and 

( ) 1

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

N

i i i j j

j i

X I GT GT X I G T X   (97) 

which are completely analogous to Eqs. (87) and (88), since Sˆ .i iE X E  Iterat-

ing Eqs. (96) and (97), we obtain the following representation:  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

23 

 

1     1     1
( ) 1 ( ) 1

( ) 1

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ .

N N N

i i j i j l

i i i
j i j i

l j

T T T GT T GT GT  (98) 

Of course, this series can also be derived as a direct corollary of Eqs. (40) and 

(89). 

While being an analytically convenient and visual “multiple-scattering” rep-

resentation, Eq. (98) is just the simplest iterative solution of Eq. (97). It does not 

necessarily converge, and even if it does, it is slower than more advanced numer-

ical iterative methods, e.g., the conjugate-gradient technique, applied to the same 

equation. Thе latter has been previously discussed in the framework of the super-

position T-matrix method and its numerical implementations such as that in Refs. 

[92–94]. Alternatively, one can solve Eq. (41) or the first part of Eq. (94) for T̂  

using a direct or iterative procedure, the benefit being that usually the individual 

transition operators ˆ
iT  do not need to be known or evaluated separately. If the 

individual iT̂  are known then the computational cost of a single iteration will be 

comparable for both approaches. However, the iterative solution of Eq. (97) is 

expected to converge faster for well-separated moderately-sized (relative to the 

wavelength) particles, since most of the iterations in Eq. (41) will be spent on 

refining the details of each particle independently, which is equivalent to evaluat-

ing all ˆ .iT  

13.  Final remarks 

Two implicit yet essential limitations of our discussion have so far been the 

following. First, we have refrained from the direct treatment of the singularity of 

the free-space dyadic Green’s function ( , )G r r  at points r inside the cumulative 

scattering volume INTV  and/or inside the cumulative source volume S.V  Second, 

we have assumed that INTS  is sufficiently smooth and that the dielectric permit-

tivity is a sufficiently smooth function of coordinates throughout each component 

volume INT.iV   

These two particulate aspects of the VIE formalism have thoroughly been 

analyzed in Ref. [73]. In view of that recent comprehensive study, one can safely 

assume that (i) all our formulas are valid in the sense of Eq. (21); and (ii) it is 

straightforward to further generalize all our results by considering the scattering 

object in the form of an arbitrary finite group of components made of nonmag-

netic isotropic materials, including those with edges, corners, and intersecting 

internal interfaces. 

The standard VIE formalism originally introduced by Saxon [95] has already 

been applied to a plethora of problems ranging from the development of the nu-
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merically exact “elastic” and “thermal” discrete dipole approximations (see, e.g., 

Refs. [53,81,96–98] and references therein) to the first-principles derivation of 

the “elastic” radiative transfer theory [13,19]. We hope that the extended formal-

ism summarized in this tutorial brings a certain degree of self-consistency and 

closure and will help solve even more complex problems, including the first-

principles derivation of the “thermal” radiative transfer theory.     
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