Cryogenic Propulsion for the Titan Orbiter Polar Surveyor

<u>GSFC</u>: Shuvo Mustafi, Hudson DeLee, John Francis, Xiaoyi Li, Lloyd Purves, Dewey Willis, Conor Nixon, Dan Mcguinness, Sara Riall <u>MSFC</u>: Matt Devine, Ali Hedayat

Contact: shuvo.mustafi@nasa.gov

Cryogenic Propulsion for the Titan Orbiter Polar Surveyor [TOPS]

- TOPS Science Goals
- TOPS Spacecraft
- Thermal Design and Analysis
- Conclusions

TOPS Science

- Titan's has similarities to Earth
 - 95% N₂ and 1.5 bar pressure at surface
 - Evaporation and Precipitation of Methane similar to Water Vapor Cycle
 - Methane is source of active photochemistry that produces haze and net greenhouse effect of 12K
- Differences

& FLUIDS

- Surface Temperature 93K
- Precipitation of Methane
- Ethane/Methane seas and lakes
- TOPS Orbit
 - TOPS would place the first spacecraft in polar orbit around Titan
 - First global multi-spectral and radar maps of the surface
- TOPS Science Goals
 - Complete crater counts, yielding surface age estimates for different terrains
 - Lake composition and morphology studies
 - Search for volcanic/endogenic/tectonic activity
 - Meteorology Clouds and Haze

NASA/JHU/APL, from "Titan Explorer" Mission Study, Lorenz et al., 2008

- Mission Duration: 10.5+ years
- Cryogenic Propellant Storage Mission: 8.5+ Years
- Launch in 2022
 - Jupiter not available for gravity assist
- ΔV = 5887 m/s
- 7 Engine Burns
 - Shortest Burn = 2.2 min.
 - Longest Burn = 56 min.
- Launch on an existing Atlas Launch Vehicle
- Science Payload Mass = 53.3 kg
- No Active Cooling during Mission

TOPS Spacecraft

TOPS Spacecraft Stowed in Atlas AV 551

TOPS Spacecraft Deployed

TOPS Spacecraft

(a)

Thermal Analysis

- CAD: Creo and Solid Works
- Heat Transfer: Thermal Desktop (TD)
- Fluid Condition: Cryogenic Fluid Management Tool (CFMT) - GSFC Spreadsheet and REFPROP Based Tool

Cryogenic Storage Strategies

- Struts:
 - T300 with low emissivity Aluminum Tape
 - Struts Implemented to have LH2 Tank at Maximum Conductive Isolation via LO2 Tank
 Stage to Spacecraft Bus or Launch Vehicle Payload Adapter Fairing
- LOx and LH2 Tank
 - 5 layer Load Responsive MLI (LRMLI) for Convective Isolation on the Launch Pad
 - 40 layer Integrated MLI (IMLI) for Radiative Isolation
 - LRMLI and IMLI manufactured by Quest Thermal Group
- Sunshield and Orientation:
 - Multi-layer low solar absorptivity
 - Nominally spacecraft bus will point towards sun
 - Thermal design can accommodate short durations of increased heat input from sun views and engine burns during burn and communication maneuvers
- Fluid Condition
 - LO2: Launched normal boiling point. Densifies slowly during interplanetary phase of mission.
 - LH2: Launched subcooled. Warms slowly during interplanetary phase of mission
 - LH2 subcooling can be provided by a launch pad cryocooler
 - Eg. Turbo-Brayton Cryocooler 400W@15 K Cooler: Estimated Mass: 780 kg Estimated Power: 32kW

TOPS Truss Structure

Thermal Loads

- Duration of Propellant Storage Mission >8.5+ Years
- LOx Tank
 - Deep Space Nominal Heat Loss: 42 mW
- LH2 Tank
 - Deep Space Nominal Heat
 Gain = 71 mW
 - Maximum Heat Input During Burns = 191 W
 - Duration of Longest Burn < 57 min.

	LH2+LOX	MMH+NTO -	LH2+LOX -	MMH+NTO -
	- HGA	HGA	LaserComm	LaserComm
Total Δ V	5887	5887	5887	5887
Dry Mass - Nominal [Kg]	739	878	685	828
Dry Mass with 25% Dry Mass Contingency [Kg]	880	1053	812	991
Launch Mass with 25% Dry Mass Contingency [Kg]	3174	5587	2947	5266
AV 431 - Separated Launch Limit [Kg]	2922	2922	2922	2922
AV 431 - Separated Launch Mass Margin [%]	-8	-48	-1	-45
AV 541 - Separated Launch Limit [Kg]	3200	3200	3200	3200
AV 541 - Separated Launch Mass Margin [%]	1	-43	9	-39
AV 551 - Separated Launch Limit [Kg]	3525	3525	3525	3525
AV 551 - Separated Launch Mass Margin [%]	11	-37	20	-33

TOPS Comparison of LH2+LOx vs Hypergols

TOPS Launched Mass - Various Configurations

- LH2+LOx provides the highest specific impulse of any practical chemical propulsion system.
- For the TOPS Mission this means a 43% reduction in launched mass. This mission can be completed using an Atlas Launch Vehicle using LH2+LO2 but not with MMH+NTO.
- LH2+LOx can enable missions that deliver/recover substantially larger masses to/from the target destinations, or launch the mission on smaller and cheaper launch vehicles, or both.
- Subcooling saves a further 30 kg of boil-off H2 mass that can be directly used for payload.
 - 56.4% of Science Payload Mass of 53.3 Kg
 - Not including secondary mass savings from smaller tank, less insulation, less support structure, less propellant. Accounting for this leads to increased reduction in launched mass.

- Cryogenic LH2+LOx Propulsion provides high specific impulse chemical propulsion for planetary science exploration
- Provide high ΔV and high delivered and high returned mass to and from planets, moons, asteroids, comets with lower spacecraft wet mass.
- For the TOPS mission, passively cooled LH2+LOx reduces launched spacecraft mass by 43% and allows for launch on an Atlas launch vehicle. The same mission cannot be performed using a MMH+NTO propulsion and an Atlas launch vehicle.
- Subcooling cryogenic propellants on the launch pad using a cryocooler enables multi-year storage of LH2 without adding launched mass. For the TOPS Mission Subcooling saved LH2 boil-off mass that amounts to 56% of science payload mass.
- LH2+LOx Propulsion Development Required:
 - 890 N LH2+LOx Engine
 - Implementation of LRMLI and IMLI on 5500 to 6500 L Tanks.
 - Launchpad Subcooling of LH2
- TOPS Mission and other planetary science missions can be accomplished using without any in-space active cooling.

Backup Slides

Pre-Launch Isobaric Subcooling for Storage

•RL-10s operated with densified hydrogen
•Other Engines would have to be qualified

- **Objective:** Delay venting of the cryogen as long as possible.
- Fluid Conditioning
 - Engine Start Box High End (SBHE)
 - Fluid at Normal Boiling Point (N)
 - Isobaric Subcooling (B)
 - Proposed fluid conditioning method
- Physics

400

- Substantially lower heat flux in-space than in-atmosphere exploited or enhanced
 - Dominant in-space load < 0.25 W/m²
 - Dominant in-atmosphere load >63 W/m²
- Available heat capacity of the stored cryogen - Unexploited
 - Heat Capacity from N to SBHE = 18.2 KJ/Kg
 - Heat Capacity from B (@ T=16 K) to SBHE = 55.0 KJ/Kg
- Isobaric Subcooling to 16 K allows hydrogen to absorb ~ 3x the energy before venting has to be initiated => hold time before venting for isobaric subcooling is ~ 3x
- Pre-launch Subcooling using launch pad subcoolers or a thermodynamic cryogen subcooler

LH2+LO2 Storage

Combination of Smart Cryogenic Design with Subcooling and Lowering Solar Flux (artificially and naturally) allows long term storage of LH2+LO2 for Planetary Science propulsion

LH2+LOx Main Engine

LH2 + LOx Main Engine Needs to be developed

- Thrust: 890 N
- 440 s lsp
- Area Ratio: 150:1
- Chamber Pressure: 621 kPa
- Mixture Ratio: 4.5
- 7 Burns
- Longest Burn 56+ Minutes.
- Pump Fed
 - Brushless DC Motor
- Active Cooling Circuits for autogenous repres
- Gimballed for Thrust Vector Control

TOPS Main Propulsion System

Subcooling Demonstration

