

ACE Objectives, Current Status and the 2017 Decadal Survey

Arlindo da Silva Arlindo.dasilva@nasa.gov

Global Modeling and Assimilation Office, NASA/GSFC ACE Study Science Lead

GRASP-ACE Kick-off Meeting Brussels, Belgium (Remote WebEx Presentation) 15 March 2018

Outline

- The Aerosols-Clouds-Ecosystem (ACE) 2007
 Decadal Survey mission
 - Broad science objectives
 - Science traceability to measurements
 - Current Status of ACE
- Aerosol, Clouds & Precipitation in the 2017 Decadal Survey
 - Relevant Science questions
 - Relevant Designated Missions
- Summary

EARTH SCIENCE AND APPLICATIONS FROM SPACE

NATIONAL IMPERATIVES FOR THE NEXT DECADE AND BEYOND

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADMENT

2007 Decadal Survey

Available from https://www.nap.edu

What is ACE?

 ACE is a tier-2 2007 Decadal Survey mission focusing on Aerosol, Cloud systems, ocean Ecosystems, and the interactions among them.

ACE Goals

Improved understandings of Earth system interactions among aerosols, cloud and precipitation systems, and ocean ecosystems, specifically

- Quantify direct radiation effect of aerosols
- Assess indirect effects of aerosols through modification of hydrometeor profiles in cloud systems
- Observe and distinguish those ocean ecosystem components that actively take up and/or store carbon dioxide
- Measure and quantify the linkage between the ocean ecosystems and atmospheric aerosols

Achievement of these goals will result in enhanced capabilities to observe and predict changes to the Earth's hydrological cycle and energy balance in response to climate forcings.

ACE 2011-2015 Progress Report

and Future Outlook

by

ACE Science Study Team Arlindo da Silva, Robert Swap, Hal Maring, Michael Behrenfeld, Richard Ferrare, and Gerald Mace

with contributions from Brian Cairns, David Diner, Lisa Callahan, Chris Hostetler, J. Vanderlei Martins, David Starr, Matthew McGill, Simone Tanelli

September 2016

Available from https://acemission.gsfc.nasa.gov/

Table of Contents

Executive Summary	5
Introduction	5
Scientific Merit and Continued Relevance of the Mission	8
What will ACE do?	9
What are the goals of ACE?	10
What are the Expected Benefits of ACE?	11
Contribution to long-term Earth Observational Record	12
Technical Readiness and Key Risks and Risk Reductions	13
Assessment and Recommendation	15
1 Introduction	17
2 Mission Science Objectives and Measurement	
Requirements	21
2.1 Aerosols	21
2.2 Clouds	24
2.3 Ocean Biology and Biogeochemistry	39
2.4 Ocean-aerosol	42
3 Assessment and Instrument Concept Development	44
3.1 Radar	44
3.2 Polarimeters	48
3.3 Lidar	60
3.4 Ocean Color Sensor	68
4 Measurement Algorithms	72
4.1 Aerosol	72
4.2 Clouds	81
120000	

4.3 Ocean

	88
5 Field Campaigns	98
5.1 Aerosol Related Campaigns	98
5.2 Cloud Related Campaigns	104
5.3 Ocean Related Field Campaigns	107
6 Mission Architecture	113
6.1 ACE Instruments	113
6.2 ACE Core Mission: ACE-C	114
6.3 Multiple Spacecraft Formulation: ACE-1 and ACE-2	115
6.4 A Constellation built around PACE	116
7 Funding History	118
7.1 Recent Science Funding History of ACE (FY11 - FY15)	118
7.2 Recent Technology Funding History of ACE (FY11 -	
FY15)	127
8 Assessment and Recommendations	131
9 Programmatic Assessment and Recommendations	132
	160

Table 2.1 ACE Aerosol Science Traceability Matrix

		Geophysical		Mission
Themes	Focused Science Questions	Parameters	Measurement Requirements	Requirements
Sources, Processes, Transport, Sinks (SPTS)	 Q1. What are key sources, sinks, and transport paths of airborne sulfate, organic, BC, sea salt, and mineral dust aerosol? Q2. What is the impact of specific significant aerosol events such as volcanic eruptions, wild fires, dust outbreaks, urban/industrial pollution, etc. on local, regional, and global aerosol burden? 	$\begin{array}{c c} \hline Column: \\ \hline & \tau_a(\lambda) \\ \hline & \tau_{a,abs}(\lambda) \\ \hline & m_a(\lambda) \\ \hline & r_{eff a}(\lambda) \\ \hline & v_{eff a}(\lambda) \\ \hline & Morphology \\ \hline \\ \hline Vertically Resolved: \\ \hline \hline & 01 02 03 04 \\ \hline \end{array}$	 High Spectral Resolution Lidar (HSRL) Backscatter (355, 532, 1064 nm) Extinction (355, 532 nm) Depolarization (two wavelengths of 355, 532, 1064 nm) Imaging Polarimeter Minimum 6 to 8 wavelengths spanning either UV or 410 nm to either 1630 nm 	Integrated satellite, modeling, and data assimilation approach is required to meet science objectives. Expand high- resolution global and regional modeling capabilities to
Direct Aerosol Radiative Forcing (DARF)	 Q3. What is the direct aerosol radiative forcing (DARF) at the top-of-atmosphere, within atmosphere, and at the surface? Q4. What is the aerosol radiative heating of the atmosphere due to absorbing aerosols, and how will this heating affect cloud development and precipitation processes? 	• $\tau_{a,abs}(\lambda)$ • $m_a(\lambda)$ • $r_{eff a}(\lambda)$ • $v_{eff a}(\lambda)$ • Morphology Cloud Top: • $\frac{\tau_c}{\tau_c}$ • $\frac{\tau_{eff,c}}{\tau_{eff,c}}$ • $\overline{v_{eff,c}}$ • $\overline{Thermodynamic phase}$	 or 2250 nm Multiangle TBD, range ±50° Polarization accuracy 0.5% Combination polarized and nonpolarized channels Resolution: 250 m in at least one channel 	assimilate cloud and aerosol microphysical parameters such as number concentration and optical properties. Required ancillary data: • Land surface albedo map • Ground network
Cloud- Aerosol Interactions (CAI)	Q5. How do aerosols affect cloud micro and macro physical properties and the subsequent radiative balance at the top, within, and bottom of the atmosphere?PQ6. How does the aerosol influence on clouds and precipitation via nucleation depend on cloud updraft velocity and cloud type?PQ7. How much does solar absorption by anthropogenic aerosol affect doud radiative forcing and precipitation?PQ8. What are the key mechanisms by which clouds process aerosols and influence the vertical profile of aerosol physical and optical properties?P	Vertically Resolved: Q5 06 Q7 Q8 P1. N _a P2. $\tau_{a,abs}(\lambda)$ P3. $r_{eff,a}$ P4. N _c P5. LWC P6. Precip Cloud Top: Q5 Q6 Q7 Q8 P7. Cloud top height P8. Cloud albedo P9. LWP P10. τ_c P11. $r_{eff,c}$ P12. Cloud radiative effect Cloud Base: Q5 Q6 Q7 Q8 P13. Cloud base height P14. Updraft velocity	Threshhold (i.e. minimum) HSRL: P1 P2 P3 P10 Imaging Polarimeter: P1 P2 P3 P10 Imaging Polarimeter: P1 P2 P3 W band Radar: P4 P5 P7 P13 P14 Narrow swath High-Resolution VIS- MWIR Imager: P9,P11 Baseline (additions to threshold): W + Ka Band Doppler radar P6 P14	 Ground network τ_a(λ), shortwave and longwave F_d and F_{net} Ground and airborne: column and vertically resolved τ_a(λ), τ_{a,abs}(λ), m_a(λ) (2 modes), morphology, P_{a,pol}(θ) Space measurements: Top of atmosphere shortwave and longwave F_u, collocated T(z), q(z), V(z), fire strength, frequency, location

Table 2.2 ACE Cloud Science Traceability Matrix

			Geophysical		Measurement	Mission
Themes	Focused Science Questions		Parameters		Requirements	Requirements
T1. Morphology Document occurrence, macroscale structure, and decadal scale changes of clouds and precipitation and their interaction with large-scale meteorological and thermodynamic forcing.	Q1. Climate Sensitivity What is the sensitivity of the climate system to cloud structure and variability? T1 T2 T3 T4 • What is the role of natural and anthropogenic aerosol in modulating cloud system occurrence and properties? T1 • What microphysical processes dictate the lifecycle		Hydrometeor Layer Detection Q1 Q2 Q3 Q4 Simultaneously occurring Cloud and Precipitation	MD TM1.	M2. <u>Threshold Mission</u> 2-Frequency (W- , Ka-bands), Scanning Doppler Radar (with radiometer channels) GP1 GP2 GP3 GP4 GP5 GP6 GP7	We define the threshold ACE Clouds Mission as those elements of this matrix that are in bold font . We suggest that boldface science objective and questions
	and coverage of clouds under various atmospheric conditions? T1 T2 • What dictates the processes that cause and modulate precipitation in cloud systems? T3	GP3.	Thermodynamics Phase profile Q1 Q2 Q3 Q4 Simultaneously occurring Cloud and	TM2.	GP8 GP9 High Spectral Resolution Lidar GP1 GP2 GP3 GP5 GP6 GP8 GP10	in columns 1 and 2 could ultimately be addressed by the measurements listed as the Threshold Mission in the
T2. Microphysics Document the microphysical properties of liquid, ice, and mixed phase clouds and precipitation with a specific focus on high	 Q2. Climate Forcing – Solar (T4) How will shortwave cloud forcing change as the climate warms? T1 T2 T3 T4 Will the coupling between cloud occurrence and morphology with atmospheric motions and 		precipitation microphysical properties profiles (Water Content, particle sieze, and	TM3.	Narrow Swath Vis Imager (0.6 microns, 1.6 microns, 2.1 microns) GP2 GP3 GP5 GP6	Measurement Requirements Column. Elements of this matrix in
latitude snow and light liquid precipitation (less than 1 mm/hr) at all latitudes that influences cloud morphology and lifecycle and ultimately radiative balance.	 thermodynamic structure result in fundamental changes to the planetary albedo? T1 T2 What is the specific role of aerosol in modulating the properties of clouds and the planetary albedo under a changing climate? (T2, T3) 	GP4.	number concentration) Q1 Q2 Q3 Q4 Precipitation Rate Profile in light and	BM1.	GP8 GP10 Baseline Mission 3-Frequency (W- , Ka-, Ku-	italicized font are defined as a Baseline Mission and designate important science questions that require a more aggressive set of
T3. Microphysical Processes Identify the occurrence of microphysical processes that cause changes to profiles of aerosol, clouds, and precipitation	 Q3. Climate Forcing – Infrared (T4) How will longwave cloud forcing change as the climate warms? T1 T2 T3 T4 What is the coupling between thermodynamic structure convective processes and the properties of 	GP5.	heavy (> 5 mm/hr) precipitation Q1 Q2 Q3 Q4 Profiles of Cloud Optical Depth,	27012.	bands), Scanning Doppler Radar (with radiometer channels) GP1 GP2 GP3 GP4 GP5 GP6 GP7 GP8 GP9 (replaces TM1)	coordinated measurements that are listed in italicized font.
properties. Concurrently quantify the process rates of important microphysical processes such as autoconversion and accretion in liquid and ice-phase stratiform and convective clouds.	 convective anvils in modulating the coverage and properties of tropical anvil cirrus T1 T2 T3 What is the role of aerosol in changing the microphysical properties of tropical anvils and modulating their coverage, persistence, and feedbacks to the water cycle in the upper troposphere? 	car	single scattering albedo, and asymmetry parameter Q1 Q2 Q3 Q4 Surface, TOA Cloud		High Spectral Res. Lidar (HSRL) GP1 GP2 GP3 GP5 GP6 GP8 GP10 (replaces TM2)	The set of baseline and threshold ACE clouds retrieval algorithms will be synergistic such that multiple measurements contribute to the
T4. Energetics Understand the maintenance of and changes to the energetic balance of	T1 T2 T3 Q4. Water Cycle and Energy Transport (T4) What is the role of cloud processes (specifically mixed phase) in snow and rain production in middle and high		Radiative Effects Q1 Q2 Q3 Q4 Latent Heating		High Resolution Narrow Swath VNIR-SWIR Polarimeter GP6 GP8 GP10 (Replaces TM3)	retrieval of a geophysical parameter. For instance while microwave brightness temperatures
the atmosphere and earth system due aerosol, clouds, and precipitation.	 latitude cloud systems? T1 T2 T3 T4 What role does the seasonal cycle of middle latitude cloud radiative forcing play in the poleward transport of heat and how is this radiative forcing partitioned as function of cloud genre? T4 To what degree do various microphysical processes 	GP8.	Profile in light and heavy (> 5 mm/hr) precipitation Q1 Q3 Q4 Radiative Heating Profile Q1 Q2 Q3 Q4	BM4.	Narrow Swath High Freq. (183, 389 GHz) Microwave GP2 GP4 GP5 GP6 GP7 GP8	cannot generally be used to retrieve cloud microphysics, when passive microwave is combined with multi frequency Doppler radar, the microwave
	 when coupled with large-scale dynamics modulate the precipitation production within middle and high latitude frontal systems? 12 13 What is the role of convection versus large-scale dynamics in producing precipitation in the middle and high latitudes? 11 13 		Cloud-Scale Vertical Motion Q1 Q4 Aerosol/CCN number concentration profile Q1 Q2 Q3			brightness temperatures provides an important constraint on the retrieval algorithm.

Ocean Ecosystems STM

Goddard Space Flight Center

		Abbuoach December of Science destion	Measurement	Instrument	Platform	Other	
Category	Focused Questions*	Approach	Requirements	Requirements	Requir'ts	Needs	
Ocean Biology	1 What are the standing stocks, composition, & productivity of ocean ecosystems? How and why are they changing? [OBB1]	Quantify phytoplankton biomass, pigments, optical properties, key groups (functional/HABS), and productivity using bio-optical models & chlorophyll fluorescence	Water-leaving radiances in near-ultraviolet, visible, & near-infrared for separation of absorbing & scattering constituents and calculation	 5 nm resolution 350 to 755 nm 1000 - 1500 SNR for 15 nm aggregate bands UV & visible and 10 nm fluorescence bands (665, 678, 710, 748 nm centers) 10 to 40 nm width atmospheric correction bands at 748, 765, 820, 865, 1245, 1640, 2135 nm 0.1% radiometric temporal stability 	Orbit permitting 2- day global coverage of ocean	Global data sets from missions, models, or field observations: Measurement	
	How and why are ocean biogeochemical cycles changing? How do they	Measure particulate and dissolved carbon pools, their characteristics and optical properties 2	of chlorophyll fluorescence Total radiances in UV, NIR, and SWIR for atmospheric		radiometer measurements Sun-	Requirements (1) Ozone (2) Total water	
	influence the Earth system? [OBB2]	Quantify ocean photobiochemical & 2 4	corrections Cloud radiances for	 (1 month demonstrated prelaunch) 58.3° cross track scanning Sensor tilt (±20°) for glint avoidance Polarization insensitive (<1.0%) 	synchronous orbit with crossing time between 10:30 a.m. & 1:30 p.m.	vapor (3) Surface wind velocity (4) Surface	
	3 What are the material exchanges between land & ocean? How do they influence coastal ecosystems,	Estimate particle abundance, size 1 3 distribution (PSD), & characteristics 2	assessing instrument stray light	 1 km spatial resolution @ nadir No saturation in UV to NIR bands 5 year minimum design lifetime 		barometric pressure (5) NO ₂	
	biogeochemistry & habitats? How are they changing? [OBB1,2,3]	Assimilate ACE observations in ocean biogeochemical model fields of key properties (cf., air-sea CO ₂ fluxes, export, pH, etc.)	High vertical resolution aerosol heights, optical thickness, & composition for atmospheric corrections	 0.5 km aerosol vertical resolution 2 m sub-surface resolution < 0.3% polarization misalignment 0.0001 km⁻¹sr⁻¹ aerosol backscatter sensitivity at 532 nm after averaging 	Storage and download of full spectral and spatial data	concentration (6) Vicarious calibration & validation **	
	4 How do aerosols & clouds influence ocean ecosystems & biogeochemical cycles? How do ocean biological &	osystems cycles? ogical & cesses ere and B2]Compare ACE observations with ground-based and model data of biological properties, land-ocean exchange in the coastal zone, physical properties (e.g., winds, SST, SSH, etc), and circulation (ML dynamics, horizontal divergence, etc)3	Subsurface particle scattering & depth profile	 sensitivity at 532 nm after averaging < 4 ns e-folding transient response Brillouin scattering capability; Receiver FOVs: 0-60 m; 0-120 m. 	Monthly lunar calibration at 79	(7) Full prelaunch characterization (2% accuracy	
	photochemical processes affect the atmosphere and Earth system? [OBB2]		Broad spatial coverage aerosol heights and single scatter albedo for atmospheric correction.	• Observation angles: 60° to 140° • Angle resolution: 5° • Degree of polarization: 1%	through Earth observing port	radiometric) Science Requirements	
	5 How do physical ocean processes affect ocean ecosystems & biogeochemistry? How do ocean biological processes influence ocean physics? [OBB1,2]	Combine ACE ocean & atmosphere observations with models to evaluate (1) air-sea exchange of particulates,	Subsurface polarized return for typing oceanic particles			(1) SST (2) SSH (3) PAR	
		(1) air-sea exchange of particulates, dissolved materials, and gases and (2) impacts on aerosol & cloud properties	 Primary production (NPP) Inherent optical properties laboratory & field (coastal a 	& Laboratory Measurements measurement & round-robin algorithm testing (IOPs) instrument & protocols development, and open ocean) measurement comparisons		(4) UV (5) MLD (6) CO ₂ (7) pH	
	6 What is the distribution of algal blooms and their	Assess ocean radiant heating and feedbacks 5	 Measure key phytoplankton groups across ocean biomes (coast/open ocean) Expanded global data sets of NPP, CDOM, DOM, pCO2, PSDs, IOPs, fluorescence, vertical organic particle fluxes, bio-available Fe concentrations 			(8) Ocean circulation (9) Aerosol	
	relation to harmful algal and eutrophication events? How are these events changing? [OBB1,4]	Conduct field sea-truth measurements and modeling to validate retrievals from the pelagic 3 6	• Expand model capabilities to assimilate variables such as NPP, IOPs, and			deposition (10) run-off loading in coastal zone	

* ACE focused questions are traceable to the four overarching science questions of NASA's Ocean Biology and Biogeochemistry Program [OBB1 to OBB4] as defined in the document: Earth's Living Ocean: A Strategic Vision for the NASA Ocean Biological and Biogeochemistry Program

** Specific vicarious calibration & validation requirements are defined in the ACE Ocean Ecosystem requirements document developed as part of ACE pre-formulation activities

Status of ACE

- With the release of the 2017 Decadal Survey the ACE Pre-formulation Study is in close-out mode
 - Activities to conclude by September 2018
 - A Final Report will be produced by then
- A workshop is being planned in late April 2018 for assessing ACE accomplishments and provide community feedback on the 2017 DS
 - by invitation only

Thriving on Our Changing Planet

A Decadal Strategy for Earth Observation from Space

Available from http://sites.nationalacademies.org/DEPS/ESAS2017/index.htm

#EarthDecadal

The National Academies of SCIENCES ENGINEERING MEDICINE

Panels

Global Hydrological Cycles and Water Resources

Co-Chairs: Jeff Dozier, UC Santa Barbara and Ana Barros, Duke University

The movement, distribution, and availability of water and how these are changing over time

Weather and Air Quality: Minutes to Subseasonal

Co-Chairs: Steve Ackerman, University of Wisconsin and Nancy Baker, NRL

Atmospheric Dynamics, Thermodynamics, Chemistry, and their interactions at land and ocean interfaces

Marine and Terrestrial Ecosystems and Natural Resource Management

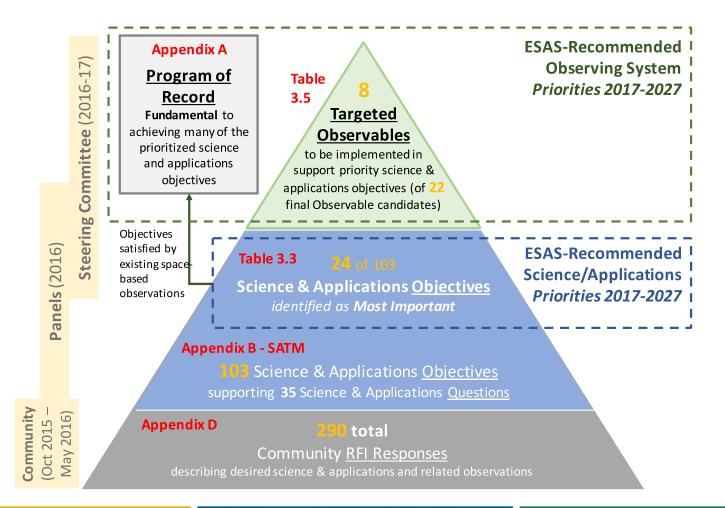
Co-Chairs: Compton (Jim) Tucker, NASA GSFC and Jim Yoder, WHOI

Biogeochemical Cycles, Ecosystem Functioning, Biodiversity, and factors that influence health and ecosystem services

Climate Variability and Change: Seasonal to Centennial

Co-Chairs: Carol Anne Clayson, WHOI and Venkatachalam (Ram) Ramaswamy, NOAA GFDL

Forcings and Feedbacks of the Ocean, Atmosphere, Land, and Cryosphere within the Coupled Climate System


Earth Surface and Interior: Dynamics and Hazards

Co-Chairs: Dave Sandwell, Scripps and Doug Burbank, UC Santa Barbara

Core, mantle, lithosphere, and surface processes, system interactions, and the hazards they generate

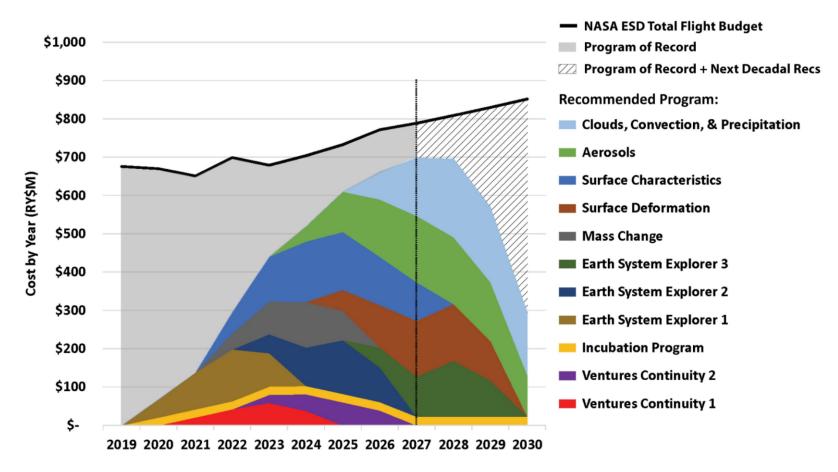
Path from Science & Applications to Observational Priorities

Blue: Science & Applications; Green: Observables

Recommended NASA Flight Program Elements

Program of Record. The series of existing or previously planned observations, which **should be completed as planned.** Execution of the ESAS 2017 recommendation requires that the total cost to NASA of the Program of Record *flight missions from FY18-FY27 be capped at \$3.6B.*

- Designated. A <u>new</u> program element for ESAS-designated cost-capped medium- and large-size missions to address observables essential to the overall program and that are outside the scope of other opportunities in many cases. Can be competed, at NASA discretion.
- Earth System Explorer. A <u>new</u> program element involving competitive opportunities for medium-size instruments and missions serving specified ESAS-priority observations.
 Promotes competition among priorities.
- Incubation. A <u>new</u> program element, focused on investment for priority observation opportunities needing advancement prior to cost-effective implementation, including an Innovation Fund to respond to emerging needs. Investment in innovation for the future.
- *Venture.* Earth Venture program element, as recommended in ESAS 2007 with the addition of a <u>new</u> Venture-Continuity component to provide *opportunity for low-cost sustained observations*.


Recommended NASA Priorities: Designated

TARGETED OBSERVABLE	SCIENCE/APPLICATIONS SUMMARY	CANDIDATE MEASUREMENT APPROACH	Designated	Explorer	Incubation
Aerosols	Aerosol properties, aerosol vertical profiles, and cloud properties to understand their direct and indirect effects on climate and air quality	Backscatter lidar and multi- channel/multi- angle/polarization imaging radiometer flown together on the same platform	x		
&	Coupled cloud-precipitation state and dynamics for monitoring global hydrological cycle and understanding contributing processes	Radar(s), with multi-frequency passive microwave and sub-mm radiometer	x		
Mass Change	Large-scale Earth dynamics measured by the changing mass distribution within and between the Earth's atmosphere, oceans, ground water, and ice sheets	Spacecraft ranging measurement of gravity anomaly	х		
Surface Biology & Geology	Earth surface geology and biology, ground/water temperature, snow reflectivity, active geologic processes, vegetation traits and algal biomass	Hyperspectral imagery in the visible and shortwave infrared, multi- or hyperspectral imagery in the thermal IR	x		
	Earth surface dynamics from earthquakes and landslides to ice sheets and permafrost	Interferometric Synthetic Aperture Radar (InSAR) with ionospheric correction	х		

Recommended NASA Priorities: Incubation/Other

TARGETED OBSERVABLE	SCIENCE/APPLICATIONS SUMMARY	CANDIDATE MEASUREMENT APPROACH	Designated	Explorer	Incubation	
Atmospheric	3D winds in troposphere/PBL for transport of pollutants/carbon/aerosol and water vapor, wind energy, cloud dynamics and convection, and large- scale circulation	Active sensing (lidar, radar, scatterometer); passive imagery or radiometry-based atmos. motion vectors (AMVs) tracking; or lidar**		x	x	
Planetary Boundary Layer	properties and 2D PBL structure to	Microwave, hyperspectral IR sounder(s) (e.g., in geo or small sat constellation), GPS radio occultation for diurnal PBL temperature and humidity and heights; water vapor profiling DIAL lidar; and lidar** for PBL height			x	

NASA Budget Compliance

- Liens from last decade into this one are substantial
- Very little flexibility to absorb funding challenges until mid decade
- Committee sought to keep liens lower on next decade
 - Allows more flexibility for next decadal survey
 - Some carry over of programs into subsequent decade is required

The National Academies of SCIENCES • ENGINEERING • MEDICINE

Summary

- Since its recommendation by the first 2007 Decadal Survey the ACE Study has made significant progress:
 - Advancing measurement concepts:
 - Lidars, Multi-angle Polarimeters and Radars
 - Airborne campaigns as proof of concept
 - Algorithm development --- GRASP-ACE will contribute to iy
- New 2017 Decadal Survey proposes two new *Designated Missions* that can build upon ACE accomplishments:
 - Aerosols
 - Cloud-Convection-Precipitation (CCP)
- NASA HQ will soon provide guidance regarding new Preformulation Studies to advance these concepts (FY19)