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Navigation
• Navigation is the process of determining position and direction

• Generalization of the problem: estimate unknown parameters based on related observations

= parameter vector (e.g., Cartesian position and velocity, our “state”)

= observation vector (i.e., set of measurements)

= observation noise vector (i.e., measurement error)

= relation between parameter set and observation set (i.e., measurement model)

• Given a parameter set, we seek an observation set, a relation between our parameters and 

observations, and an estimator         , in order to form an estimate:

• Elegant and effective solutions have been devised by humans and other species for millennia

From left: day and night bird migration [20], astrolabe 1619 [21]  
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Navigation (continued)
• Relative navigation

Dead reckoning: monitor rate of travel and heading using a compass; prone to error, especially at sea

Landmark bearings: angles to two known landmarks will constrain position in two dimensions

• Absolute navigation: latitude and longitude (clocks vs. celestial)

Latitude: Measure the elevation of pole star above the horizon with a sextant or astrolabe

Longitude: Very good clock or celestial (sextant for the elevation of celestial bodies above the horizon, 

accurate clock to determine the time of observations, almanac to find the predicted position of the body, 

magnetic compass to determine azimuth and maintain course continuity between celestial observations)

Latitude (left) and longitude (right) [1]
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Radionavigation
• Measurements: distances from known 

transmitter locations via the measurement 
of radio frequency signal transit time

• Solution to the estimation problem: 
trilateration, the determination of absolute 
or relative locations of points by 
measurement of distances using the 
geometry of circles, spheres, or triangles

• Ground based:

LORAN (1940s), Omega (1960s)

• Satellite-based:

Sputnik I (1957), Parus and Tskikada, 
Transit, MOSAIC, and SECOR (1960s) Trilateration in 2 dimensions
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GNSS
• Global Navigation Satellite Systems (GNSS): radionavigation perfected

• Features

Accuracy: 3D accuracies of a few meters and down to millimeters for users with 

specialized equipment and processing

Availability: signal availability anywhere on Earth with a clear view of the sky

Integrity: the assurance that expected performance will be realized

SPACE SEGMENT

CONTROL SEGMENT

USER SEGMENT

Monitor Station

Master 
Control 
Station

Ground Antenna

Components of Global Positioning System (GPS) [3]
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GNSS (continued)

• Space segment

Constellation of satellites in near-circular, Medium Earth Orbits (~20,000 km), each satellite 

equipped with atomic clocks 

• Control segment

Network of ground stations and antennas that perform monitoring of the constellation, check 

for anomalies, generate new orbit and clock predictions, build and send upload to spacecraft

• User segment

GNSS receivers—specialized radios that track GNSS signals and produce position and 

velocity solutions, typically with low-cost clocks

GPS Control Segment [5]GPS Space Segment [4]
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GPS Receivers [6]
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GNSS constellations
• GNSS is an umbrella term for satellite constellations that broadcast signals from space for 

radionavigation

Systems with global coverage: GPS (United States), Galileo (European Union), GLONASS 
(Russia), BeiDou (China)

Systems with regional coverage: NAVIC (India), QZSS (Japan)  

• This presentation uses GPS as a specific example, but generality is maintained where possible

GNSS constellations, augmentations, and regional constellations [7]

NAVIC
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Outline
I. GNSS signals

II. GNSS receivers

III. Measurements

Block IIF GPS Satellite [2]

IV. Time reference, orbits, coordinate frames

V. Navigation solution

VI. Current status and future development
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GPS signal structure
• What is required of a radionavigation signal?

1. Propagation delay between transmitter and receiver can be measured

2. Transmitters can be distinguished, enabling geometric diversity

3. Modulation allowing the signal to propagate through space

• For any signal p(t) combined with Additive White Gaussian Noise (AWGN) n(t),

correlation with a copy of p(t) maximizes the output signal to noise ratio (SNR) (i.e., optimal  

estimator in the Maximum Likelihood sense), so p(t) is designed to have a correlation shape that 

satisfies signal requirements 1 and 2

• Delay estimation

Consider a known, continuous-time signal p(t) generated at the transmitter that arrives at the 

receiver with some delay tau:

In order to estimate tau, a local replica of p(t) is formed at the receiver with test delay tau tilde. 

The delay estimate, tau hat, is the test delay that maximizes the average (over TI) of the 

inner product: 
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GPS signal structure: code
• Autocorrelation in terms of alignment error,                    :

The ideal autocorrelation function would be

• Multiple signals are required in order to form a position estimate, however. The trilateration 
problem relies on geometric diversity. One means of distinguishing transmitters is to minimize 
the cross correlation of signals from different transmitters:

• These auto- and cross-correlation properties could be achieved with infinitely long random 
sequences of +1 and -1, known at the transmitter and receiver, and unique to each transmitter 
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GPS signal structure: code

• This is accomplished using Pseudorandom Noise (PRN) codes

Must be deterministic and finite for practical implementation, but sufficiently long and noise-

like to approximate the desired autocorrelation and cross-correlation properties

• GPS Coarse Acquisition Code (C/A code) solution: Gold codes (modulo-2 sum of two linear 

feedback shift registers)

Periodic sequence of {+1,-1} pulses called chips, unique to each GPS satellite, length 1023 

with period of 1 ms (i.e., f
chip

= 1.023 MHz) 

Selection of GPS C/A code [8]
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GPS signal structure: carrier
• Third navigation signal requirement: modulation allowing the signal to propagate through space

• Radio frequencies used for satellite navigation—must penetrate atmosphere

• Apparent frequency at the receiver is Doppler shifted due to the relative motion of the transmitter 

and receiver

EM spectrum [9]

where                                    and  



National Aeronautics and Space Administration IEEE IFCS 2018 Olympic Valley, CA 13

GNSS carriers

• A variety of carrier frequencies are used by GNSS providers

• GPS L1 (f
L1

= 1.57542 GHz) will be used as an example in this presentation

1560 1570 1580 1590 1600 16101170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300
                                                      Frequency (MHz)

L1L5 L2

GPS

Current 

GLONASS

SBAS

Galileo

QZSS

IRNSS

Proposed

Beidou

Proposed

GLONASS

Color code: Blue—open signals, Red—restricted or encrypted signals
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• Finally, signal is also modulated with 12.5 minute navigation message, a 50 bps binary 
sequence containing time tags, GPS satellite ephemerides (i.e., transmitter locations), etc. 

• Time domain signal:

• Received L1 frequency signal from the i-th satellite
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GPS signal structure (continued)

1.023Mbps

)(td

Carrier 
wL1 = 

1.57542 GHz

50bps

Repeating 1023 Chip “PRN Spreading Code” (20 per data message bit)

GPS Data Message
20ms+1

-1

+1

-1

+1 -1 +1

p(t)

Composition of GPS signal in time domain [3]
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• Received L1 signal from the i-th satellite

• Frequency domain signal:

IEEE IFCS 2018 Olympic Valley, CA 15

GPS signal structure (continued)

frequency

1. Data Message Spectrum

2. Data x PRN Code Spectrum Signal is “Spread”

3. Data x Code x Carrier Spectrum

This is the transmitted signal

0 Hz

0 Hz

0 Hz 1.57542 GHz

50 Hz

1.023 MHz

1.023 MHz

Composition of GPS signal in frequency domain [3]
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GNSS receivers
• Receiver has three main tasks:

1. Acquisition: Determine which satellites are visible and estimate the propagation delay 
and Doppler associated with each

2. Tracking: Refine the delay and Doppler estimates and track these features as they 
change over time

3. Navigation: Use measurements from all visible signals to estimate the receiver’s position 
and velocity 

• First the radio frequency signal is downconverted to an intermediate frequency (IF) for 
processing

I

Q

BPF h(t)
fc = fIF

BPF h(t)
fc = fIF

ADC
fs > B

ADC
fs > B

2cos(ωLO)

-2sin(ωLO)

complex
IF data

i

Re(•)

Im(•)

RF front end [10]
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• Acquisition seeks to determine whether a particular satellite is visible (via its unique PRN) and 

estimate its delay (modulo one code period, 1 ms) and Doppler

• Correlation of an incoming signal with a local replica, mismatched in frequency and delay, forms 

what is known as an asymmetric ambiguity function:

• Delay and Doppler values are tried over a search space. Correlation magnitudes are compared 

to the noise floor—if the carrier to noise spectral density exceeds a threshold, the signal is 

determined visible and the delay and Doppler at the correlation peak are used to seed tracking.

• Pre-detection integration time, TI, is an important parameter in detecting weak signals.

IEEE IFCS 2018 Olympic Valley, CA 17

GNSS receivers: acquisition

Ambiguity function magnitude complete [3] (left) and zoomed in [11] (right)
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• Tracking seeks to refine the delay and Doppler estimates produced by acquisition

1. Input signal is correlated with a local replica

2. Correlation result is filtered to produce error terms that quantify the difference between the 
input and local signal

3. A feedback process makes adjustments to the local signal replica according to the error 
terms

• In addition to converging on the input signal delay and Doppler parameters, the tracking of a 
dynamic signal allows for measurements of changing signal features and more accurate 
estimates of the signal to noise ratio 
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GNSS receivers: tracking

Code and carrier tracking [3] from [11]

• Most receivers compute three correlations 
per signal: Early, Prompt, and Late

Phase of prompt corr. gives error signal for 
carrier tracking

Comparing size of Early and Late corr. 
gives error signal for PRN code tracking

• Coupled feedback loops DLL and PLL 
maintain lock on code and carrier signal 
parameters
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GNSS measurements
• GNSS observables (i.e., receiver outputs)

1. Pseudorange: propagation delay plus receiver clock bias (measured from the PRN code 
to a fraction of a chip: ~meter level accuracy)

2. Doppler: measured frequency shift of the received carrier

3. Carrier phase: measured fractional and accumulated whole cycle phase of the carrier 
(measured to small fraction of 19 cm cycle: ~mm precision) 

4. C/N0: carrier to noise spectral density estimate in dB-Hz
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GNSS measurements: pseudorange

• Pseudorange measured from the i-th satellite (“pseudo” because of receiver clock bias):

time of reception

according to 

receiver clock 

time of 

transmission

according to 

satellite clock 
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GNSS measurements: pseudorange

• Pseudorange measured from the i-th satellite (“pseudo” because of receiver clock bias):

• Transmission and receive times each expressed as a sum of the “true” time (i.e., the time 

according to a common time standard, such as GPST) plus an unknown bias

time of reception

according to 

receiver clock 

time of transmission

according to 

satellite clock 
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GNSS measurements: pseudorange

• Pseudorange measured from the i-th satellite (“pseudo” because of receiver clock bias):

• Propagation delay:

Qi is the satellite orbit error

ri is the geometric range between the i-th transmitting satellite and the receiver, |x – xi
t|

IiL1 is the delay due to the ionosphere, a region of ionized gas in the upper atmosphere where 

the time varying density of free electrons and ions introduces a dispersive (frequency 

dependent) delay

Ti is the delay due to the troposphere, the lowest region of the atmosphere, a non-dispersive 

medium consisting of dry gases and water vapor

true receiver 
position

broadcast satellite 
position
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• Propagation delay:

Acquisition and tracking measure code phase, i.e., ambiguous time of transmission modulo one code period 

(1 ms for GPS C/A code, or approximately 300 km): 

The navigation message must be decoded to form a pseudorange
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GNSS measurements: pseudorange (cont.)

svtime_of_transmission =  

svtime_of_subframe

+bits_since_subframe_start*0.02 

+whole_cacodes_since_bit_start*0.001

+whole_chips_into_current_cacode/1.023e6

+frac_code_phase_chips/1.023e6;
Calculation of pseudorange using four satellites [12]

• Navigation message is organized into six 

second subframes, each beginning with an 

8-bit Telemetry word (TLM) and Hand-over 

word (HOW), the latter of which contains 

the satellite time the subframe was 

transmitted
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GNSS measurements: pseudorange (cont.)
• Propagation delay:

• Orbit error 

Maintained to within ~1 m RSS by Control Segment

• Ionosphere

Group delay for pseudorange due to the ionosphere:

where TEC is the Total Electron Content in a 1 m2 column 

from the receiver the transmitter.

Ionospheric delay can be corrected by using measurements 

from two frequencies (note frequency dependence, here 

we use GPS L1) or through a model that predicts TEC

GPS uses the Klobuchar model, in which four parameters 

(defined by eight numbers in the navigation message) are 

used to define the daily zenith variation at the ionospheric 

pierce point 

GPS ionospheric delay model: Klobuchar [13]

Geometry of zenith TEC (vertical TEC, VTEC) and slant TEC (STEC) [13]
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GNSS measurements: pseudorange (cont.)
• Propagation delay:

• Troposphere

Not frequency dependent, wet (< 0.25 m, large variation) and dry (~2 m, small variation) 
components

Corrected using models (e.g., Hopfield) that incorporate empirical corrections—typically 
average meteorological parameters for latitude, longitude, and season

• Complete pseudorange expression:

• Relativity

Second-order Doppler shift: a clock moving in an inertial frame runs slower than a clock at rest

Gravitational frequency shift: a clock at rest in a lower gravitational potential runs slower than 
a clock at rest in a higher gravitational potential

GNSS space segment atomic clocks are offset to compensate for these effects—without 
correction satellite clocks would gain almost 40 microseconds per day (~10 km range error)
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GNSS measurements: pseudorange (cont.)
• Propagation delay:

• Multipath

Reflected signals are received as delayed, attenuated replicas of the direct signal

Correlation shape of the combined signal causes an error in the code tracking loop that 

depends on geometry, number and strength of reflections, and tracking loop design

E.g., one signal, noncoherent DLL:

Direct, building-reflected, and ground-reflected signal paths in multipath interference scenario [19] Direct, reflected, and composite correlations [10]
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GNSS measurements (cont.)
• Measured Doppler shift is a combination of the changing geometric line of sight and the 

unknown receiver clock drift. Time derivative of the pseudorange:

• Carrier phase

Can be measured with much higher precision than code phase (i.e., pseudorange), ~cm for 
GPS, but ambiguous on the order of carrier cycles, 19 cm for GPS. Combine with code 
measurements or use for precise measurement of change (Accumulated Delta Range)

Ionosphere also induces a delay, but opposite in sign relative to pseudorange, leading to a 
code/carrier divergence

Multipath also introduces an error in carrier phase measurements, as the geometry changes 
and the received reflections cycle through constructive and destructive interference with the 
direct signal. For a single reflection:

transmitter clock 
drift approximately 

known

unknown receiver 
clock drift

recall:
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GNSS measurements (cont.)
• Carrier phase (cont.)

Ground reflection

Wall reflection

• Carrier to noise spectral density (C/N0) is the signal power divided by the measurement noise 

power density. Unlike signal to noise ratio, SNR, this is independent of the receiver bandwidth B. 

It is a power to noise density per unit frequency, expressed in units dB-Hz:

Direct, building-reflected, and ground-reflected signal paths in multipath interference scenario [19]
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GNSS measurements: link budget
• GNSS link budget

The received signal power is a combination of power 

spatial density produced by the transmitter at the

receiver and the effective area of the receive antenna:

Effective area is a measure of an antenna’s ability to 

capture power in an electric field on the antenna from a 

certain direction, defined as: 

An isotropic antenna radiates power equally in all directions. At a given distance from the 
transmitter, R, the power density is simply the transmitted power divided by the surface area 
of the sphere:                        This accounts for spreading loss.

Spreading loss can be offset by focusing the transmitted power in a particular direction, a 
property described by the transmit antenna gain, GT. The power density at the receiver is:

Power 
spatial 
density

Power spatial density [1]
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GNSS measurements: link budget
• GNSS received power

The power density at the receiver is:

Thus for receive antenna gain GR the received power is given by the Friis transmission 
formula:

• Noise power per frequency unit:

Effective temperature used to characterize all noise, not just thermal

• Carrier to Noise Spectral Density

Typical values for GPS: 

TE = 290 K à N0 = -201 dBW-Hz, PR = -156 dBW à C/N0 = 45 dB-Hz
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GNSS time reference
• GNSS requires a common time scale for 

computing ranges

• GPS Time (GPST) is the operational time 
scale of GPS

• To keep satellites on GPST adequately, 
atomic clocks are required

Corrections in the navigation message are 
used to synchronize satellites to GPST

For example, to limit clock error to 1 m over 
12 hrs requires drift < 8 x 10-14 s/s

• GPST coarsely steered to align with 
Universal Consolidated Time (UTC) as 
maintained by the US Naval Observatory via 
corrections in the navigation message

• Traceability to UTC USNO enables precise 
time and frequency transfer on a global 
scale

Time systems [14]

• Tidal friction and other processes that cause a 
significant redistribution of mass are slowing 
the Earth’s rotation, lengthening the solar day 
by ~2 ms / century 

• UTC incorporates leap seconds to maintain 
alignment with sidereal time (UT1), but GPST 
does not. This difference is a persistent 
challenge for receiver designers and users.
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GNSS orbits

• Satellites make great reference points

Small number can provide global coverage

They can be precisely located

• Orbital mechanics are well understood and satellite orbit 

determination is a refined science; for GPS, for example, 

the MCS estimates and predicts satellite orbits to less 

than 1 m

• Dual frequency observables from a network of monitor 

stations used to estimate orbits and satellite clock biases

• Each GPS satellite broadcasts its ephemeris (valid for 2-

4 hours) and an almanac (subset of ephemeris 

parameters for every satellite in the constellation—not 

accurate enough for navigation, but accurate enough for 

a satellite search)

• International GNSS Service (IGS) and others maintain 

large networks of monitor stations, use advanced 

techniques to locate satellites with cm-level accuracy

Keplerian elements [16]
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GNSS Coordinate Frames
• Earth Centered Earth Fixed (rotating reference frame) versus Earth Centered Inertial (ECI)

• Explanatory video: https://youtu.be/DbYapFLJsPA
ECEF and ECI reference frames animation [15]



National Aeronautics and Space Administration IEEE IFCS 2018 Olympic Valley, CA 34

GNSS Coordinate Frames

• GNSS orbit determination is performed in an inertial (non-rotating) frame

Example: Earth Mean Equator and Mean Equinox of the J2000 epoch (January 1, 2000 at 

12:00 TT), x-axis is aligned with the mean equinox, z-axis aligned with the Earth’s spin axis 

or celestial north Pole

• Terrestrial navigation is performed in an Earth-fixed frame (rotating with the Earth) for 

convenience to users

Example: GPS uses the WGS84 frame, a 3-dimensional coordinate reference frame for 

establishing geodetic latitude, longitude, and heights for navigation. Defined by the US 

National Geospatial Intelligence Agency.
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• Position estimation with pseudorange

Want to estimate receiver position and clock bias at some instant in time:

Given N > 4 pseudorange measurements (corrected for transmitter clock bias):

Standard approach is to solve as a non-linear least squares (NLLS) problem by Gauss-

Newton method:

1. Linearize about initial guess 

2. Solve linear least squares problem for 

3. Set 

4. Iterate

IEEE IFCS 2018 Olympic Valley, CA 35

Navigation solution
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Navigation solution: DOP

• In general, when solving the linear least squares problem

• The covariance of the least squares solution      is

• W (the inverse Gramian matrix) transforms measurement noise into solution noise

• In GPS, the i-th row of H is

• Thus, W is determined by the geometry of the visible transmitters. Dilution of Precision (DOP):

• Examples

If transmitters are in a plane, H is rank deficient and

If transmitters are located at corners of a tetrahedron                             (minimum for N = 4)
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Navigation solution: typical GPS error budget 

• Disclaimer: for illustration purposes only

Error Source Basic single freq Precise dual-freq, assisted
Ionosphere (< 1000 km) ~3 m (single frequency, 

using broadcast model)
Dual frequency
<1 cm

Troposphere (< 20 km) 0.1-1 m 1 cm level using estimators, 
advanced models

GPS orbits <2.0 m (broadcast ephem) 1 cm, Int. GNSS service (IGS)
GPS clocks <2.0 m (broadcast clock) 1 cm (IGS)
Multipath (“clean” 
environment)

0.5-1 m code 0.5-1 cm carrier

Receiver Noise 0.25-0.5 m code 1-2 mm carrier

RSS range error 4 m 2 cm

Typical GDOP 2 2

RSS solution error 8 m 4 cm
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Current status and future development
• Status of current GNSS constellations

GPS (US) - fully operational with global coverage since 1995, 31 satellites in orbit, issued a 
request for proposals in February 2018 for the next block of satellites, GPS 3F

GLONASS (Russia) – full operational capacity / global coverage achieved in 1995, lost and 
then regained in 2011, 24 satellites in orbit, next satellite block, K2, to enter service soon

Galileo (European Union) – first launch in 2005, full operational capacity expected in 2019, 30 
satellites in orbit, will provide global search and rescue (SAR) functionality

BeiDou (China) – currently providing service in Asia-Pacific, expected to reach global 
coverage in 2020, 22 satellites in orbit, may be more accurate than GPS, includes GEO sats

NAVIC – provides service to India region, expected to be fully operational now, 7 satellites

QZSS – provides service to Japan region, preliminary service available now, 4 satellites

• International collaboration is facilitated through the International Committee on GNSS (ICG) and 
other forums with the objective of inter-operability among the different constellations 
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Space applications: space service volume
• The Space Service Volume (SSV) is defined as 

the volume of space surrounding the Earth from 
the edge of LEO to GEO, i.e., 3,000 km to 
36,000 km altitude

• The SSV overlaps and extends beyond the 
GNSS constellations, so use of signals in this 
region often requires signal reception from 
satellites on the opposite side of the Earth –
main lobes and sidelobes

• Signal availability constrained by poor 
geometry, Earth occultation, and weak signal 
strength

• Formal altitude limit of GNSS usage in space is 
36,000 km, but the practical limit is known to 
extend well beyond this.

Space Service Volume [17]
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Recent flight experiences: GOES-16

• Geostationary Operational Environment Satellite 16 

(GOES-16)

• GOES-R, -S, -T, -U: 4th generation NOAA operational 

weather satellites

• GOES-R/GOES-16 Launch: 19 Nov 2016

• 15 year life, series operational through mid-2030s

• Employs GPS at GEO to meet stringent navigation 

requirements

• Relies on beyond-spec GPS sidelobe signals

GOES-16 image of Hurricane Maria making landfall over Puerto Rico [18]
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Recent flight experiences: MMS
• Magnetospheric Multiscale (MMS) mission

• Launched March 12, 2015 

• Four spacecraft form a tetrahedron near apogee for performing magnetospheric science 
measurements (space weather)

• Four spacecraft in highly eccentric orbits

• Phase 1: 1.2 x 12 Earth Radii (Re) Orbit (7,600 km x 76,000 km)

• Phase 2B: Extends apogee to 25 Re (~150,000 km)  (40% of way to Moon)

MMS phase 1 and phase 2 [18]



National Aeronautics and Space Administration IEEE IFCS 2018 Olympic Valley, CA 42

Active areas of research

• Reflectometry: measurement of wind speeds by determining ocean surface roughness from 

reflected GNSS signals, measurement of soil moisture from reflected GNSS signals

• Radio occultation: detection and characterization of seismic events through analysis of GNSS 

signals propagating over the horizon through the upper atmosphere

• Autonomous navigation: Enables formation flying, provides robustness to signal outages, 

significantly reduces ground station tracking and ground-based orbit determination costs

• High-altitude / lunar GNSS: US is planning several human spaceflight missions (Exploration 

Missions 1-3) in the next few years, as well as a permanent way-station in the vicinity of the 

moon (a lunar “gateway”). Initial studies have shown GNSS signals to be available and usable at 

lunar distances; use of GNSS would enable periods of autonomy and provide a stable and 

accurate timing source for hosted science and technology payloads.
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• See Introduction to Digital Communications by Michael B. Pursley


