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Abstract

A space-time discontinuous-Galerkin spectral-element discretization is presented
for direct numerical simulation of the compressible Navier-Stokes equations. An
efficient solution technique based on a matrix-free Newton-Krylov method is de-
veloped in order to overcome the stiffness associated with high solution order.
The use of tensor-product basis functions is key to maintaining efficiency at high-
order. Efficient preconditioning methods are presented which can take advan-
tage of the tensor-product formulation. A diagonalized Alternating-Direction-
Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin
discretization. A new preconditioner for the compressible Euler/Navier-Stokes
equations based on the fast-diagonalization method is also presented. Numeri-
cal results demonstrate the effectiveness of these preconditioners for the direct
numerical simulation of subsonic turbulent flows.

1. Introduction

Higher-order methods are efficient numerical tools for simulations requiring
high spatial and temporal resolution, allowing for solutions with fewer degrees
of freedom and lower computational cost than traditional second-order CFD
methods[1]. In this work, we use a space-time discontinuous-Galerkin (DG)
finite-element method, which extends to arbitrary order of accuracy in both
space and time. Higher-order DG methods have been widely used for the solu-
tion of the compressible Euler and Navier-Stokes equations [2, 3, 4, 5]. Higher-
order DG methods are particularly attractive due to the possibility of using
local h- and p-adaptation. In particular, the use of a space-time formulation
allows for local adaptation in both the spatial and temporal directions, poten-
tially leading to a significant reduction in cost as the increased resolution in
time is only applied where necessary.
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While space-time DG formulations have been previously developed for the
compressible Navier-Stokes equations [6, 7, 8]; higher-order space-time formu-
lations are often considered too expensive for practical engineering simulations,
as they require the solution of a globally coupled system of equations for each
time-slab. For large three-dimensional simulations the cost of storing the lin-
earization for a single step of an implicit scheme may be prohibitively expen-
sive. Using a space-time formulation, this storage cost is further scaled by the
order of the basis used in the temporal direction. We overcome this limita-
tion by using a matrix-free Newton-Krylov method. Efficient preconditioning
schemes are necessary to overcome the stiffness associated with large polyno-
mial orders. In addition, the use of tensor-product basis functions is key to
maintaining efficiency at high-order. We present two classes of efficient precon-
ditioning methods which take advantage of the tensor-product formulation: a
diagonalized Alternating-Direction-Implicit scheme, and a scheme based on the
fast-diagonalization method.

Alternating-Direction-Implicit (ADI) schemes were first introduced for the
solution of elliptic partial differential equations by Peaceman and Rachford [9].
The scheme presented in this work derives from that of Beam and Warming [10]
who presented ADI methods for finite-difference discretization of hyperbolic sys-
tems of equations. Specifically, we present a diagonalized ADI scheme, which
has previously been used in finite-difference simulations of the compressible Eu-
ler and Navier-Stokes equations [11]. We previously extended the diagonalized
ADI scheme to a discontinuous-Galerkin finite-element discretization [12]. The
diagonalized ADI scheme has been extended to the solution of time-spectral
finite-difference discretizations [13]. In this work, we extend the diagonalized-
ADI scheme to the space-time DG discretization using an entropy-stable formu-
lation.

The fast diagonalization method (FDM) was presented by Lynch et. al [14]
for the direct solution of finite-difference discretizations of scalar partial dif-
ferential equations. As an exact solver, the FDM has limited applicability
to constant-coefficient problems on rectangular geometries. However, Lottes
and Fischer[15] used FDM as an effective block preconditioner for a spectral-
element discretization of the incompressible Navier-Stokes equations. Specifi-
cally, FDM was applied to the scalar elliptic problems arising in a semi-implicit
time-stepping scheme. The use of FDM as a preconditioner was extended to
scalar advection-diffusion problems by Lott and Elman[16], who used it as part
of an iterative structuring preconditioner for a spectral-element discretization.
In this work we extend the use of FDM-based preconditioners to space-time DG
discretizations of the scalar advection-diffusion equation and the compressible
Navier-Stokes equations.

In Section 2, we present the space-time discontinuous-Galerkin discretization
and discuss the use of tensor-products basis. In Section 3, we present the solu-
tion technique based on a matrix-free Newton-Krylov scheme. In Section 4, we
introduce the ADI and FDM preconditioners for the scalar-advection diffusion
equations. In Section 5, we present the extension of these schemes to the com-
pressible Navier-Stokes equations. In Section 6, we apply the ADI and FDM
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preconditioners for the direct numerical simulation of compressible turbulent
flows. Lastly, Section 7 provides summary and conclusions.

2. Discretization

The compressible Navier-Stokes equations are written in conservative form
as:

u,t +∇ · (f I − fV ) = 0, (1)

where (·),t denotes partial differentiation with respect to time. The conservative
state vector is

u =

 ρ
ρV
ρE

 , (2)

where ρ is the density, V is the velocity vector, and E the total energy. The
inviscid and viscous fluxes are given, respectively, by:

f I =

 ρV

ρV V T + pI
ρV H

 , and fV =

 0
τ

τV − κT∇T

 , (3)

where p is the static pressure, H = E + p
ρ is the total enthalpy, τ the viscous

stress tensor, κT is the thermal conductivity, T = p/ρR is the temperature, and
R is the gas constant. The pressure is given by:

p = (γ − 1)
(
ρE − 1

2ρV
2
)
, (4)

where γ is the specific heat ratio. The viscous stress tensor, τ , is given by:

τ = µ
(
∇V +∇V T

)
− λ(∇ · V )I, (5)

where µ is the viscosity, and λ = 2
3µ is the bulk viscosity.

Applying a change of variables u = u(v), where v are the entropy variables:

v =

 −
s

γ−1 + γ+1
γ−1 −

ρE
p

ρV
p

−ρp

 , (6)

we rewrite the Navier-Stokes equations as:

A0v,t + Ā∇v −∇ · ( ¯̄K∇v) = 0, (7)

with symmetric A0 = u,v, Ā = f I,uA0 = f I,v and ¯̄K = fV,∇uA0 = fV,∇v [17].
We proceed to discretize (7) as follows. The domain, Ω, is partitioned into

non-overlapping hexahedral elements, κ, while the time is partitioned into in-
tervals (time-slabs), In = [tn, tn+1]. Define Vh =

{
w,w|κ ∈ [P(κ× I)]5

}
, the
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space-time finite-element space consisting of piece-wise polynomial functions in
both space and time on each element. We seek a solution v ∈ Vh such that the
weak form:

r(v,w) =
∑
κ

{∫
In

∫
κ

−
(
w,t · u+∇w · (f I − fV )

)
+

∫
In

∫
∂κ

w · (f̂ I · n− f̂V · n)

+

∫
κ

w(tn+1
− ) · u(tn+1

− )−w(tn+) · u(tn−)

}
= 0, (8)

is satisfied for all w ∈ Vh. Here f̂ I · n and f̂V · n denote numerical flux func-
tions approximating the inviscid and viscous fluxes, respectively, while n is the
outward pointing normal vector. In this work, the inviscid flux is discretized
using the method of Ismail and Roe [18], while the viscous flux is discretized
using the second method of Bassi and Rebay [2].

The space Vh is represented using a tensor-product basis such that on each
element v is given by the product of Lagrange polynomials:

v(x(ξ), t(τ)) = vijklΦijkl with Φijkl = φi(ξ1)φj(ξ2)φk(ξ3)φl(τ), (9)

where x(ξ) defines a mapping from the reference cube, ξ ⊂ [−1, 1]3, to physical
space, while t(τ) is the mapping from the reference interval [−1, 1] to the time
interval [tn, tn+1]. φi are one-dimensional Lagrange basis functions defined at
Gauss-Legendre (GL) points, while vijkl are the corresponding nodal values
of the entropy variables. The integrals in (8) are evaluated using numerical
quadrature. For example:

2

∆t

∫
In

∫
κ

−
(
w,t · u+∇w · (f I − fV ))

)
'

{
−
(
τ,tw,τ · u+∇ξw · (f̃

I
− f̃

V
))
)
|J |
}
ξpξqξrτs

wpwqwrws, (10)

where ξp, ξq, ξr, τs are one-dimensional GL quadrature points, and wp, wq, wr
and ws are the associated quadrature weights. |J | denotes the Jacobian of
the mapping from element reference space to physical space, ∇ξ denotes dif-

ferentiation with respect to the reference coordinate ξ, while f̃
I

= ξ,xf
I and

f̃
V

= ξ,xf
V are the fluxes mapped to the local element coordinate system. In

this work we use a quadrature rule with twice as many quadrature points as
nodal points in order to reduce the quadrature error (we ensure exact integra-
tion of cubic nonlinearities) thereby improving the nonlinear stability of our
scheme [19, 12].

The remaining integrals appearing in (8) are evaluated in a similar manner,
which may be described as a sequence of three steps:

1. Evaluate the state (v) and gradient (∇ξv) at the quadrature points.
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2. Evaluate the fluxes (f̃
I

and f̃
V

) at the quadrature points.

3. Multiply the fluxes with the basis functions (w) or gradients (∇ξw).

A key requirement for efficiency at high polynomial order is the evaluation of the
first and third steps using the sum-factorization approach [12, 20], which allows
the multiplication of the basis functions to be performed as a sequence of one-
dimensional operations. This results in a residual evaluation cost which scales
as O(Nd+1) for each space-time element where N is the solution order while
d is the number of spatial-temporal dimensions (for unsteady 3D simulations
d = 4). The cost per degree of freedom for the residual evaluation scales linearly
with the solution order, however for moderate solution orders, N = 4 − 16,
the increased operation count with solution order may be offset by the use of
optimized numerical kernels [12].

3. Solution Strategy

Given the choice of basis functions and quadrature rule, Equation (8) repre-
sents a globally coupled system of nonlinear equations which need to be solved
for each time-slab. For large three-dimensional simulations the cost of storing
the linearization for a single step of an implicit scheme may be prohibitively
expensive. Using a space-time formulation, this storage cost is further scaled by
the order of the basis used in the temporal direction. In general, all degrees of
freedom within an element are coupled, leading to a storage cost which scales as
O(Nd) per degree of freedom. We overcome the memory requirement limitation
by using a matrix-free Newton-Krylov method.

A restarted GMRES method is used as Krylov solver, which does not re-
quire the explicit storage of the Jacobian matrix [21]. GMRES requires only
the application of the linearization to each search direction, i.e. we need to com-
pute the linearized residual in the search direction. In this work, the linearized
residual is computed directly. As with the residual evaluation, the terms in the
evaluation of the linearized residual in a search direction, s, are computed as a
sequence of three steps:

1. Evaluate the state (v), gradient (∇ξv), linearized state (s) and linearized
gradient (∇ξs) at the quadrature points.

2. Evaluate the linearized fluxes (f̃
Lin

= ∂f̃
∂vs+ ∂f̃

∂∇ξv∇ξs) at the quadrature

points.

3. Multiply of the linearized fluxes with the basis functions (w) or gradients
(∇ξw).

This approach is more expensive than the finite-difference approach often used in
Jacobian-free method [22], however is insensitive to a step-size parameter, gives
the exact linearization, and may be used to compute the solution of adjoint
(dual) problems. In addition, the sum factorization approach is used in the
application of the linearization, such that the cost of applying the linearization
scales as O(N) per degree of freedom. We note that with increasing solution
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order this is more efficient than storing the linearization and computing the
linearized residual as a matrix-vector product whose cost scales as O(Nd) per
DOF (even if there was no cost associated with forming the linearization).

We note that this approach also allows us to use different quadrature rules for
computing the linearized and nonlinear residuals. In particular, we use a lower
order or collocated quadrature rule in the evaluation of the linearized residuals
of our Newton-Krylov scheme while driving to zero the nonlinear residual com-
puted with more accurate quadrature. This reduced quadrature approach may
be viewed as an inexact Newton scheme.

Preconditioning is necessary for stiff problems in order to obtain good perfor-
mance in a Newton-Krylov scheme [22]. Elemental block-Jacobi, block-Gauss-
Seidel and block-ILU preconditioners have been successfully used for the dis-
continuous Galerkin discretization of compressible flows at moderate solution
orders N = 2 − 5 [4, 5]. However, the memory required for the storage of the
factorization of elemental blocks scales as O(Nd) per degree of freedom. This
implies that at high order (N > 5) block preconditioners are prohibitively ex-
pensive. For example, we note that storing the elemental block Jacobian for a
single 3D space-time element at N = 16 would require on the order of 1Tb of
memory. Alternative DG formulations have been proposed in order to reduce
the memory required to store the linearization (see ref [23]). However, factoriza-
tion of the linearization introduces significant fill-in, implying that the memory
required for a block preconditioner may still be prohibitively expensive for high
polynomial orders.

In this work, we develop preconditioners with memory requirements no larger
than that required for residual evaluations. In particular, we develop element-
wise block-Jacobi preconditioners where the elemental blocks are solved approx-
imately taking advantage of the tensor-product formulation of our finite-element
scheme. Our preconditioners rely on the factorization of one-dimensional op-
erators which require no more memory than the temporary arrays used in the
evaluation of the residual on a single element. We present two different precon-
ditioners: a diagonalized Alternating-Direction-Implicit (ADI) preconditioner
and a preconditioner based on the Fast Diagonalization Method (FDM). In Sec-
tion 4, we present simplified versions of our preconditioners for the case of a
constant-coefficient linear advection-diffusion problem. In Section 5 we extend
the preconditioners to the compressible Euler and Navier-Stokes equations on
general curvilinear domains.

4. Preconditioning: Scalar Advection-Diffusion

Consider the constant-coefficient linear advection-diffusion equation:

v,t + a · ∇v − k∆v = f, (11)

where v is the conserved scalar, a is a divergence free velocity field, k the diffu-
sivity and f is a forcing term. For now consider only domains with rectangular
parallelepiped elements for which the mapping, x(ξ), from reference to physical
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space is a constant on each element. General curvilinear grids are considered in
Section 5 along with the case of spatially varying coefficients.

Applying our space-time discontinuous-Galerkin discretization using an upwind-
flux for the inviscid terms and the BR2 flux for the viscous terms we obtain an
elemental block Jacobian which corresponds to the following operator:

r(v|κ, w|κ) = −
∫
In

∫
κ

(w,tv +∇w · av − k∇w · ∇v)

+

∫
In

∫
∂κ

a+
nwv − 1

2k(w∇nv +∇nwv − ηewv)

+

∫
κ

w(tn+1
− )v(tn+1

− ), (12)

where an = a · n, a±n = 1
2 (an ± |an|), ∇n denotes differentiation in the normal

direction, while ηe is a lifting parameter from the BR2 scheme. We note that
for tensor-product elements the BR2 scheme is equivalent to an interior-penalty
scheme with a solution-order and geometry-dependent penalty parameter. It is
convenient to write the elemental block Jacobian for a single element as:

2

∆t|J |
r(v|κ, w|κ) =∫

τ

∫
ξ2

∫
ξ3

(
−
∫
ξ1

(ã1w,ξ1v − k̃11w,ξ1v,ξ1) +
[
ã+

1 wv − 1
2 k̃11(wv,ξ1 + w,ξ1v − η+

e wv)
]ξ1=1

ξ1=−1

)
+

∫
τ

∫
ξ3

∫
ξ1

(
−
∫
ξ2

(ã2w,ξ2v − k̃22w,ξ2v,ξ2) +
[
ã+

2 wv − 1
2 k̃22(wv,ξ2 + w,ξ2v − η+

e wv)
]ξ2=1

ξ2=−1

)
+

∫
τ

∫
ξ2

∫
ξ3

(
−
∫
ξ3

(ã3w,ξ3v − k̃33w,ξ3v,ξ3) +
[
ã+

3 wv − 1
2 k̃33(wv,ξ3 + w,ξ3v − η+

e wv)
]ξ3=1

ξ3=−1

)
+

∫
ξ3

∫
ξ2

∫
ξ1

(
−
∫
τ

ã0w,τv + [ã0wv]
τ=1

)
, (13)

where ãi = ξi,xjaj ,

ã+
i =

{
1
2 (ãi + |ãi|) at ξi = 1
1
2 (ãi − |ãi|) at ξi = −1

}
, (14)

k̃ii = ξi,xjξi,xjk, while η+
e = ηesign(ξi). The index “0” corresponds to the

temporal direction, with ã0 = 2
∆t . We recognize that each line on the right-

hand side of (13) corresponds to an advection-diffusion operator along an axis
of our reference element. Employing a tensor-product basis, the matrix system
for the elemental block Jacobian is rewritten as:

2

∆t|J |
∂R

∂V

∣∣∣∣
κ

= (D1 ⊗M2 ⊗M3 ⊗M0) + (M1 ⊗D2 ⊗M3 ⊗M0)

+(M1 ⊗M2 ⊗D3 ⊗M0) + (M1 ⊗M2 ⊗M3 ⊗D0), (15)
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where Mi are one-dimensional mass matrices, whose entries are given by:

Mi =

∫
ξi

wv, (16)

while Di are one-dimensional advection diffusion operators:

Di = −
∫
ξi

(ãiw,ξiv − k̃iiw,ξiv,ξi) +
[
ã+
i wv − 1

2 k̃ii(wv,ξi + w,ξiv − η+
e wv)

]ξi=1

ξi=−1
,

(17)

Factoring out the elemental mass matrix gives:

∂R

∂V

∣∣∣∣
κ

=
∆t|J |

2
(M1 ⊗M2 ⊗M3 ⊗M0){(D̃1 ⊗ I ⊗ I ⊗ I) + (I ⊗ D̃2 ⊗ I ⊗ I)

+(I ⊗ I ⊗ D̃3 ⊗ I) + (I ⊗ I ⊗ I ⊗ D̃0)}, (18)

where D̃i = M−1
i Di, while I denotes the identity matrix. We seek to efficiently

compute an inverse of ∂R
∂V

∣∣
κ
. We note that the term ∆t|J|

2 (M1⊗M2⊗M3⊗M0)
appearing in (18) is simply the space-time elemental mass matrix, which is
diagonal and thus easily inverted. It remains to invert the following matrix:

A = (D̃1 ⊗ I ⊗ I ⊗ I) + (I ⊗ D̃2 ⊗ I ⊗ I)

+(I ⊗ I ⊗ D̃3 ⊗ I) + (I ⊗ I ⊗ I ⊗ D̃0). (19)

We proceed to use the ADI or FDM schemes to invert A.

4.1. Alternating-Direction-Implicit (ADI)

Exact inversion of A requires the factorization and solution of an Nd ×Nd

matrix system. As noted previously, the cost of the factorization is prohibitively
expensive with increasing solution order. The ADI scheme approximately in-
verts (19) by successively solving one-dimensional problems of size N × N in
each coordinate direction. First, we modify the underlying PDE problem by
adding a pseudo-temporal evolution. The ADI scheme may then be viewed as
a single step applied to marching the modified PDE to steady state in pseudo-
time. The pseudo-time-step is denoted by τ . The modified elemental Jacobian
is:

τÂ = (I ⊗ I ⊗ I ⊗ I) + (τD̃1 ⊗ I ⊗ I ⊗ I) + (I ⊗ τD̃2 ⊗ I ⊗ I)

+(I ⊗ I ⊗ τD̃3 ⊗ I) + (I ⊗ I ⊗ I ⊗ τD̃0).

(20)

This modified elemental Jacobian is inverted approximately by:

1
τ Â
−1 ≈ 1

τ Ã
−1 = (I ⊗ I ⊗ I ⊗ τD̃0 + I)−1(I ⊗ I ⊗ τD̃3 + I ⊗ I)−1

(I ⊗ τD̃2 + I ⊗ I ⊗ I)−1(τD̃1 + I ⊗ I ⊗ I ⊗ I)−1, (21)
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where the errors introduced as a result of the approximate inversion are second
order in pseudo-time [10]. We note the matrix inversions in (21) correspond to
the solution of one-dimensional advection-diffusion problems in each coordinate
direction. In particular, each inversion corresponds to Nd−1 solves of systems
of size N × N . The dominant cost of applying (21), is the factorization of
the one-dimensional systems, which must be performed dNd−1 times. In our
implementation we choose not to store any factorizations thus these must be
recomputed each application of the preconditioner. This gives a total cost of
a single application of the ADI preconditioner which scales as O(dNd+2). In
the constant-coefficient case, the factorization needs to be performed only once
in each coordinate direction, such that the cost is dominated by the forward-
and back-substitution resulting in a cost which scales as O(dNd+1). Thus,
this “single-factorization” approach gives a factor of N reduction in the cost
of applying the ADI preconditioner, resulting in a cost which is, to leading
order, the same as a residual evaluation. Additionally, we note that the single-
factorization inversion may be performed using the optimized matrix-matrix
multiplication routines developed for the residual evaluation.

The choice of the pseudo-time step can have a significant impact on the
convergence rate of the ADI preconditioner. In this work we choose a pseudo-
time step based on maintaining a pseudo-time CFL number on the order of 1. In
the advective limit, the characteristic time-scale along each axis of the reference
element is 1

|ãi|N , while in the diffusive limit the characteristic time is 1
k̃iiN3

. We

set the pseudo-time step such that:

1

τ2
= c2

√
1− max(c2i )

c2 , (22)

where ci = max(|ãi|N, k̃iiN3), while c =
√
c21 + c22 + c23 + c20. The pseudo-time

step scales with the characteristic time 1/c as well as a factor which takes
into account the alignment of the flow with the axes of the reference element.
In particular, when the flow is aligned with a particular coordinate direction,
the pseudo-time goes to infinity and the ADI-scheme results in an exact block
inversion.

4.2. Fast Diagonalization Method (FDM)

The fast diagonalization method may be used to efficiently compute exact
inverses of certain separable tensor-product matrices by taking advantage of
the eigenvector factorization of the one-dimensional operators. The system (19)
may be rewritten as:

A = (X1 ⊗X2 ⊗X3 ⊗X0){(Λ1 ⊗ I ⊗ I ⊗ I) + (I ⊗ Λ2 ⊗ I ⊗ I) (23)

+(I ⊗ I ⊗ Λ3 ⊗ I) + (I ⊗ I ⊗ I ⊗ Λ0)}(X1 ⊗X2 ⊗X3 ⊗X0)−1,

provided the one-dimensional advection-diffusion operators D̃i are diagonaliz-
able. The factorization is D̃i = XiΛiX

−1
i , where Λi is the diagonal matrix of

eigenvalues, while Xi is the matrix whose columns are the eigenvectors of D̃i.
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Using the eigenvector factorization A is easily inverted as:

A−1 = (X1 ⊗X2 ⊗X3 ⊗X0){(Λ1 ⊗ I ⊗ I ⊗ I) + (I ⊗ Λ2 ⊗ I ⊗ I) (24)

+(I ⊗ I ⊗ Λ3 ⊗ I) + (I ⊗ I ⊗ I ⊗ Λ0)}−1(X1 ⊗X2 ⊗X3 ⊗X0)−1.

The first and third matrices corresponding to the tensor-product of the eigen-
vectors matrices can be efficiently applied using the sum-factorization approach.
The second matrix in (24), corresponds to a diagonal matrix with the eigenval-
ues of A, and hence easily invertible. The dominant cost of applying the FDM
scheme is due to the sum-factorization approach used to multiply the eigenvec-
tor matrices, leading to a dominant cost of O(dNd+1). Thus the cost of applying
the FDM preconditioner is, to leading order, the same as a single residual eval-
uation. We note that this is also the same cost as the single-factorization ADI
approach, however, in this case the elemental block inversion is exact.

In the development of the FDM preconditioner we have assumed that the
one-dimensional scalar advection-diffusion operators, D̃i, have a full set of lin-
early independent eigenvectors. In the diffusion-dominated limit, the one-dimensional
operators are symmetric positive-definite and thus guaranteed to have an or-
thogonal set of eigenvectors. Unfortunately, in the advection-dominated limit,
no such guarantee exists. In particular, in the continuous limit, an advection
operator is not diagonalizable and has only a single eigenvalue with geometric
multiplicity of one. In the discrete case, the scalar advection operator is in
general diagonalizable, however with increasing solution order, the eigenvectors
become aligned, leading to exponential growth of the condition number of the
eigenvector matrices. Figure 1 plots the condition number of the eigenvector
matrix for the one-dimensional scalar advection operator as a function of solu-
tion order. The exponential growth of the condition number with solution order
implies that the basic FDM scheme cannot be used beyond N = 10. In order

to reduce the conditioning issue, an artificial viscosity,
ˆ̃
kii = ãiε/N

2 is added to
the one-dimensional advection-diffusion operators used in the preconditioning
matrix. The use of these modified operators implies that the FDM precon-
ditioner does not exactly invert the elemental block-Jacobian, however it still
remains effective as a preconditioner. We use an artifical viscosity with a value
of ε = 10−2, which is sufficient to bound the condition number of the eigenvector
matrices while not significantly modifying the elemental block-Jacobian. Figure
1 demonstrates that using this value of ε the modified operators with artificial
viscosity have bounded condition number with increasing solution order.

4.3. Numerical Results

We now present numerical results using the ADI and FDM preconditioner for
the solution of both steady and unsteady scalar advection-diffusion problems.
We solve (11) on the domain Ω = [0, 1]3 with uniform advection velocity a =

[ 3
4 ,

1
2 ,
√

3
4 ]T and forcing f chosen such that the exact solution has the form:

v = α0 + sin(αt + βtt) sin(αx + βxx) sin(αy + βyy) sin(αz + βzz), (25)
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Figure 1: Condition number of eigenvector matrices for one-dimensional advection-operators
with and without artificial viscosity.

with constants α0 = 1, αt = 0.25, αx = 0.15, αy = 0.47, αz = 0.65, βt = 2.5,
βx = 7.6, βy = 3.4 and βz = 2.3. For steady state problems βt is set to zero.

The character of the system is dictated by the Péclet number, Pe = |a|
k , where

Pe >> 1 is advection dominated, while Pe << 1 is diffusion dominated. The
results in this section are reported in terms of number of residual evaluations
required to converge the residual to a tolerance of 10−12. The linear solver
is a preconditioned restarted GMRES algorithm using 20 Krylov vectors. We
compare the ADI and FDM preconditioners presented in the previous section
along with a simple mass-matrix preconditioner.

4.3.1. Steady-State Pe = 103

We first consider the solution of a steady-steady state advection diffusion
problem Pe = 1000. We solve the steady-state advection problem using poly-
nomial orders N = 2, 4, 8, 16, on meshes with varying degress of freedom, 1/h, in
each direction. Table 1 reports the number of iterations required for convergence
using mass-matrix, ADI and FDM preconditioners.

In general, the mass-matrix preconditioner performs the worst with the
tensor-product preconditioners providing greater improvement with increasing
solution order and mesh size. In particular, the mass-matrix preconditioning
is insufficient to ensure convergence of the Krylov scheme for large solution
order or using large numbers of degrees of freedom (denoted by “*” in Table
1). When GMRES stalls, using a larger Krylov subspace (i.e. increasing the
GMRES restart value to 50 or 100) typically allows for an additional order of
magnitude reduction in the residual, though GMRES still stalls.

Using the ADI preconditioner allows for convergence of the Krylov scheme
for larger solution orders and more degrees of freedom, though the algorithm
still stalls at 16th order for large numbers of degrees of freedom. W
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The FDM preconditioner is sufficiently strong to allow for convergence of
the Krylov method at all solution orders and degrees of freedom considered.

In order to better understand the performance of the different precondi-
tioners for this test case we consider two additional steady-state problems at
Pe =∞ and Pe = 1.

4.3.2. Steady-State Pe =∞
In this case we focus on the performance of the preconditioners in the

advection-dominated limit. As shown in Table 2, when using the mass-matrix as
the preconditioner, the number of iterations increases with both solution order
and number of degrees of freedom. With large number of degrees of freedom,
the mass-matrix preconditioner is not sufficiently effective, and the restarted
GMRES algorithm stalls before reaching the desired convergence tolerance.

Using the ADI preconditioner, the number of iterations increases linearly
with number of degrees of freedom. For this convection-dominated problem
the number of iterations scales roughly with the number of degrees of freedom
through which a characteristic passes. The ADI preconditioner ensures that for
a given number of degrees of freedom, the number of iterations does not grow
with solution order, N , (in fact the number of iterations may even decrease). An
explicit scheme, on the other hand, would impose a stability restriction requiring
the number of iterations to scale linearly with solution order. Thus, the implicit
scheme with ADI preconditioner can effectively overcome the stiffness associated
with high solution order.

The FDM preconditioner converges in the fewest number of iterations for
all combinations of solution order and number of degrees of freedom presented.
At a fixed solution order, N , the number of iterations scales linearly with the
number of degrees of freedom. In this advection-dominated limit, the FDM
preconditioner converges in a number of iterations proportional to the number
of elements through which a characteristic passes (as seen along the diagonals of
Table 2). Thus for a fixed number of degrees of freedom, the number of iterations
required for convergence using the FDM preconditioner scales inversely with
solution order, N .

4.3.3. Steady-State Pe = 1

Next we consider Pe = 1, where diffusive effects become important. Table
3 presents the number of iterations required for convergence using the different
preconditioners considered. As with the advection-dominated case, the mass-
matrix preconditioner performs worst. The stiffness of the problem increases
both with degrees of freedom and solution order. The mass matrix precondi-
tioning is insufficient to enable convergence prior to the stalling of the GMRES
algorithm at N = 16 even for a problem with a single element.

The ADI preconditioner gives improved performance relative to the mass
matrix preconditioner, however the number of iterations required to converge
grows superlinearly with the number of degrees of freedom at a given solution
order. Furthermore, using a fixed number of degrees of freedom the number of
iterations grows with increasing solution order.
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(a) Mass-Matrix

N
1/h 2 4 8 16
2 20 - - -
4 43 54 - -
8 158 199 313 -
16 283 334 769 1597
32 439 604 * *
64 712 * * *
128 * * * *

(b) ADI

N
1/h 2 4 8 16
2 11 - - -
4 25 22 - -
8 56 60 60 -
16 139 134 389 303
32 243 277 889 *
64 374 475 1084 *
128 653 722 * *

(c) FDM

N
1/h 2 4 8 16
2 6 - - -
4 19 6 - -
8 42 34 10 -
16 93 65 74 16
32 238 174 133 82
64 377 288 245 190
128 644 508 384 316

Table 1: Number of residual evaluations for steady state advection-diffusion problem with
Pe = 103 using mass-matrix, ADI and FDM preconditioners. N is the solution order, while
1/h is the number of degrees of freedom in each coordinate direction. (* denote failure of
convergence of restarted GMRES algorithm.)
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(a) Mass-Matrix

N
1/h 2 4 8 16
2 17 - - -
4 43 53 - -
8 139 177 194 -
16 304 365 430 404
32 413 563 693 798
64 669 * * *
128 * * * *

(b) ADI

N
1/h 2 4 8 16
2 12 - - -
4 27 24 - -
8 53 49 46 -
16 126 130 114 95
32 237 218 249 235
64 328 317 312 316
128 479 500 472 443

(c) FDM

N
1/h 2 4 8 16
2 6 - - -
4 13 6 - -
8 35 13 6 -
16 72 30 12 6
32 229 75 30 12
64 280 196 74 30
128 400 298 193 74

Table 2: Number of residual evaluations for steady state advection-diffusion problem with
Pe = ∞ using mass-matrix, ADI and FDM preconditioners. N is the solution order, while
1/h is the number of degrees of freedom in each coordinate direction. (* denote failure of
convergence of restarted GMRES algorithm.)
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Once again, the FDM preconditioner performs the best of the three options
considered. In the single element case, the FDM preconditioner converges in a
small number of iterations independent of the solution order as given by first the
diagonal of Table 3. In the general multi-element case, the number of iterations
grows almost quadratically with the number of degrees of freedom. However, at
a fixed number of degrees of freedom, the number of iterations remains roughly
constant with increasing solution order, N . Thus the FDM preconditioner is
able to overcome the stiffness associated with the higher-order solution.

In the diffusion dominated case, a coarse correction or multigrid procedure
may be used to obtain convergence rates which are independent of the number
of degrees of freedom. In this work we are primarily interested in advection-
dominated problems, thus we have not considered the use of a coarse grid cor-
rection.

(a) Mass-Matrix

N
1/h 2 4 8 16
2 13 - - -
4 47 96 - -
8 252 474 718 -
16 774 1756 4232 *
32 * * * *

(b) ADI

N
1/h 2 4 8 16
2 9 - - -
4 46 39 - -
8 141 187 123 -
16 378 494 707 677
32 998 1433 * *

(c) FDM

N
1/h 2 4 8 16
2 8 - - -
4 34 17 - -
8 125 169 18 -
16 374 357 360 18
32 1076 1097 1082 1267

Table 3: Number of residual evaluations for steady state advection-diffusion problem with
Pe = 1 using mass-matrix, ADI and FDM preconditioners. N is the solution order, while
1/h is the number of degrees of freedom in each coordinate direction. (* denote failure of
convergence of restarted GMRES algorithm.)
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4.3.4. Unsteady Pe = 103

Finally, we consider unsteady advection diffusion problem solved using our
space-time DG scheme. For this unsteady problem we consider performance as
a function of solution order, number of degrees of freedom as well as the CFL

number, where CFL = |a|∆t
hN . We report convergence in terms of the number of

residual evaluations required to converge a single time slab in Tables 4 - 6.
In general, the number of iterations required to converge a single time slab

grows with increasing CFL number. At very small CFL the number of iterations
is independent of the number of degrees of freedom, and grows only slightly with
solution order. With increasing CFL the performance begins to resemble the
steady case, with the FDM preconditioner performing better than mass-matrix
or ADI preconditioning. At very large CFL and high solution orders only the
FDM preconditioner is able to converge all cases.

The cost for performing a simulation for a fixed period of time may be
estimated by the cost for a single time slab divided by the CFL number. Thus,
performing a simulation at large CFL number is generally more efficient. In
particular, the time step will be dictated by the physics which needs to be
resolved as opposed to a stability restriction.
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(a) Mass-Matrix, N = 2

CFL
1/h 10−3 10−2 10−1 100 101 102 103

16 10 18 33 100 234 276 303
32 10 18 33 118 319 411 458
64 10 18 34 126 479 699 708
128 12 19 37 135 818 * *

(b) Mass-Matrix, N = 4

CFL
1/h 10−3 10−2 10−1 100 101 102 103

16 21 33 59 187 372 389 364
32 21 35 61 235 553 591 672
64 25 36 68 276 896 * *
128 23 40 77 318 1680 * *

(c) Mass-Matrix, N = 8

CFL
1/h 10−3 10−2 10−1 100 101 102 103

16 49 67 114 399 776 799 802
32 48 71 131 578 * * *
64 47 75 166 705 * * *
128 52 85 195 897 * * *

(d) Mass-Matrix, N = 16

CFL
1/h 10−3 10−2 10−1 100 101 102 103

16 123 224 247 773 1679 1665 1641
32 220 242 357 1395 * * *
64 165 265 442 * * * *
128 184 235 512 * * * *

Table 4: Number of residual evaluations for unsteady advection-diffusion problem with Pe =
103 using mass-matrix preconditioner. N is the solution order, while 1/h is the number of
degrees of freedom in each coordinate direction. (* denote failure of convergence of restarted
GMRES algorithm.)

17



(a) ADI, N = 2

CFL
1/h 10−3 10−2 10−1 100 101 102 103

16 11 14 22 43 113 147 149
32 11 14 22 47 172 250 273
64 11 14 23 53 220 399 425
128 10 13 26 66 339 610 662

(b) ADI, N = 4

CFL
1/h 10−3 10−2 10−1 100 101 102 103

16 13 19 35 66 153 148 138
32 13 20 40 92 244 255 265
64 14 22 50 138 359 494 497
128 15 25 59 154 488 724 768

(c) ADI, N = 8

CFL
1/h 10−3 10−2 10−1 100 101 102 103

16 16 27 74 231 436 366 405
32 18 33 115 529 1028 963 944
64 20 40 149 479 1064 1088 1130
128 22 51 201 478 1057 1337 *

(d) ADI, N = 16

CFL
1/h 10−3 10−2 10−1 100 101 102 103

16 21 50 239 695 477 321 341
32 28 85 556 * * * *
64 34 122 763 1964 * * *
128 43 189 980 * * * *

Table 5: Number of residual evaluations for unsteady advection-diffusion problem with Pe =
103 using ADI preconditioner. N is the solution order, while 1/h is the number of degrees of
freedom in each coordinate direction. (* denote failure of convergence of restarted GMRES
algorithm.)
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(a) FDM, N = 2

CFL
1/h 10−3 10−2 10−1 100 101 102 103

16 9 10 14 31 90 104 96
32 9 10 16 36 139 217 218
64 9 11 18 43 209 364 359
128 9 11 21 54 334 597 674

(b) FDM, N = 4

CFL
1/h 10−3 10−2 10−1 100 101 102 103

16 10 12 21 41 73 71 70
32 10 12 24 53 151 196 197
64 10 13 30 67 189 287 289
128 10 15 39 77 282 517 523

(c) FDM, N = 8

CFL
1/h 10−3 10−2 10−1 100 101 102 103

16 11 15 35 67 78 77 77
32 11 18 47 83 136 124 125
64 12 21 61 94 219 225 228
128 13 27 77 110 270 401 403

(d) FDM, N = 16

CFL
1/h 10−3 10−2 10−1 100 101 102 103

16 10 13 16 18 19 19 19
32 15 36 104 96 84 84 83
64 18 48 121 121 224 211 200
128 23 69 132 184 311 326 380

Table 6: Number of residual evaluations for unsteady advection-diffusion problem with Pe =
103 using FDM preconditioner. N is the solution order, while 1/h is the number of degrees of
freedom in each coordinate direction. (* denote failure of convergence of restarted GMRES
algorithm.)
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5. Preconditioning: Compressible Navier-Stokes

In this section, we extend the ADI and FDM preconditioners to the com-
pressible Navier-Stokes equations. As in Section 4 we initially consider a constant-
coefficient problem, then discuss modifications to the algorithm in the general
varying coefficient/curvilinear geometry case. In particular, we consider the
linearized compressible Euler equations given by:

A0v,t + Ā∇v = 0. (26)

Applying the discontinuous-Galerkin discretization, using the Roe flux [24] we
obtain an elemental block Jacobian which corresponds to the following operator:

r(v|κ,w|κ) = −
∫
In

∫
κ

(w,tA0v +∇w · Āv)

+

∫
In

∫
∂κ

wA+
nv

+

∫
κ

w(tn+1
− )A0v(tn+1

− ). (27)

As in the scalar case, it is convenient to write this in the following form:

2

∆t|J |
r(v|κ,w|κ) = +

∫
τ

∫
ξ3

∫
ξ2

(
−
∫
ξ1

w,ξ1Ã1v +
[
wÃ

+

1 v
]ξ1=1

ξ1=−1

)
+

∫
τ

∫
ξ3

∫
ξ1

(
−
∫
ξ2

w,ξ2Ã2v +
[
wÃ

+

2 v
]ξ2=1

ξ2=−1

)
+

∫
τ

∫
ξ2

∫
ξ1

(
−
∫
ξ3

w,ξ3Ã3v +
[
wÃ

+

3 v
]ξ3=1

ξ3=−1

)
+

∫
ξ3

∫
ξ2

∫
ξ1

(
−
∫
τ

w,τ Ã0v +
[
wÃ0v

]τ=1
)
, (28)

where Ãi = ξi,xjAj ,

Ã
+

i =

{
1
2 (Ãi + |Ãi|) at ξi = 1
1
2 (Ãi − |Ãi|) at ξi = −1

}
, (29)

while Ã0 = 2
∆tA0. We recognize that each line on the right-hand side of (28)

corresponds to an one-dimensional hyperbolic system along an axis of our ref-
erence element. Unlike the scalar case we cannot write the discrete system
corresponding to (28) as a separable tensor-product matrix. However we may
write:

2

∆t

∂R

∂V
= (D+

1 ⊗M2 ⊗M3 ⊗M0 ⊗ Ã
+

1 ) + (D−1 ⊗M2 ⊗M3 ⊗M0 ⊗ Ã
−
1 )

(M1 ⊗D+
2 ⊗M3 ⊗M0 ⊗ Ã

+

2 ) + (M1 ⊗D−2 ⊗M3 ⊗M0 ⊗ Ã
−
2 )

(M1 ⊗M2 ⊗D+
3 ⊗M0 ⊗ Ã

+

3 ) + (M1 ⊗M2 ⊗D−3 ⊗M0 ⊗ Ã
−
3 )

(M1 ⊗M2 ⊗M3 ⊗D+
0 ⊗ Ã0), (30)
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where D±i are one-dimensional advection operators with advective velocity ±1.
As in the scalar case we may factor out the space-time mass matrix to get a
system of the form:

A = (D̃+
1 ⊗ I ⊗ I ⊗ I ⊗ Ã

+

1 ) + (D̃−1 ⊗ I ⊗ I ⊗ I ⊗ Ã
−
1 )

(I ⊗ D̃+
2 ⊗ I ⊗ I ⊗ Ã

+

2 ) + (I ⊗ D̃−2 ⊗ I ⊗ I ⊗ Ã
−
2 )

(I ⊗ I ⊗ D̃+
3 ⊗ I ⊗ Ã

+

3 ) + (I ⊗ I ⊗ D̃−3 ⊗ I ⊗ Ã
−
3 )

(I ⊗ I ⊗ I ⊗ D̃+
0 ⊗ Ã0). (31)

Exact inversion of A requires the factorization and solution of a 5Nd × 5Nd

matrix system. The cost of the factorization is prohibitively expensive with
increasing solution order. We now proceed to develop the diagonalized-ADI
and FDM-based scheme for approximately inverting A.

5.1. Diagonalized ADI

As in the scalar case, the development of an ADI scheme relies on modifying
the underlying PDE scheme by introducing a pseudo-time evolution. An ADI
scheme may be viewed as approximating the original system marching to steady-
state in pseudo-time.

τÃ =
{

(I ⊗ I ⊗ I ⊗ I ⊗ I) + (I ⊗ I ⊗ I ⊗ τD̃+ ⊗ Ã0A
−1
0 )

+(I ⊗ I ⊗ τD̃+ ⊗ I ⊗ Ã+

3 A
−1
0 ) + (I ⊗ I ⊗ τD̃− ⊗ I ⊗ Ã−3 A

−1
0 )

+(I ⊗ τD̃+ ⊗ I ⊗ I ⊗ Ã+

2 A
−1
0 ) + (I ⊗ τD̃− ⊗ I ⊗ I ⊗ Ã−2 A

−1
0 )

+(τD̃+ ⊗ I ⊗ I ⊗ I ⊗ Ã+

1 A
−1
0 ) + (τD̃− ⊗ I ⊗ I ⊗ I ⊗ Ã−1 A

−1
0 )
}

×(I ⊗ I ⊗ I ⊗ I ⊗A0) (32)

Following the scalar case, we may write the approximate inverse of (32) as:

1
τ Ã
−1 = (I ⊗ I ⊗ I ⊗ I ⊗A−1

0 )×
{(I ⊗ I ⊗ I ⊗ I ⊗ I) + (I ⊗ I ⊗ I ⊗ τD̃+ ⊗ Ã0A

−1
0 )}−1

{(I ⊗ I ⊗ I ⊗ I ⊗ I) + (I ⊗ I ⊗ τD̃+ ⊗ I ⊗ Ã+

3 A
−1
0 ) + (I ⊗ I ⊗ τD̃− ⊗ I ⊗ Ã−3 A

−1
0 )}−1

{(I ⊗ I ⊗ I ⊗ I ⊗ I) + (I ⊗ τD̃+ ⊗ I ⊗ I ⊗ Ã+

2 A
−1
0 ) + (I ⊗ τD̃− ⊗ I ⊗ I ⊗ Ã−2 A

−1
0 )}−1

{(I ⊗ I ⊗ I ⊗ I ⊗ I) + (τD̃+ ⊗ I ⊗ I ⊗ I ⊗ Ã+

1 A
−1
0 ) + (τD̃− ⊗ I ⊗ I ⊗ I ⊗ Ã−1 A

−1
0 )}−1

(33)

Each inversion in (33) corresponds to solving advective systems along the prin-
ciple axis of the reference element. We highlight this fact by writing (33), using
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an abuse of notation, as:

1
τ Ã
−1 = (I ⊗ I ⊗ I ⊗ I ⊗A−1

0 )×
(I ⊗ I ⊗ I ⊗ τD̃∗0 ⊗ Ã0A

−1
0 )−1

(I ⊗ I ⊗ τD̃∗3 ⊗ I ⊗ Ã3A
−1
0 )−1

(I ⊗ τD̃∗2 ⊗ I ⊗ I ⊗ Ã2A
−1
0 )−1

(τD̃∗1 ⊗ I ⊗ I ⊗ I ⊗ Ã1A
−1
0 )−1, (34)

where D̃∗i are fictitious operators such that (33) and (34) are equivalent. With
this notation it may be easily seen that each inversion in (34) corresponds to
solving Nd−1 systems of size 5N × 5N . As in the scalar case, the dominant
cost is the factorization of the one-dimensional systems such that the cost, to
leading order, is O(53dNd+2).

Following Pulliam and Chaussee [11], a diagonalized form of the ADI scheme
may be obtained using an eigenvalue decomposition of the flux Jacobians, Ãi =
RiΛ̃iR

T
i . Here, Ri are the eigenvectors, while Λ̃i is the matrix of eigenvalues

of Ai. We also note that A0 = R1R
T
1 = R2R

T
2 = R3R

T
3 [6]. We may write

(34) as:

1
τ Ã
−1 = (I ⊗ I ⊗ I ⊗ I ⊗R−T3 R−1

3 )×
(I ⊗ I ⊗ I ⊗ τD̃∗0 ⊗ Λ̃0)−1

(I ⊗ I ⊗ τD̃∗3 ⊗ I ⊗R3Λ̃3R
−1
3 )−1

(I ⊗ τD̃∗2 ⊗ I ⊗ I ⊗R2Λ̃2R
−1
2 )−1

(τD̃∗1 ⊗ I ⊗ I ⊗ I ⊗R1Λ̃1R
−1
1 )−1

= (I ⊗ I ⊗ I ⊗ I ⊗R−T3 )(I ⊗ I ⊗ I ⊗ τD̃∗0 ⊗ Λ̃0)−1

(I ⊗ I ⊗ τD̃∗3 ⊗ I ⊗ Λ̃3)−1(I ⊗ I ⊗ I ⊗ I ⊗R−1
3 R2)

(I ⊗ τD̃∗2 ⊗ I ⊗ I ⊗ Λ̃2)−1(I ⊗ I ⊗ I ⊗ I ⊗R−1
2 R1)

(τD̃∗1 ⊗ I ⊗ I ⊗ I ⊗ Λ̃1)−1(I ⊗ I ⊗ I ⊗ I ⊗R−1
1 ). (35)

We point out that D̃∗i ⊗ Λ̃i corresponds to a block-diagonal matrix where each
block corresponds to a one-dimensional scalar advection operator with advection
velocity given by an eigenvalue λ̃i. In this form the inversions in (35) correspond
to solutions of independent 5 Nd−1 scalar advection problems in each coordinate
direction. The application of R−T3 , R−1

3 R2, R−1
2 R1, and R−1

1 correspond to
transformations to and from characteristic variables, which are performed locally
at each nodal point. Additionally, we note that R−1

3 R2, R−1
2 R1 depend only

upon local geometry information [11].
We now discuss the extension of the diagonalized-ADI scheme to the case

of variable coefficient compressible Navier-Stokes equations on curvilinear grids.
Extension to the Navier-Stokes equations is achieved by adding a spectral ra-
dius approximation for the viscous terms. The one-dimensional scalar ad-
vection systems are replaced with advection-diffusion systems with viscosity
ν̃ii = νξi,xjξi,xj . In this case of variable coefficients or curvilinear geometry, the
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elemental block Jacobian may not be written as a sum of tensor-product ma-
trices. However, we may recognize the diagonalized-ADI scheme as a sequence
of steps, and apply these steps in the general case. The steps involved in the
diagonalized-ADI scheme are given by:

1. Multiply by the inverse of the space-time element mass matrix

2. Transform to characteristic variables in the ξ1-direction

3. Solve one-dimensional scalar systems along lines in the ξ1-direction

4. Transform to characteristic variables in the ξ2-direction

5. Solve one-dimensional scalar systems along lines in the ξ2-direction

6. Transform to characteristic variables in the ξ3-direction

7. Solve one-dimensional scalar systems along lines in the ξ3-direction

8. Solve one-dimensional scalar systems along lines in the τ -direction

9. Transform back to entropy variables

We outline the modifications to the diagonalized-ADI scheme in the variable
coefficient case. In step 1 the space-time element mass matrix is approximated
using collocation resulting in an easily invertible diagonal matrix. In steps 2, 4,
6 and 9 variable transformations are performed locally at each collocation point
using the point-wise values for the state and geometry information. Similarly,
the scalar systems solved in 3, 5 and 7 correspond to variable-coefficient advec-
tion problems with advection velocity corresponding to the eigenvalues at the
collocation points.

In the constant-coefficient case, the diagonalized ADI scheme, (35), is identi-
cal to the full ADI scheme, (34). However, the diagonalized ADI scheme allows
for a significant reduction in computational cost. As opposed to solving one-
dimensional systems of size 5N × 5N , 5 scalar systems of size N × N need to
be solved. However, due to repeated eigenvalues in the Euler system only 3, as
opposed to 5, factorizations need to be performed along each Nd−1 lines in each
coordinate direction. This leads to a cost which scales as O(3dNd+2) which
represents a savings of about 40 relative to the full ADI scheme.

In the above estimate we have assumed that a separate factorization is
performed for each eigenvalue on each line where the scalar systems depend
upon the local variable-coefficients. We refer to this scheme as the “variable-
coefficient” diagonalized-ADI scheme. We also consider a second scheme we
refer to as the “single-factorization” diagonalized-ADI scheme in which we take
advantage of the fact that in the constant-coefficient case, the scalar systems
in each coordinate direction are identical for each eigenvalue. In the single-
factorization scheme we approximate the variable coefficients by an average in
the directions normal to each line, such that only 3 factorizations (corresponding
to the 3 eigenvalues) are required to be performed in each coordinate direction.
The dominant cost for applying this single-factorization diagonalized-ADI pre-
conditioner then becomes the forward- and back- substitutions which gives a
cost which scales as O(5dNd+1). We note that this cost is, to leading order, the
same order as a residual evaluation.
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5.2. Fast-Diagonalization Method

For the compressible Euler system, the fast diagonalization method can-
not be applied directly, since the system (31) is not a separable tensor-product
system. In particular, the flux Jacobians, Ãi, cannot be simultaneously diago-
nalized, (i.e. there does not exist a set of eigenvectors R, such that R−1AiR

−T

is diagonal for i = 0, . . . , 3). Thus it is not possible to rearrange (31) into a
block diagonal form where each block corresponding to a characteristic variable
is in separable form. However, we recognize that for the Euler system there is a
particular choice of eigenvectors R, for which R−1AiR

−T has non-zero values
on the diagonal and only in the last row and column. We use this transforma-
tion to develop an approximate inverse of (31) using FDM and an approximate
Schur complement. We proceed to describe this preconditioner in the rest of
this section.

First, we present the transformation of variables required in order to modify
the system (31) into the desired form. We write R as R = u,wr where w =[
ρ V T p

]T
is the vector of primitive variables, while r is given by:

r =


ρ
√
γ−1√
γρ 0 ρ√

γρ

0 c√
γρN 0

0 0 ρc2√
γρ

 , (36)

where c =
√
γp/ρ is the speed of sound, while N =

[
N1 N2 N3

]
is a

matrix of unit vectors with Ni = ∇ξi
|∇ξi| . The corresponding flux Jacobians are

given by:

Γ̃i = R−1ÃiR
−T

=

 (V · ∇ξi) 0 0

0 (V · ∇ξi)NTN cNT∇ξi
0 c∇ξTi N V · ∇ξi

 , (37)

for i = 1, 2, 3. For elements which are regular parallelepipeds, this simplifies to:

Γ̃i =

 (V · ∇ξi) 0 0
0 (V · ∇ξi)I c|∇ξi|ei
0 c|∇ξi|eTi (V · ∇ξi)

 , (38)

where ei is the vector with all zeros except for a 1 in the ith coordinate. As
noted previously, Γ̃i are diagonal except for a single entry in the last row/column
due to the acoustic coupling terms. We note that the absolute value of the flux
Jacobians have a similar structure. For subsonic flow:

|Γ̃i| = R−1|Ãa|R−T (39)

=

 |V · ∇ξi| 0 0
0 |V · ∇ξi|(I − eie

T
i ) + c|ξi,xk |eieTi (V · ∇ξi)ei

0 (V · ∇ξi)eTi c|∇ξi|

 ,
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while for supersonic flow |Γ̃i| = ±Γ̃i depending upon the direction of the flow.
These properties allows us to rewrite the system (31) as:

A = (I × I × I × I ×R)×

{(D̃+
1 ⊗ I ⊗ I ⊗ I ⊗ Γ̃

+

1 ) + (D̃−1 ⊗ I ⊗ I ⊗ I ⊗ Γ̃
−
1 )

(I ⊗ D̃+
2 ⊗ I ⊗ I ⊗ Γ̃

+

2 ) + (I ⊗ D̃−2 ⊗ I ⊗ I ⊗ Γ̃
−
2 )

(I ⊗ I ⊗ D̃+
3 ⊗ I ⊗ Γ̃

+

3 ) + (I ⊗ I ⊗ D̃−3 ⊗ I ⊗ Γ̃
−
3 )

(I ⊗ I ⊗ I ⊗ D̃+
0 ⊗ I)}

×(I × I × I × I ×RT ), (40)

where the key observation is that the matrix corresponding to the second through
fifth lines of (40) have a similar block structure as the transformed flux Jaco-
bians. Namely, we may write this system as a block matrix of the form:

Â =


A00

A11 B14

A22 B24

A33 B34

B14 B24 B34 A44

 , (41)

where:

A00 = (D̃1 ⊗ I ⊗ I ⊗ I) + (I ⊗ D̃2 ⊗ I ⊗ I)

+(I ⊗ I ⊗ D̃3 ⊗ I) + (I ⊗ I ⊗ I ⊗ D̃t)

A11 = (D̃‡1 ⊗ I ⊗ I ⊗ I) + (I ⊗ D̃2 ⊗ I ⊗ I)

+(I ⊗ I ⊗ D̃3 ⊗ I) + (I ⊗ I ⊗ I ⊗ D̃t)

A22 = (D̃1 ⊗ I ⊗ I ⊗ I) + (I ⊗ D̃‡2 ⊗ I ⊗ I)

+(I ⊗ I ⊗ D̃3 ⊗ I) + (I ⊗ I ⊗ I ⊗ D̃t)

A33 = (D̃1 ⊗ I ⊗ I ⊗ I) + (I ⊗ D̃2 ⊗ I ⊗ I)

+(I ⊗ I ⊗ D̃‡3 ⊗ I) + (I ⊗ I ⊗ I ⊗ D̃t)

A44 = (D̃‡1 ⊗ I ⊗ I ⊗ I) + (I ⊗ D̃‡2 ⊗ I ⊗ I)

+(I ⊗ I ⊗ D̃‡3 ⊗ I) + (I ⊗ I ⊗ I ⊗ D̃t)

B14 = (D̃†1 ⊗ I ⊗ I ⊗ I)

B24 = (I ⊗ D̃†2 ⊗ I ⊗ I)

B34 = (I ⊗ I ⊗ D̃†3 ⊗ I). (42)

Here D̃i = M−1
i Di, D̃

‡
i = M−1

i D‡i and D̃†i = M−1
i D†i are one-dimensional
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advection operators corresponding to:

Di[m,n] = −
∫
ξi

ãiw,ξiv +
[

1
2 (ãi + ξi|ãi|)wv

]ξi=1

ξi=−1
(43)

D‡i [m,n] = −
∫
ξi

ãiw,ξiv
[

1
2 (ãi + ξic̃i)wv

]ξi=1

ξi=−1
(44)

D†i [m,n] = −
∫
ξi

c̃iw,ξiv +
[

1
2 (c̃i + ξiãi)wv

]ξi=1

ξi=−1
(45)

where c̃i = c|∇ξi|.
We can now perform a block-LDU factorization of Â appearing in (41):

Â =


I

I
I

I
B14A

−1
11 B24A

−1
22 B34A

−1
33 I

×

A00

A11

A22

A33

S44



I

I A−1
11 B14

I A−1
22 B24

I A−1
33 B34

I

 , (46)

where S44 is the Schur complement given by:

S44 = A44 −B14A
−1
11 B14 −B24A

−1
22 B24 −B34A

−1
33 B34. (47)

The inverse of Â is given by:

Â−1 =


I

I −A−1
11 B14

I −A−1
22 B24

I −A−1
33 B34

I



A−1

00

A−1
11

A−1
22

A−1
33

S−1
44



×


I

I
I

I
−B14A

−1
11 −B24A

−1
22 −B34A

−1
33 I

 . (48)

We note that A−1
ii , i = 0, . . . , 3 may be efficiently applied using the fast-

diagonalization method, while multiplication by Bi4, i = 1, . . . , 3 may be ef-
ficiently performed using the sum factorization approach. So far we have made
no approximations other than those assumptions relied upon to develop the
diagonalized ADI preconditioner: namely, constant-coefficient problem on par-
allelepiped elements. Thus exact inversion of the Schur complement would give
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an exact elemental Jacobian inversion. Unfortunately, the Schur complement
matrix is in general full, and, as we have discussed numerous times, is pro-
hibitively expensive to store at high polynomial order. Instead of forming and
inverting the Schur complement S44 directly, we invert an approximate Schur
complement using the fast-diagonalization method.

We note that S44 is not a separable tensor-product matrix due to the pres-
ence of the terms Bi4A

−1
ii Bi4. Instead we form an approximation to the Schur

complement S̃44 which is in separable form:

S̃44 = A44 −B14Ã
−1
11 B14 −B24Ã

−1
22 B24 −B34Ã

−1
33 B34, (49)

where Ãii are spectral radius approximations given by:

Ã11 = (D̃‡1 + (λmin(D̃2) + λmin(D̃3) + λmin(D̃t))I ⊗ I ⊗ I ⊗ I) (50)

Ã22 = (I ⊗ D̃‡2 + (λmin(D̃1) + λmin(D̃3) + λmin(D̃t))I ⊗ I ⊗ I) (51)

Ã33 = (I ⊗ I ⊗ D̃‡3 + (λmin(D̃1) + λmin(D̃2) + λmin(D̃t))I ⊗ I), (52)

where λmin(D̃i) denotes the smallest real component of the eigenvalues of D̃i.
We note that S̃44 is not explicitly formed; only the application of its inverse is
required which is performed using FDM.

We note several important features of the FDM-based preconditioner for the
constant-coefficient linearized Euler equations. First, the FDM preconditioner
provides an exact block inversion for the convective (entropy) mode, correspond-
ing to the first block row of (41), as this mode decouples from the other variables.

Second, 4
5

ths
of the eigenvectors of the operator Ã−1A − I, corresponding to a

Richardson iteration on the element block Jacobian, are identically zero as the
lower and upper factors in (46) are computed exactly.

Extension of the FDM-based preconditioner to the compressible Navier-
Stokes equations is performed by including the diagonal of the viscous flux
Jacobian. Applying the transformations R−1K̃ijR

−T gives viscous flux Jaco-
bians:

R−1K̃ijR
−T = ν|∇ξi||∇ξj | × 1

PrN
T
i N j 0 −

√
γ−1
Pr N

T
i N j

0 NT
i N jN

TN − (N ×N)(N i ×N j) + 1
3 (NTN i)

T (NTN j) 0

−
√
γ−1
Pr N

T
i N j 0 (γ−1)

Pr N
T
i N j

 .
where, Pr is the Prandtl number. For parallelepiped elements, the diagonals of
the viscous flux Jacobian simplifies to:

R−1K̃iiR
−T = ν̃ii

 1
Pr 0 −

√
γ−1
Pr

0 I + 1
3eie

T
i 0

−
√
γ−1
Pr 0 (γ−1)

Pr


Thus, inclusion of the diagonal of the viscous flux Jacobian does not alter the
block-structure of (41) except that the convective mode no longer decouples
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from the other modes. Additionally, omitting 1
3eie

T
i from the diagonal terms

and all off-diagonal terms Kij , i 6= j, we can recover the exact Jacobian in
the limit of incompressible flow. Thus omission of these terms may only when
significant compressibility effects are present.

As with the diagonalized-ADI scheme, we present the FDM-based precondi-
tioner as a sequence of operations and discuss the modifications to these oper-
ations in the case of variable-coefficient problems on general curvilinear grids.
The application of the FDM preconditioner is given by the following steps:

1. Multiply by the inverse of the space-time element mass matrix

2. Transform to “characteristic variables” using the transformation R−1

3. Apply A−1
ii , i = 0, . . . , 3 using FDM

4. Apply Bi4 using the sum-factorization approach to compute the residual
for the Schur complement problem

5. Solve the Schur complement problem by applying S̃−1
44 using FDM

6. Multiplying the results by A−1
ii Bi4 by applying the sum-factorization ap-

proach followed by FDM in order to update the remaining state

7. Transform back to entropy variables

In the variable-coefficient case, the elemental flux Jacobian does not have the
simple form given in (31), however we may apply the FDM-based preconditioner
in the general case, by making the following modifications. In step 1 the space-
time element mass matrix is approximated using collocation resulting in an
easily invertible diagonal matrix. In steps 2 and 6 variable transformations are
performed locally at each collocation point using the point-wise values for the
state and geometry information. The system matrices in 3-6 are formed based
on elemental means of the eigenvalues computed at the collocation points, in a
manner similar to the single-factorization ADI approach.

Finally we discuss the cost of applying the FDM-based preconditioner. The
dominant cost is due to the application of the eigenvector matrices using the
sum-factorization approach in the FDM inversions. In total 9 FDM inversions
are performed for a single application of the preconditioner leading to a total
cost which scales as O(9dNd+1). Thus, to leading order, the cost of the FDM-
based preconditioner is the same as a single residual evaluation similar to the
single-factorization ADI approach.

6. Numerical Results

We now present numerical results showing the performance of the diago-
nalized ADI and FDM-based preconditioners for solving the unsteady Navier-
Stokes equations. We consider two problems: direct numerical simulation of the
Taylor-Green vortex evolution and direct numerical simulation of a turbulent
channel flow.
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6.1. Taylor-Green Vortex

The Taylor-Green vortex flow is simulated using the compressible Navier-
Stokes equations at Mach number M0 = 0.1 and Reynolds number Re =
ρ0V0L
µ = 1600. The flow is solved on an isotropic domain which spans [0, 2πL]

in each coordinate direction. The initial conditions are given by:

u = V0 sin(x/L) cos(y/L) cos(z/L) (53)

v = −V0 cos(x/L) sin(y/L) cos(z/L) (54)

w = 0 (55)

p = ρ0V
2
0

[
1

γM2
0

+
1

16
(cos(2x) + sin(2y)) (cos(2z) + 2))

]
(56)

where u, v and w are the components of the velocity in the x, y and z-directions,
p is the pressure and ρ is the density. The flow is initialized to be isothermal
(pρ = p0

ρ0
= RT0). Starting from the simple initial condition, the flow becomes

turbulent through repeated vortex stretching leading to progressively smaller
eddies, which are then dissipated through the action of molecular diffusion.

As in the case of scalar advection-diffusion we examine the performance of
our preconditioners as a function of solution order, degrees of freedom, and CFL
number based on the accoustic speed, CFL = c∆t

hN . We consider four precondi-
tioners: mass-matrix, diagonalized-ADI with variable coefficients, diagonalized-
ADI with a single factorization, and the FDM-based preconditioner. Tables 7
- 10 report the number of iterations required to converge the residual to 10−14

for a single time slab starting at the point of peak dissipation. Tables 7 - 10 also
give the corresponding CPU time per spatial degree of freedom for a simulation
time corresponding to CFL = 1.

The mass matrix preconditioner is too weak to converge the space-time sys-
tem with increasing CFL number or solution order. Using the tensor-product
preconditioners allows for larger time-steps to be taken. In particular, the
tensor-product preconditioners are able to overcome the increased stiffness asso-
ciated with high-order to allow for the time step to be dictated by the physics of
the problem as opposed to an explicit stability limit. For very large time steps,
the combination of insufficiently strong preconditioning and the nonlinearity
present in the problem prevent the Newton-Krylov scheme from converging.
In studies not presented here, an improved nonlinear localization scheme using
pseudo-transient continuation has allowed for convergence with somewhat larger
time steps using ADI and FDM preconditioners. However, in the scope of this
paper we do not consider other nonlinear localization techniques.

The two variants of the ADI preconditioner have very similar performance
in terms of the number of iterations required to converge. The two ADI precon-
ditioners are identical for constant-coefficient problems. It is initially somewhat
surprising that the performance of the two preconditioners are so similar given
the large spatial variations in the velocity near the point of peak dissipation.
However, for this low Mach number flow, the accoustic speed is essentially con-
stant within the domain and it is likely that the convergence is limited by the ac-
coustic modes. In terms of CPU time, the variable-coefficient diagonalized-ADI

29



scheme has a cost about twice that of the single-factorization diagonalized-ADI
scheme, justifying the single-factorization approximation.

The FDM-based preconditioner performs somewhat better than the single-
factorization ADI scheme in terms of the number of iterations required to con-
verge. In terms of CPU time, however, the FDM-based preconditioner is some-
what worse than the ADI based preconditioner as the cost of applying the FDM
preconditioner is more than the single-factorization diagonalized-ADI scheme.
At CFL = 1− 4 the single-factorization ADI preconditioning is approximately
10%-30% faster than the FDM-based preconditioner (provided both schemes
converge).

The ADI-based preconditioners are slightly more robust than the FDM pre-
conditioner, resulting in more reliable convergence for large CFL numbers when
N = 8. However, as noted before, at very large CFL numbers, (particularly
at higher-order) lack of convergence of the Newton-Krylov scheme appears to
be driven by a combination of both weak preconditioning and the nonlinearity
of the problem. We have noticed that at high solution order and large CFL
numbers the FDM preconditioner gives a much larger reduction in linear resid-
ual than the ADI preconditioners in the first step of the Newton scheme (using
20 Krylov vectors). However, this generally results in a poorer update with
a larger nonlinear residual after the first iteration when compared to the ADI
scheme. Currently, a simple line-search is employed at each Newton-Krylov
iteration to ensure decrease in the non-linear residual. A more advanced non-
linear localization strategy may be necessary in the limit of large time-steps at
higher-order. Conclusions about the robustness of the preconditioning scheme
in the large CFL limit may be premature prior to a more complete investigation
of nonlinear continuation strategies.

Finally, the performance of the ADI and FDM preconditioners are compared
with an exact element-wise block-Jacobi preconditioner commonly used for DG
methods at low polynomial order. As noted previously the memory required
for storing the block-Jacobian and its factorization may be prohibitive at high
polynomial order. In order to overcome this memory limitation the block-Jacobi
preconditioner is implemented in a matrix-free manner using subiterations to
converge each block system to machine zero. In this simple implementation, the
cost of the block-Jacobi preconditioner is about two orders of magnitude more
expensive than the ADI or FDM preconditioners at 8th order. Thus, we con-
sider only the coarsest mesh resolution and report convergence only in terms of
the number of iterations as given in Table 11. At 2nd order, the performance of
the Block-Jacobi preconditioner is nearly identical to the FDM preconditioner.
With increasing polynomial order the performance of the block-Jacobi precondi-
tioner improves relative to the ADI and FDM preconditioners, particularly with
increasing CFL number. At 8th-order the block-Jacobi preconditioner converges
using 2-3 times fewer iterations than the ADI preconditioner at the largest CFL
numbers considered. However, in term of CPU time the ADI and FDM pre-
conditioners are must more efficient than the block-Jacobi preconditioner which
is significantly more expensive to apply then the tensor-product precondition-
ers. Thus the ADI and FDM preconditioners provide an efficient low-memory
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(a) Iterations, N = 2

CFL
1/h 1

2 1 2 4 8 16 32
48 66 108 195 370 714 * *
64 65 108 196 373 714 * *
96 64 109 197 375 735 * *
128 63 109 197 374 735 * *

(b) CPU Time, N = 2

CFL
1/h 1

2 1 2 4 8 16 32
48 272.8 204.3 169.7 153.6 144.4 * *
64 416.8 284.6 264.1 215.5 202.9 * *
96 468.0 358.7 305.9 272.2 265.0 * *
128 462.8 374.3 304.6 281.8 274.0 * *

(c) Iterations, N = 4

CFL
1/h 1

2 1 2 4 8 16 32
48 138 231 448 916 * * *
64 158 231 430 897 * * *
96 137 231 427 905 * * *
128 136 209 410 894 * * *

(d) CPU Time, N = 4

CFL
1/h 1

2 1 2 4 8 16 32
48 574.9 457.6 435.5 443.2 * * *
64 698.7 451.7 450.3 438.7 * * *
96 747.1 590.2 525.2 556.3 * * *
128 787.8 596.5 601.3 627.1 * * *

(e) Iterations, N = 8

CFL
1/h 1

2 1 2 4 8 16 32
48 311 519 1032 * * * *
64 313 521 1027 * * * *
96 304 516 1024 * * * *
128 285 225 1002 987 * * *

(f) CPU Time, N = 8

CFL
1/h 1

2 1 2 4 8 16 32
48 1609.2 1316.8 1298.0 * * * *
64 1740.8 1388.4 1344.8 * * * *
96 2171.9 1778.5 1754.3 * * * *
128 2134.7 1842.2 1808.8 854.7 * * *

Table 7: Number of GMRES Iterations and CPU time (µs) for Taylor-Green vortex problem
using the mass-matrix preconditioner. N is the solution order, while 1/h is the number of
degrees of freedom in each coordinate direction. (* denotes failure of convergence of restarted
GMRES algorithm.)
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(a) Iterations, N = 2

CFL
1/h 1

2 1 2 4 8 16 32
48 41 68 90 159 293 567 *
64 40 68 90 159 293 566 *
96 40 67 90 159 294 587 *
128 39 58 86 159 294 567 *

(b) CPU Time, N = 2

CFL
1/h 1

2 1 2 4 8 16 32
48 538.6 418.1 269.5 230.8 208.9 200.1 *
64 748.2 478.5 280.4 237.3 212.8 203.3 *
96 582.6 453.5 294.7 251.8 228.7 226.8 *
128 605.0 406.3 303.8 267.5 239.6 229.8 *

(c) Iterations, N = 4

CFL
1/h 1

2 1 2 4 8 16 32
48 77 103 162 231 400 949 *
64 78 101 157 231 402 821 *
96 76 93 138 210 401 802 *
128 72 97 140 189 397 787 *

(d) CPU Time, N = 4

CFL
1/h 1

2 1 2 4 8 16 32
48 943.5 591.7 442.4 309.9 266.8 316.2 *
64 975.2 609.3 445.0 319.1 275.9 284.8 *
96 993.1 599.8 442.1 321.8 305.6 305.1 *
128 1029.4 679.8 479.3 314.4 333.8 324.6 *

(e) Iterations, N = 8

CFL
1/h 1

2 1 2 4 8 16 32
48 104 156 248 355 680 * *
64 110 159 239 409 724 * *
96 107 149 232 337 608 * *
128 101 101 240 139 568 * *

(f) CPU Time, N = 8

CFL
1/h 1

2 1 2 4 8 16 32
48 1475.5 1058.4 818.2 579.3 549.2 * *
64 1667.0 1137.1 843.9 687.6 597.0 * *
96 1779.4 1148.6 878.8 628.0 561.4 * *
128 1740.3 864.3 849.2 273.6 524.1 * *

Table 8: Number of GMRES Iterations and CPU time (µs) for Taylor-Green vortex problem
using the variable-coefficient diagonalized-ADI preconditioner. N is the solution order, while
1/h is the number of degrees of freedom in each coordinate direction. (* denotes failure of
convergence of restarted GMRES algorithm.)
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(a) Iterations, N = 2

CFL
1/h 1

2 1 2 4 8 16 32
48 41 69 90 159 293 567 *
64 40 68 90 159 293 566 *
96 40 67 90 159 294 587 *
128 39 58 86 159 294 567 *

(b) CPU Time, N = 2

CFL
1/h 1

2 1 2 4 8 16 32
48 305.5 239.5 149.0 124.4 111.4 102.6 *
64 533.2 263.6 162.8 135.3 117.2 110.2 *
96 377.7 284.9 177.8 151.1 134.3 133.8 *
128 425.1 257.6 180.6 154.1 138.5 134.1 *

(c) Iterations, N = 4

CFL
1/h 1

2 1 2 4 8 16 32
48 77 103 162 231 400 953 *
64 78 101 157 231 402 821 *
96 76 93 138 210 401 801 *
128 71 97 139 189 397 786 *

(d) CPU Time, N = 4

CFL
1/h 1

2 1 2 4 8 16 32
48 424.2 263.9 187.2 127.4 109.5 129.2 *
64 498.6 320.2 193.4 144.6 115.4 112.3 *
96 473.4 266.9 187.9 144.1 134.7 130.1 *
128 486.4 321.0 217.0 149.2 156.2 147.3 *

(e) Iterations, N = 8

CFL
1/h 1

2 1 2 4 8 16 32
48 104 156 247 355 679 * *
64 111 159 240 400 720 * *
96 109 151 233 337 587 * *
128 101 * 226 139 743 * *

(f) CPU Time, N = 8

CFL
1/h 1

2 1 2 4 8 16 32
48 701.7 485.4 357.8 250.7 233.3 * *
64 816.5 519.7 373.3 303.2 260.9 * *
96 927.9 599.9 447.9 313.9 269.0 * *
128 928.1 * 444.0 175.1 270.5 * *

Table 9: Number of GMRES Iterations and CPU time (µs) for Taylor-Green vortex problem
using the single-factorization diagonalized-ADI preconditioner. N is the solution order, while
1/h is the number of degrees of freedom in each coordinate direction. (* denotes failure of
convergence of restarted GMRES algorithm.)
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(a) Iterations, N = 2

CFL
1/h 1

2 1 2 4 8 16 32
48 30 52 80 114 183 377 687
64 30 51 79 113 184 394 747
96 30 50 78 114 183 396 749
128 29 42 75 109 183 377 731

(b) CPU Time, N = 2

CFL
1/h 1

2 1 2 4 8 16 32
48 408.6 323.7 235.6 163.5 128.6 129.8 117.5
64 482.8 406.6 240.0 178.6 135.5 137.9 129.1
96 475.6 348.1 252.7 178.5 145.2 149.3 140.5
128 476.3 311.2 279.7 189.3 150.8 151.4 146.8

(c) Iterations, N = 4

CFL
1/h 1

2 1 2 4 8 16 32
48 59 92 132 199 284 481 *
64 62 94 135 197 263 549 *
96 62 84 117 185 244 476 *
128 56 86 121 171 229 401 *

(d) CPU Time, N = 4

CFL
1/h 1

2 1 2 4 8 16 32
48 420.2 305.7 209.2 151.0 106.8 88.9 *
64 555.9 369.4 237.7 163.3 118.1 114.5 *
96 626.9 381.2 250.3 191.9 125.7 119.7 *
128 636.1 424.3 296.7 196.0 128.9 112.1 *

(e) Iterations, N = 8

CFL
1/h 1

2 1 2 4 8 16 32
48 112 159 225 327 * * *
64 113 165 218 354 * * *
96 114 158 202 315 * * *
128 199 104 362 147 932 * *

(f) CPU Time, N = 8

CFL
1/h 1

2 1 2 4 8 16 32
48 915.8 603.8 414.8 299.4 * * *
64 1100.5 734.9 463.5 370.4 * * *
96 1265.2 815.2 513.6 375.3 * * *
128 1297.1 598.5 592.6 204.5 536.2 * *

Table 10: Number of GMRES Iterations and CPU time (µs) for Taylor-Green vortex problem
using the FDM-based preconditioner. N is the solution order, while 1/h is the number of
degrees of freedom in each coordinate direction. (* denotes failure of convergence of restarted
GMRES algorithm.)
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alternative to the block-Jacobi preconditioner.

(a) N = 2

CFL
1
2 1 2 4 8 16 32

Mass-matrix 66 108 195 370 714 * *
ADI (variable) 41 68 90 159 293 567 *
ADI (single) 41 69 90 159 293 567 *

FDM 30 52 80 114 183 377 687
Block-Jacobi 30 51 78 112 205 375 717

(b) N = 4

CFL
1
2 1 2 4 8 16 32

Mass-matrix 138 231 448 916 * * *
ADI (variable) 77 103 162 231 400 949 *
ADI (single) 77 103 162 231 400 953 *

FDM 59 92 132 199 284 481 *
Block-Jacobi 50 75 112 161 248 358 646

(c) N = 8

CFL
1
2 1 2 4 8 16 32

Mass-matrix 311 519 1032 * * * *
ADI (variable) 104 156 248 355 680 * *
ADI (single) 104 156 247 355 679 * *

FDM 112 159 225 327 * * *
Block-Jacobi 79 99 144 198 306

Table 11: Number of GMRES Iterations for Taylor-Green vortex problem with 1/h = 48 using
mass-matrix, ADI, FDM and Block-Jacobi preconditioners. (* denotes failure of convergence
of restarted GMRES algorithm.)

6.2. Turbulent Channel Flow

As a second test case, we consider the flow in a channel at Reτ = 180,
where Reτ = uτδ

ν is the Reynolds number based on the wall shear velocity,

uτ =
√
τw/ρ, the channel half-width, δ, and the kinematic viscosity, ν = µ/ρ.

The simulations performed are nearly incompressible with a Mach number of ap-
proximately 0.1 based on the bulk velocity and mean speed of sound. Following
Kim et al. [25] the domain is of size 4πδ × 2δ × 2πδ, corresponding to stream-
wise, normal, and span-wise directions, respectively. The domain is periodic
in the stream-wise and span-wise directions while adiabatic no-slip boundary
conditions are applied at the channel walls. The flow is driven by a constant
body force applied to the stream-wise momentum equation.
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As with the previous test cases, we examine the performance of our precon-
ditioners as a function of solution order, degrees of freedom, and CFL number
based on the accoustic speed. We consider three set of meshes corresponding
to 96 × 64 × 80, 144 × 96 × 128 and 192 × 128 × 160 degrees of freedom in
stream-wise, wall-normal and span-wise directions. Tables 12 - 15 report the
number of GMRES iterations and CPU time required to converge to a residual
of 10−13 for each time slab. The results for the turbulent channel flow case
are similar to that for the Taylor-Green vortex problem. Namely, the mass-
matrix preconditioner is sufficient only at small CFL or low solution order. The
diagonalized-ADI and FDM-based preconditioners allow convergence at higher
solution orders and larger CFL numbers. Once again, both variants of the
diagonalized-ADI preconditioner perform similarly in terms of the number of it-
erations. The single-factorization diagonalized-ADI is about a factor of 2 faster
in terms of CPU time. The FDM-based preconditioner tends to converge in
the fewest number of iterations, but the cost in terms of CPU time is about
the same for FDM and single-factorization diagonalized-ADI schemes. Just as
we have observed with the Taylor-Green vortex test case, the convergence at
high solution order and large CFL numbers is limited by a combination of in-
sufficiently strong preconditioning and nonlinearity. Using the Newton-Krylov
scheme with ADI or FDM-based preconditioners allow for an 8th order simu-
lation to be performed at a CFL = 8 in a CPU time that is approximately
10 times faster than using the mass-matrix preconditioner at the largest CFL
number for which the Newton-Krylov scheme would converge.

7. Conclusions

We have presented a higher-order space-time discontinuous Galerkin method
for the direct numerical simulation of subsonic turbulent compressible flows. An
efficient matrix-free Newton-Krylov method is used for the solution of the non-
linear system of equations arising at each space-time slab. The use of a tensor-
product formulation is vital in order to maintain an efficient implementation.
The sum-factorization ensures efficient residual evaluation as well as linearized
residual evaluation used in the matrix-free Krylov scheme.

Two classes of preconditioners were presented which take advantage of the
tensor-product formulation: a diagonalized-Alternating Direction Implicit (ADI)
scheme and a preconditioner based on the Fast Diagonalization Method (FDM).
For advection-dominated scalar advection-diffusion problems, the ADI precon-
ditioner demonstrates convergence in a number of iterations independent of the
solution order for a fixed number of degrees of freedom, thus over-coming the
stiffness associated with higher-order methods. The FDM preconditioner es-
sentially gives an exact elemental solve for scalar problems, providing a very
efficient scheme at high-order.

The ADI and FDM-based preconditioners were extended to the solution
of the unsteady compressible Navier-Stokes equations. The performance of
the ADI and FDM preconditioners were assessed for direct numerical simu-
lation of the Taylor-Green vortex problem and turbulent flow in a channel. The
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(a) Iterations, N = 2

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 58 104 214 395 805 * *

144× 96× 120 66 150 255 505 * * *
192× 128× 160 66 129 255 524 1032 * *

(b) CPU Time, N = 2

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 519.7 385.9 368.8 276.6 263.1 * *

144× 96× 120 837.0 865.0 579.4 448.5 * * *
192× 128× 160 1031.7 649.2 575.3 434.3 416.8 * *

(c) Iterations, N = 4

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 194 343 663 * * * *

144× 96× 120 194 342 697 * * * *
192× 128× 160 173 341 702 * * * *

(d) CPU Time, N = 4

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 946.4 812.0 748.6 * * * *

144× 96× 120 1412.6 1105.6 920.8 * * * *
192× 128× 160 1227.8 1100.3 1032.7 * * * *

(e) Iterations, N = 8

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 461 839 * * * * *

144× 96× 120 446 845 * * * * *
192× 128× 160 430 909 * * * * *

(f) CPU Time, N = 8

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 2488.2 2199.8 * * * * *

144× 96× 120 3178.7 2956.6 * * * * *
192× 128× 160 3049.1 3219.6 * * * * *

Table 12: Number of GMRES Iterations and CPU time (µs) for turbulent channel DNS using
the mass-matrix preconditioner. N is the solution order, while 1/h is the number of degrees of
freedom in each coordinate direction. (* denotes failure of convergence of restarted GMRES
algorithm.)
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(a) Iterations, N = 2

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 47 61 68 117 189 336 696

144× 96× 120 51 62 89 135 247 441 857
192× 128× 160 51 62 90 134 244 462 882

(b) CPU Time, N = 2

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 851.6 450.9 322.9 188.0 162.1 136.6 127.2

144× 96× 120 1673.4 541.8 527.0 341.7 264.5 218.4 179.3
192× 128× 160 1016.2 582.2 464.5 273.8 216.4 199.9 175.9

(c) Iterations, N = 4

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 93 97 110 164 315 592 *

144× 96× 120 77 99 111 164 315 592 *
192× 128× 160 80 83 112 185 315 612 *

(d) CPU Time, N = 4

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 1191.9 626.4 374.3 264.1 233.4 216.8 *

144× 96× 120 1519.4 876.7 410.6 269.0 280.1 241.1 *
192× 128× 160 1271.3 691.0 490.3 340.2 265.0 254.4 *

(e) Iterations, N = 8

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 105 135 166 228 402 853 *

144× 96× 120 110 119 167 245 417 895 *
192× 128× 160 110 120 189 284 460 895 *

(f) CPU Time, N = 8

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 1518.0 947.4 561.8 381.4 332.3 345.5 *

144× 96× 120 1845.4 1001.1 680.9 496.9 415.1 410.7 *
192× 128× 160 1888.6 1002.2 736.1 555.5 451.8 428.1 *

Table 13: Number of GMRES Iterations and CPU time (µs) for turbulent channel DNS
using the variable-coefficient diagonalized-ADI preconditioner. N is the solution order, while
1/h is the number of degrees of freedom in each coordinate direction. (* denotes failure of
convergence of restarted GMRES algorithm.)
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(a) Iterations, N = 2

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 47 61 68 117 189 336 696

144× 96× 120 51 62 89 135 247 441 857
192× 128× 160 51 62 90 134 244 462 882

(b) CPU Time, N = 2

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 645.6 319.2 228.6 132.0 100.7 84.9 74.7

144× 96× 120 1557.3 564.8 476.0 239.8 144.8 114.5 102.3
192× 128× 160 847.4 547.0 255.1 184.3 139.6 118.1 106.3

(c) Iterations, N = 4

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 93 97 110 164 315 592 *

144× 96× 120 77 99 111 164 315 592 *
192× 128× 160 80 83 112 185 315 612 *

(d) CPU Time, N = 4

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 642.8 275.5 211.6 127.0 102.9 95.4 *

144× 96× 120 633.7 682.6 226.7 130.8 161.6 106.9 *
192× 128× 160 800.7 440.5 216.8 167.6 132.8 119.4 *

(e) Iterations, N = 8

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 105 135 166 228 402 853 *

144× 96× 120 110 119 167 245 417 895 *
192× 128× 160 110 120 189 284 460 916 *

(f) CPU Time, N = 8

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 721.9 429.6 260.0 173.7 149.3 151.8 *

144× 96× 120 1041.3 500.3 325.6 249.2 200.2 207.2 *
192× 128× 160 1051.6 557.4 388.3 288.2 224.2 216.5 *

Table 14: Number of GMRES Iterations and CPU time (µs) for turbulent channel DNS
using the single-factorization diagonalized-ADI preconditioner. N is the solution order, while
1/h is the number of degrees of freedom in each coordinate direction. (* denotes failure of
convergence of restarted GMRES algorithm.)
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(a) Iterations, N = 2

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 33 43 60 70 124 206 413

144× 96× 120 36 48 61 92 162 294 525
192× 128× 160 37 52 61 112 159 294 567

(b) CPU Time, N = 2

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 774.1 494.6 238.2 137.4 103.8 74.3 74.1

144× 96× 120 678.0 975.0 445.1 300.6 160.2 132.6 108.7
192× 128× 160 804.9 589.4 284.0 279.8 141.8 118.3 119.2

(c) Iterations, N = 4

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 83 95 107 139 252 516 *

144× 96× 120 76 98 108 139 210 356 *
192× 128× 160 76 82 109 138 209 315 630

(d) CPU Time, N = 4

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 790.2 394.8 214.7 120.8 112.3 105.3 *

144× 96× 120 1057.6 787.4 368.5 186.2 147.4 94.9 *
192× 128× 160 785.7 411.4 283.2 176.6 108.0 84.5 81.3

(e) Iterations, N = 8

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 108 134 160 273 662 * *

144× 96× 120 111 134 180 252 441 * *
192× 128× 160 111 134 181 251 399 * *

(f) CPU Time, N = 8

CFL
1/h 1

2 1 2 4 8 16 32
96× 64× 80 906.9 574.1 324.3 262.8 316.3 * *

144× 96× 120 1129.5 689.4 444.6 294.4 256.1 * *
192× 128× 160 1182.0 695.5 430.0 285.9 227.0 * *

Table 15: Number of GMRES Iterations and CPU time (µs) for turbulent channel DNS using
the FDM-based preconditioner. N is the solution order, while 1/h is the number of degrees of
freedom in each coordinate direction. (* denotes failure of convergence of restarted GMRES
algorithm.)
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tensor-product preconditioners allow for higher-order solutions to be performed
at larger CFL numbers, overcoming the stiffness associated with higher-order.
The tensor-product preconditioners allow for 8th order turbulent flow simula-
tions to be performed approximately an order of magnitude faster than using a
simple mass-matrix preconditioner.
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