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TOPS Science
• Titan’s has similarities to Earth

– 95% N2 and 1.5 bar pressure at surface
– Evaporation and Precipitation of Methane 

similar to Water Vapor Cycle
– Methane is source of active photochemistry 

that produces haze and net greenhouse 
effect of 12K

• Differences
– Surface Temperature 93K
– Precipitation of Methane
– Ethane/Methane seas and lakes

• TOPS Orbit
– TOPS would place the first spacecraft in 

polar orbit around Titan
– First global multi-spectral and radar maps of 

the surface
• TOPS Science Goals

– Complete crater counts, yielding surface age 
estimates for different terrains

– Lake composition and morphology studies
– Search for volcanic/endogenic/tectonic 

activity
– Meteorology – Clouds and Haze
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NASA/JHU/APL, from “Titan Explorer” Mission Study, Lorenz et al., 2008



TOPS Mission Parameters

• Mission Duration:  10.5+ years
• Cryogenic Propellant Storage Mission: 8.5+ Years
• Launch in 2022

– Jupiter not available for gravity assist
• ∆V = 5887 m/s
• 7 Engine Burns

– Shortest Burn = 2.2 min.
– Longest Burn = 56  min.

• Launch on an existing Atlas Launch Vehicle
• Science Payload Mass = 53.3 kg
• No Active Cooling during Mission
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TOPS Spacecraft
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TOPS Spacecraft 
Stowed in Atlas AV 551

TOPS Spacecraft  Deployed



TOPS Spacecraft
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Thermal Analysis
• CAD: Creo and Solid Works
• Heat Transfer: Thermal Desktop (TD)
• Fluid Condition: Cryogenic Fluid Management Tool 

(CFMT) - GSFC Spreadsheet and REFPROP Based Tool
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Design Parameters
• Design Envelope
• Boundary Conditions
• Initial Conditions
• Propellant Load
• Burn Schedule
• Timeline

CAD

TD

CFMT

TD Output
• Tank Thermal Environment
• Thermal Loads

CFMT Output
• Propellant Thermodynamics: 

Pressure/Temperature/Energy
• Cryogenic Mass and Power 

Requirements

Final 
Design



Cryogenic Storage Strategies
• Struts: 

– T300 with low emissivity Aluminum Tape
– Struts Implemented to have LH2 Tank at Maximum Conductive Isolation via LO2 Tank 

Stage to Spacecraft Bus or Launch Vehicle Payload Adapter Fairing
• LOx and LH2 Tank

– 5 layer Load Responsive MLI (LRMLI)  for Convective Isolation on the Launch Pad
– 40 layer Integrated MLI (IMLI) for Radiative Isolation

• LRMLI and IMLI manufactured by Quest Thermal Group
• Sunshield and Orientation: 

– Multi-layer low solar absorptivity
– Nominally spacecraft bus will point towards sun
– Thermal design can accommodate short durations of increased heat input from sun 

views and engine burns during burn and communication maneuvers
• Fluid Condition

– LO2: Launched normal boiling point. Densifies slowly during interplanetary phase of 
mission. 

– LH2: Launched subcooled. Warms slowly during interplanetary phase of mission
• LH2 subcooling can be provided by a launch pad cryocooler

– Eg. Turbo-Brayton Cryocooler 400W@15 K Cooler: Estimated Mass: 780 kg Estimated Power: 32kW 
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TOPS Truss Structure
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Thermal Loads
• Duration of Propellant Storage 

Mission >8.5+ Years
• LOx Tank

– Deep Space Nominal  Heat 
Loss: 42 mW

• LH2 Tank
– Deep Space  Nominal Heat 

Gain = 71 mW
- Maximum Heat Input During 

Burns = 191 W
- Duration of Longest Burn  < 

57 min.
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TOPS Launch Vehicle Performance
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TOPS Comparison of LH2+LOx vs Hypergols

• LH2+LOx provides the highest specific impulse of any practical chemical propulsion system.
• For the TOPS Mission this means a 43% reduction in launched mass. This mission can be 

completed using an Atlas Launch Vehicle using LH2+LO2 but not with MMH+NTO.
• LH2+LOx can enable missions that deliver/recover substantially larger masses to/from the 

target destinations, or launch the mission on smaller and cheaper launch vehicles, or both.
• Subcooling saves a further 30 kg of boil-off H2 mass that can be directly used for payload.

• 56.4% of Science Payload Mass of 53.3 Kg 
• Not including secondary mass savings from smaller tank, less insulation, less support structure, less 

propellant. Accounting for this leads to increased reduction in launched mass.5/29/2018 13



Summary: Cryogenic Propulsion for Planetary Science Missions

• Cryogenic LH2+LOx Propulsion provides high specific impulse chemical 
propulsion for planetary science exploration

• Provide high ∆V and high delivered and high returned mass to and from 
planets, moons, asteroids, comets with lower spacecraft wet mass.

• For the TOPS mission, passively cooled LH2+LOx reduces launched 
spacecraft mass by 43% and allows for launch on an Atlas launch vehicle. 
The same mission cannot be performed using a MMH+NTO propulsion 
and an Atlas launch vehicle.

• Subcooling cryogenic propellants on the launch pad using a cryocooler
enables multi-year storage of LH2 without adding launched mass. For the 
TOPS Mission Subcooling saved LH2 boil-off mass that amounts to 56% 
of science payload mass.

• LH2+LOx Propulsion Development Required:
– 890 N LH2+LOx Engine
– Implementation of LRMLI and IMLI on 5500 to 6500 L Tanks.
– Launchpad Subcooling of LH2

• TOPS Mission and other planetary science missions can be accomplished 
using without any in-space active cooling.
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Pre-Launch Isobaric Subcooling for Storage

• Objective: Delay venting of the cryogen as 
long as possible.

• Fluid Conditioning
– Engine Start Box High End (SBHE)
– Fluid at Normal Boiling Point (N)
– Isobaric Subcooling (B) 

• Proposed fluid conditioning method
• Physics

– Substantially lower heat flux in-space than 
in-atmosphere exploited or enhanced

• Dominant in-space  load < 0.25 
W/m2

• Dominant in-atmosphere load >63 
W/m2

– Available heat capacity of the stored 
cryogen - Unexploited

• Heat Capacity from N to SBHE = 
18.2 KJ/Kg

• Heat Capacity from B (@ T=16 K) to 
SBHE = 55.0 KJ/Kg

– Isobaric Subcooling  to 16 K allows 
hydrogen to absorb ~ 3x the energy before 
venting has to be initiated => hold time 
before venting   for  isobaric subcooling  is 
~ 3x

• Pre-launch Subcooling using launch 
pad subcoolers or a thermodynamic 
cryogen subcooler

•RL-10s operated with densified hydrogen 
•Other Engines would have to be qualified
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LH2+LO2 Storage
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Combination of Smart Cryogenic Design with Subcooling and Lowering  Solar Flux (artificially 
and naturally) allows long term storage of LH2+LO2 for Planetary Science propulsion



LH2+LOx Main Engine
LH2 + LOx Main Engine Needs to be developed
• Thrust: 890 N
• 440 s Isp
• Area Ratio: 150:1
• Chamber Pressure: 621 kPa
• Mixture Ratio: 4.5
• 7 Burns
• Longest Burn 56+ Minutes.
• Pump Fed

– Brushless DC Motor
• Active Cooling Circuits for autogenous repressurization
• Gimballed for Thrust Vector Control
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TOPS Main Propulsion System
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Subcooling Demonstration
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Roadmap
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