Outgassing Characterization of Rod Heaters used for GOES-R Thermal Vacuum Testing

L. Brieda¹, T. Gordon², R. Studer³, R. Pfeiffer⁴, J. Bush⁴, S. Van Loon⁴

¹Particle In Cell Consulting LLC

²SGT, Inc.

³ASRC, Inc.

⁴Lockheed Martin

Contamination, Coatings, Materials, and Planetary Protection Workshop July 29-31, 2015

Summary

- Past experiences of Code 546 Contamination Engineers indicated that rod heaters (e.g. calrods or watrods) may be a source of molecular contamination
 - For instance, SDO chamber required over 100 hours of bakeoff
 - However, has been used on other projects (LADEE, etc..) without issues
- GOES-R TVAC configuration uses such heaters (Watlow watrod)
 - GOES-R is highly contamination sensitive needed to verify these heaters will not contaminate the flight hardware, chamber, or MGSE
- This presentation summarizes the outgassing characterization effort and the subsequent bakeout

GOES-R TVAC Configuration

- Cold walls used for the entirety of the test
- Spacecraft enclosed in an MGSE watrod cage
 - Some sections use heater plates instead of watrods

Outgassing Characterization

- Objective was to characterize outgassing from a virgin, un-baked watrod
 - Two rods placed in a stainless steel cylinder with opening on one end, facing reflector
 - 450°C nominal temperature during TVAC per thermal model, but margin up to 600°C
- Used a 90°C reflector plate to protect TQCM crystal, LN2 chamber shroud
- Testing performed at LM Sunnyvale

Experimental Setup

Thermocouples

• The two watrods were instrumented with thermocouples

Post-test observations

Molecular deposition was observed on both endplates

Test Results

 Figure below shows the TQCM frequency and thermocouple data over the test duration

Temperature rise non-linear due to controller issues (power instead of temperature control)

Frequency Rate

Frequency rate indicates spike around 400°C and a secondary spike

This spike corresponds to the expected temperature during TVAC!

Outgassing Rate

- The setup was modeled in Thermal Desktop
 - Obtained 3.66×10^{-4} viewfactor between QCM crystal and the aperture
- Rod outgassing rate can be obtained from mass balance

$$\Gamma_{wr} A_{wr} f_v = \Gamma_{QCM} A_{QCM}$$

- Note, this rate only includes the fraction condensable below 90°C
- Using ½" QCM crystal diameter, and 2x 48"x0.475" diameter watrods we obtain $1 \, \text{Hz/hr}|_{qcm} = 3.74 \, \text{Hz/hr}|_{wr}$
 - Use 1.96×10^{-9} g/cm²/hz QCM sensitivity to convert
- At peak observed deposition rate of 1869 Hz/hr, watrod outgassing was 3.82×10^{-9} g/cm²/sec = 1.38×10^{-5} g/cm²/hr
 - At the end, watrods outgassing at 18 Hz/hr, corresponds to 1.32×10^{-7} g/cm²/hr

GIRD801 requirement:

GSE hardware used in vacuum testing shall outgas less than 1x10⁻⁸ g/cm²-hr at 10°C above the maximum survival temperature of the flight hardware that they are tested with when measured with a QCM held at -65°C (208 K).

During the test, the QCM was held only at -20°C

Observations

- The spacecraft thermal vacuum test (SCTV) will utilize approximately 1123 linear feet of watrods, .475" diameter
- Rods vary in overall length from ~28" to ~153"
- 600C maximum surface temperature
- 4.1x10⁻⁵ g/cm² measured outgassing source fluence
- 449 Angstroms calculated deposition on external spacecraft surfaces if left asreceived
- Not possible to remove majority of deposition by subsequent baking due to high source temperature
- Removal from spacecraft surfaces not practical by other means (solvents, scrubbing, etc.)
- Conclusion: Some outgas mitigation must be performed on watrods prior to use in SCTV

Mitigation Options

- Pre-bake watrods in vacuum chamber
 - Need a vacuum chamber where high-temp deposition to chamber is acceptable
 - Needs to be batched due to power requirements and chamber dissipation
- 2. Pre-bake watrods in ambient atmosphere
 - Test was performed to determine that this outgassing method achieved acceptable results
 - Results in minimal deposition on GSE during chamber certification
- 3. Bake virgin watrods during GSE Bakeout / Chamber Certification
 - TQCMs must be covered or removed for watrod bake to avoid contamination –
 implies 2-phase bakeout and break of chamber in the middle
 - High-temp deposition would occur on chamber shrouds and GSE, thickness estimated at 100 to $^{\circ}600$ Angstroms
 - Mechanical stability of the deposit is unknown, although observations point to it being stable; i.e. won't flake off during SCTV
 - Likely not an acceptable solution to facility owners

Option 2 most practical – thenew watrods pre-baked in ambient pressure for 16 hours

Un- and pre-baked comparison, frequency

Un- and pre-baked comparison, frequency rate

Un- and Pre-baked comparison

- Unbaked watrods: 4560 to 8404 Hz, 3844 Hz mass loss
- Pre-baked watrods: 3942 to 4711 Hz, 769 Hz mass loss
 - Pre-baking reduced outgassed mass by a factor of 4
 - This calculation took into account difference of view factors, 0.000292 vs 0.000366
- TGA also indicates that pre-baking reduces high temperature constituent

Mass on Reemission Plate

- The mass collected on the reemission plate represents the mass condensable above 90°C.
 - During the first test the mass collected indicated a source fluence from the cal rods of 1.31×10^{-5} g/cm². This is 47% of the total mass compared to 53% that was condensable below 90°C.
 - During the second test of the pre-conditioned watrods, the mass collected indicated a source fluence from the watrods of 8.1×10^{-7} g/cm². This is 9% of the total mass compared to 91% that was condensable below 90C.
- The conclusion is that the pre-bakeout reduced the watrod outgassing (mass condensable above 90°C) by 94%.

Ambient Bakeout

- GOES-R watrods were subsequently prebaked in an ambient air facility at Lockheed Martin
 - 16 hours at 600C, baked in batches per power constraints (about 50kW per batch)
- Watrods were then activated during MGSE bake out
 - Did not observer any significant deposition on the TQCMs

Conclusion

- We designed and executed a test to determine the outgassing rate of unbaked watrods
- The test indicated that virgin watrods can be a source of contamination
- Pre-baking in air reduces outgassing of mass condensable below 90°C by a factor of 4
- Performed ambient air bakeout of all watrods used in GOES-R
 TVAC
- MGSE bakeout was successful with acceptable outgassing rates
- Questions?

