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Overview

• Deep learning and Convolutional Neural Network

• CNN for Tropical Cyclone Intensity Estimation

• Preliminary results

• Work in progress



Deep Learning

• A subfield of machine learning

• Algorithms inspired by function of the brain

• Scales with amount of training data

• Powerful tool without the need for feature engineering

• Suitable for many Earth Science applications



Traditional Image Classification Approach

• Image Features: Color, Texture, Edge histogram,…

• “Shallow” architecture

• Experts define features

Hand-crafted
Feature Extractor

“Simple”
Trainable Classifier

(static) (learns)



“DEEP” Architecture
• Features are key to recognition

• What about learning the features?

• Deep Learning
• Hierarchical Learning

• Modeled after human brain

• Process information through multiple stages of transformation and representation

Hand-crafted
Feature Extractor

“Simple”
Trainable Classifier

(static) (learns)



Cost
(Compared using 

Labeled Data)

Back propagation

Classification

Convolutional Neural Network
• Input image – labeled training data
• Convolution Layers – filters are applied across input 

images (start with random filters)
• Non-linearity – a bias function so that the network 

is not remembering but rather generalizing
• Pooling – subsampling of the output so that the 

images do not grow exponentially
• Final output images are passed through a 

traditional neural network for classification
• Classification results are compared using a loss 

function to determine error
• Based on error the weights and filters are adjusted 

using gradient descent
• Iterate the process until the error is below some 

threshold
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2D Convolution, Single Slice

• Stride (s)
• Jump/step with which filters move across width/height of input volume

• Padding (p)
• Amount of wrapping used in input

• Output size (Wo) = (Wi – k + 2*p)/s + 1

Convolutional Layer



Network architecture



• The Dvorak technique
• Vernon Dvorak (1970s)
• Satellite-based method
• Cloud system measurements
• Development patterns corresponds to T-number

• Deviation-angle variation technique (DAVT)
• Piñeros et al. (2008)
• Variance for quantification of cyclones
• Calculates using center (eye) pixel
• Directional gradient statistical analysis of the brightness of images

Tropical Cyclone Intensity Estimation



Issues

• Subjective/Uncertainty

• Lack of generalizability

• Inconsistency

• Complexity

Can we objectively predict wind speed from images?



• Images
• US Naval Research Laboratory (http://www.nrlmry.navy.mil/tcdat)
• From 1998 to 2014
• Images at 15 minutes interval

• Cyclone data
• National Hurricane Center (http://www.nhc.noaa.gov) (HURDAT and HURDAT2)
• Hurricane Research Division (http://www.aoml.noaa.gov/hrd/hurdat/Data_Storm.html)
• Every 6 hours

• 98 cyclones collected over Pacific and Atlantic regions
• 68 from Atlantic
• 30 from Pacific

Data



Storms



• Interpolate to increase even more
• 2 hours interpolated image differences 

2 hour interpolated image differences 

Data augmentation



• (Training + Validation) 70% - 30% (Test)
• (Training) 75% - 25% (Validation)

Training, test, and validation



Feature maps from second convolution

Visualization



• Model with around 90% of validation accuracy
• Tested against 14,345 test images (Atlantic + Pacific)

• Confusion Matrix
• Classification Report
• Accuracy
• RMS Intensity Error

Initial performance



• Top-1: exact-hits
• Top-2: exact-hits + 2nd-hits

Accuracy



• Our model
• Across Atlantic and Pacific
• Achieved RMSE of 9.19kt

• North Atlantic
• Piñeros et al. (2011): 14.7kt 
• Ritchie et al. (2012): 12.9kt 

• North Pacific
• Ritchie et al. (2014): 14.3kt 

Error Metrics



Sample correct classifications



Sample incorrect classifications



Adapted from Stevenson et al. (2014).  Time series of satellite-derived intensity estimates (circles) for Hurricane 
Earl (2010), added to best track intensities and lightning flash rate time series.

Detailed look: Hurricane Earl, 2010



• Hurricane intensity estimation portal
• Use of passive microwave dataset
• Use of atmospheric conditions

Work in progress



Hurricane intensity estimation portal
• Develop a near real-time tropical cyclone intensity estimation services

• Include additional image datasets
• Algorithmic enhancements
• Monitor NHC outlook for “invest” area for trigger

• Perform extensive evaluation with available observations
• Work with NASA/SPoRT to develop a website that will display current “invest” information along with 

estimated wind speed information and relevant overlays 
• Develop OGC services (WFS and SOS): integration with AWIPS/N-AWIPS



Hurricane intensity estimation portal

http://hiep.surge.sh/storms/9eee5297-d43d-4f84-9931-23bef5fbdbb4



Thank you.



Using Microwave Datasets

Instrument (85, 89 GHz) Coverare years Total storm centric images

SSMI17 2008-2016 1715

SSMI18 2010-2016 1378

TMI 1998-2014 3409

AMSRE 2003-2011 2230 



Network

CNN for GOES images.

CNN for Microwave 
Images

GOES 
images

(616 X 616)

MW 
Images

(366 X 366)

Merge layer

Dense layer

Dense layer

Categories



Process
1. Collect Storm-centric PM data
2. Generate image
3. Match up images with NRL goes images
4. Add random rotation/flips to images (data augmentation).
5. Use corresponding GOES and Microwave images for training.
6. Start with 7 categories (ts, td, 1, 2, 3, 4, 5)



Samples

Source: AMSRE/GOES
Wind speed: 145
Hurricane: Dean
Year: 2007

Source: TMI/GOES
Wind speed: 125
Hurricane: Dean
Year: 2007

Source: SSMI18/GOES
Wind speed: 125
Hurricane: Matthew
Year: 2016
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