Update on Solar Coronal Jets

Alphonse C. Sterling

Contributions from: Ronald L. Moore Navdeep Panesar David Falconer Sachiko Akiyama Seiji Yashiro Nat Gopalswamy

Supported by NASA's HGI program, NASA NPP program, and the MSFC/Hinode project.)

Cirtain et al. (2007)

Sterling et al. (2017)

Introduction: Solar X-Ray Jets

- Observed since the Yohkoh days (Shibata et al. 1992; also Shimojo et al. 1996, etc. Reviewed by Raouafi et al. 2016.)
- Yohkoh (SXT) saw them mainly in active regions.
- Hinode/XRT found them to be plentiful in polar coronal holes (Cirtain et al. 2007; also Savcheva et al. 2007, etc.)
- In polar coronal holes: size ~50,000 km x 8000 km; rate ~60/day (Savcheva et al. 2007).
- Often have a "hot loop" at the jet's base.
- Previously often-discussed mechanism is based on emerging flux ("emerging-flux model"). (Shibata et al. 1992; see also Moore et al. 2010.)
- Many of the above ideas deduced from SXRs, and pre-SDO AIA observations.

Emerging-Flux Model for (X-Ray) Jets

Supported by numerical simulations: Yokoyama & Shibata (1995), Nishizuka et al. (2008), Archontis et al. (2013), Moreno-Insertis et al. (2013), Fang et al. (2014), etc. (Cf. Heyvaerts, Priest, & Rust 1977.)

Coronal Hole Jets: "Minifilament eruptions" XRT AIA 193

Sterling et al. (Nature, 2015): 20 Polar CH jets.

XRT

AIA 193

Event 12

AIA 193

Event 3

"Normal" Filament Eruption (TRACE)

Minifilament-Eruption Model for (X-Ray) Jets

Sterling et al. (2015, 2016, 2017)

Quite Sun jets work the same way (Panesar et al. 2016b) Recently modeled by Wyper, Antiochos, & Devore (Nature, 2017) A. Sterling

Quiet Sun Jets — Similar to PCH jets

AIA 171

AIA 94

(Panesar et al. 2016b)

Same for QS jets: Occur at cancelation sites.

a 60 8 Negative Flux (10¹⁸ Mx) G 9 2 Distance (pixels) 40 and the second 20 Ave. Cancelation 02:00 01:00 03:00 04:00 12:00 15:00 18:00 21:00 00:00 03:00 Start Time (21-Sep-12 00:29:49) Start Time (20-Sep-12 11:53:27) rate: ~10¹⁸ Mx/hr. 60 1.6 50 1.5 Positive Flux (10¹⁹ Mx) Distance (pixels) 40 1.4 30 1.3 20 1.2 10 1.1 1.0 03:00 04:00 05:00 01:00 02:00 20:00 22:00 00:00 02:00 04:00 Start Time (13-Nov-12 00:57:27) Start Time (12-Nov-12 18:06:49)

Panesar, Sterling, & Moore (2016b) — 10 jets.

Active Region Coronal Jets

- Yohkoh studies (Shibata et al., Shimojo et al., many others).
- Raouafi et al. (2016).
- Panesar et al. (2016a).
- Sterling et al. (2016, 2017).

An Example: AR Jets 14 Jan 2015 (NOAA AR 12259).

- AIA, HMI, Hinode, IRIS
- Sterling et al. (2017)

Hinode/XRT

Coronal Jets in Active Regions

Sterling et al. (2017)

A. Sterling

_

Sterling et al. (2017)

HMI of jetting region

Jets occur at *flux cancelation* locations!

AR jets (Sterling et al. 2017)

Jets and CMEs: History (sampling)

- Wang et al. (1998) EIT and LASCO white-light jets.
 - Gilbert et al. (2001), Dobrzycka et al. (2003); "narrow CMEs" (angular width $\lesssim 15^{\circ}$).
- Nisticò et al. (2009) STEREO; 5/79 "micro-CMEs"/jets.
- Several single-event studies:
 - Hong et al. (2011) Single-event study of a micro-CME originating from a blowout jet triggered by flux cancelation.
 - Shen et al. (2012) Bubble-like CME from a blowout jet (SDO, STEREO, H α).
- See Raouafi et al. (2016) review for more.

Jets and CMEs: Some recent

- Moore et al (2015): Relations or on al hole jets that extend into outer corona.
- Sterling et al. (2016): "CMEs" from AR jets.
- Panesar et al. (2016a): A "different type" of CME from AR jets. (Bemporad et al. 2005.)

• (Narrow CMEs = white-light jets.)

Moore et al. (2015)

- Selected 14 polar CH jets, that extended into LASCO/C2 FOV.
- Looked for narrow (width $\leq 10^{\circ}$) LASCO features.
- AIA/EUV jet.

 Found that narrow-CME-producing jets tended to have large twist.

AIA 304

AIA 193

Twist in Jets

Random twisting PCH jets with cool component: Moore et al. (2013)

Narrow-CME-Producing Jets: (Moore et al. 2015)

This suggests that: "polar jets having more axial rotation usually

extend to greater heights than polar jets having less axial rotation."

Moore et al. (2015). (Shibata & Uchida 1986-type mechanism; Patsouraos et al. 2008; Pike & Mason 1998.)

CMEs from AR Jets:

Sterling et al. (2016)

AIA 171

Sterling et al. (2016, ApJ)

Table 1 GOES List for Events of Figure 4, and CME Properties												
Jet/Event	Time (UT) ^a	Flare	Region ^b	CME? ^c	CME Time (UT) ^c	Width (deg) ^e	Velocity (km s ⁻¹) ^c					
1	17:28	B6.0	С	Probably	17:35	4.0 ± 0.6	458 ± 66					
2	17:47	B7.0	А	No								
3	18:12	C1.6	В	Yes	18:10	62.8 ± 1.4	300 ± 9					
4	18:33	M1.6	D	Probably	18:40	26.7 ± 3.6	482 ± 102					
5	19:32	B7.0	С	Yes	19:40	7.7 ± 1.6	368 ± 44					
6	20:19	B8.0	С	Probably	20:20	4.3 ± 0.6	479 ± 17					
7	20:28	B9.0	А	Probably	20:35	3.3 ± 0.6	521 ± 32					
8	21:26	C1.6	С	Yes	21:30	7.2 ± 2.5	841 ± 10					
9	22:37	C1.1 ⁴	С	Maybe	22:45	2.6 ± 0.9	356 ± 61					
10	23:54	C1.0	D	Maybe	23:50	8.0 ± 2.8	515 ± 39					
11	00:09	B6.0	A and C	No								

Notes.

^a Time of peak brightening (within ≤ 1 minute) in GOES 1–8 Å X-ray flux on 2012 June 30 (July 1 for event 11); event 3 is a filament eruption, while other events are jets. In some cases the CME appears prior to the peak in X-ray flux, but this is consistent with other observations (e.g., Harrison 1986).

^b Region in Figure 3(a) where the source of the event is located.

^c Indicates whether a CME was detected from the event in STEREO-B/Cor1 images. If not "no," then entries in column 5 reflect the level of confidence that the observed CME originates from the event. Subsequent columns give the time of the CME's first appearance in STEREO-B Cor1 images, and the angular width and plane-of-sky velocity of the CME. Widths and velocities are averages of four measurements, and uncertainties are 1σ standard deviations.
^d Much or most of this emission is from a different active region, AR 11514 (S17E18).

Most of AR jets made/likely made narrow CMEs/WLJs (width $\leq 10^{\circ}$). (NB. Event 3 is a large-scale eruption; Event 4 is a surge/jet.)

(Wide) CMEs from AR Jets

Panesar et al. (2016a)

"Weak" CMEs from AR 12192

AIA 304 22-0ct-2014 16:20:07.140

Table 1 Date and Time for the Observed Jets and Their Measured Parameters													
2-producing Jet	s												
Date (UT)	Time ^a	Flare Class	CME Speed ^{b,c} (km s ⁻¹)	CME Angular Width (°)	Jet Speed ^d (km s ⁻¹)	Jet Rise Dur. (±5 minute)	Jet Width ^e (±1500 km)	Remote Bri. and Dim.					
20 Oct 14 22 Oct 14 23 Oct 14 24 Oct 14 24 Oct 14 27 Oct 14	18:43 16:52 19:11 03:56 07:37 17:33	C6.2 C5.8 C3.3 C3.6 M4.0 M1.4	187 281 239 250 677 186	40 20 35 30 50 25	190 ± 10 310 ± 20 330 ± 20 300 ± 20 400 ± 40 ambiguous ^f	20 30 50 45 35 	34000 38000 26000 34000 86000 	Yes Yes No Yes Yes ^g					
22 Oct 14 22 Oct 14	02:31 05:51 10:46 12:56 17:30 20:11 23:15	 C1.9 C3.0 C3.0 C1.1	· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · ·	75 ± 10 120 ± 20 140 ± 20 50 ± 10 ambiguous ^h 150 ± 20 110 ± 10	35 10 15 20 10 10 25	19000 15000 11000 16500 13000 16000 13000	· · · · · · · · · · · · · · · ·					
	E-producing Jets Date (UT) 20 Oct 14 22 Oct 14 23 Oct 14 24 Oct 14 24 Oct 14 24 Oct 14 27 Oct 14 27 Oct 14 27 Oct 14 22 Oct 14	E-producing Jets Date Time ^a (UT) 20 Oct 14 18:43 22 Oct 14 16:52 23 Oct 14 19:11 24 Oct 14 03:56 24 Oct 14 07:37 27 Oct 14 17:33 -CME-producing Jets: 22 Oct 14 02:31 22 Oct 14 05:51 22 Oct 14 10:46 22 Oct 14 10:46 22 Oct 14 12:56 22 Oct 14 17:30 22 Oct 14 17:30 22 Oct 14 20:11 22 Oct 14 23:15	Date Time ^a Flare (UT) Class 20 Oct 14 18:43 C6.2 22 Oct 14 16:52 C5.8 23 Oct 14 19:11 C3.3 24 Oct 14 03:56 C3.6 24 Oct 14 07:37 M4.0 27 Oct 14 17:33 M1.4 CME-producing Jets: 22 Oct 14 02:31 22 Oct 14 05:51 22 Oct 14 10:46 C1.9 22 Oct 14 12:56 22 Oct 14 12:1 C3.0	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Table 1 Date and Time for the Observed Jets and Date Time ^a Flare CME Speed ^{b.c} (km s ⁻¹) CME Angular Width (°) 20 Oct 14 18:43 C6.2 187 40 22 Oct 14 16:52 C5.8 281 20 23 Oct 14 19:11 C3.3 239 35 24 Oct 14 03:56 C3.6 250 30 24 Oct 14 07:37 M4.0 677 50 27 Oct 14 17:33 M1.4 186 25 -CME-producing Jets:	Table 1 Date and Time for the Observed Jets and Their Measured Particle Producing Jets Date Time ^a Flare CME Speed ^{b,c} (km s ⁻¹) CME Angular Width (°) Jet Speed ^d (km s ⁻¹) 20 Oct 14 18:43 C6.2 187 40 190 \pm 10 22 Oct 14 16:52 C5.8 281 20 310 \pm 20 23 Oct 14 19:11 C3.3 239 35 330 \pm 20 24 Oct 14 03:56 C3.6 250 30 300 \pm 20 24 Oct 14 07:37 M4.0 677 50 400 \pm 40 27 Oct 14 17:33 M1.4 186 25 ambiguous ^f CME-producing Jets:	Table 1 Date and Time for the Observed Jets and Their Measured Parameters Producing Jets Date Time ^a Flare CME Speed ^{b,c} (km s ⁻¹) CME Angular Width (°) Jet Speed ^d Jet Rise Dur. (± 5 minute) 20 Oct 14 18:43 C6.2 187 40 190 ± 10 20 20 Oct 14 16:52 C5.8 281 20 310 ± 20 30 23 Oct 14 19:11 C3.3 239 35 330 ± 20 50 24 Oct 14 03:56 C3.6 250 30 300 ± 20 45 24 Oct 14 07:37 M4.0 677 50 400 ± 40 35 27 Oct 14 17:33 M1.4 186 25 ambiguous ^f CME-producing Jets: 120 ± 20 10 22 Oct 14 02:31 120 ± 20 10 22 Oct 14 02:51 120 ± 20 10 22 Oct 14 10:46<	Table 1 Date and Time for the Observed Jets and Their Measured Parameters Producing Jets Date Time ⁶ Flare CME Speed ^{b,e} (UT) CME Angular Width (°) Jet Speed ^d (km s ⁻¹) Jet Rise Dur. Jet Width ^e ($\pm 5 \text{ minute}$) 20 Oct 14 18:43 C6.2 187 40 190 ± 10 20 34000 22 Oct 14 16:52 CS.8 281 20 310 ± 20 30 38000 23 Oct 14 19:11 C3.3 239 35 330 ± 20 50 26000 24 Oct 14 03:56 C3.6 250 30 300 ± 20 45 34000 24 Oct 14 07:37 M4.0 677 50 400 ± 40 35 86000 27 Oct 14 17:33 M1.4 186 25 ambiguous ^f CME-producing Jets: Image: Colspan="4">Image: Colspan="4">Colspan="4">Colspan= 400 20 Oct 14 02:31					

Notes.

a ftp://ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/solar-flares/x-rays/goes/2014/

^b http://cdaw.gsfc.nasa.gov/CME_list

Uncertainty in the CMEs speed measurement is less than 10% (Yashiro et al. 2004).

Uncertainties are estimated from the time-distance plots.

Measured at a projected height of ~72,000 km from jet base.

f This jet shows up well in the AIA 94 Å images, but not in 304 Å images. Due to its poor visibility in 304 Å images, we were unable to follow the jet plasma well enough to measure its speed.

^g AR was close to the west limb, obscuring any remote brightening/dimming.

¹ Slower velocity (250 km s⁻¹) in the beginning, but faster (>650 km s⁻¹) later when a plug of plasma separates.

(Update to Bemporad et al. 2005 picture of "streamer puff" CMEs.)

Do Jets Exist on Smaller Size Scales?

Filament-Like Feature Eruptions on Smaller Scales??

Log "Filament" Size

Sterling & Moore (2016)

Sterling & Moore (2016)

40

Sterling & Moore (2016)

Sterling & Moore (2016)

Sterling & Moore (2016)

Summary

- Jets are common, and occur all over the Sun (CHs, QS, and ARs).
- At least many, if not all, jets result from minifilament eruptions; smallerscale version of large eruptions.
- Many (virtually all?) minifilament eruptions triggered by flux cancelation.
- At least two types of CMEs from jets:
 Extensions of jets (narrow CMEs/white light jets).
 BMEder CMEs can be triggered by jets (streamer puff)
- Smallest-scale jets might make up some percentage of the spicule population.

Image: Alphonse Sterling 21 August 2017, Lewisville, Idaho