
NASA-TP-2018-219811

A Single Thread to Fortran Coarray Transition
Process for the Control Algorithm in the Space
Radiation Code HZETRN

Robert C. Singleterry Jr.
Langley Research Center, Hampton, Virginia

Desh Ranjan and Mohammad Zubair
Old Dominion University, Norfolk, Virginia

March 2018

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space science.
The NASA scientific and technical information
(STI) program plays a key part in helping NASA
maintain this important role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer.
It collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI pro-
gram provides access to the NTRS Registered and
its public interface, the NASA Technical Reports
Server, thus providing one of the largest collec-
tions of aeronautical and space science STI in the
world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
Programs and include extensive data or
theoretical analysis. Includes compila-tions of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counter-part of
peer-reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific and
technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical conferences,
symposia, seminars, or other meetings
sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific, technical,
or historical information from NASA programs,
projects, and missions, often concerned with
subjects having substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services also include organizing and
publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Phone the NASA STI Information Desk at
757-864-9658

• Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

NASA-TP-2018-219811

A Single Thread to Fortran Coarray Transition
Process for the Control Algorithm in the Space
Radiation Code HZETRN

Robert C. Singleterry Jr.
Langley Research Center, Hampton, Virginia

Desh Ranjan and Mohammad Zubair
Old Dominion University, Norfolk, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

March 2018

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an official endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Available From:

NASA STI Program / Mail Stop 148
NASA Langley Research Center

Hampton, VA 23681-2199
Fax: 757-864-6500

Contents

Acronyms vii

Abstract 1

1 Introduction and Background 1
1.1 Fortran . 2

1.1.1 Fortran Coarrays . 2
1.2 Parallelism . 3

2 HZETRN 4
2.1 Conversion of the HZETRN Control Algorithm from Fortran 77 to Modern Fortran 7

3 Conversion of the HZETRN Control Algorithm to Coarrays 8

4 Runtime Comparisons 14
4.1 Timing Issues . 14
4.2 Compiler Issues . 15
4.3 Execution Issues . 15
4.4 Raw Timing Data . 16
4.5 Normalized Data, Comparison, and Discussion . 17

5 Conclusions 18

References 19

Acknowledgment 20

List of Tables

1 Machine hardware, software, and compiler parameters. 24
2 Calculation average execution times for the single threaded non-accelerated simulations on

the HZE and K Clusters compared to the accelerated simulations. 24
3 Average execution times and standard deviations for the HZE Cluster. Non-Coarray is a

single thread and Coarray is 121 threads on 121 cores (4 nodes). 25
4 Average execution times and standard deviations for the K Cluster. Non-Coarray is a single

thread and Coarray is 121 threads on 121 cores (8 nodes). 25
5 Average execution times and standard deviations for the Linux workstation. Non-Coarray is

a single thread and Coarray is 121 threads on 32 cores. 25
6 Average execution times and standard deviations for the Desktop workstation. Non-Coarray

is a single thread and Coarray is 121 threads on 12 cores. 25
7 Average execution times and standard deviations for the Laptop workstation. Non-Coarray

is a single thread and Coarray is 121 threads on four cores. 26
8 Average execution times and standard deviations for the Desktop workstation with Hyper-

threading (2 threads per core). Non-Coarray is a single thread and Coarray is 121 threads on
24 apparent cores. 26

9 Average execution times and standard deviations for the Laptop workstation with Hyper-
threading (2 threads per core). Non-Coarray is a single thread and Coarray is 121 threads on
eight apparent cores. 26

10 Average execution times and standard deviations for the K Cluster. Non-Coarray is a single
thread and Coarray is 121 threads on 64 cores (4 nodes). 26

11 Average execution times and standard deviations for the K Cluster. Non-Coarray is a single
thread and Coarray is 121 threads on 16 cores (1 node). 27

v

12 Average execution times and standard deviations for the HZE Cluster. Non-Coarray is a
single thread and Coarray is 121 threads on 64 cores (2 nodes). 27

13 Average execution times and standard deviations for the HZE Cluster. Non-Coarray is a
single thread and Coarray is 121 threads on 32 cores (1 node). 27

14 Normalization factor for single threaded simulations on different machines. 28
15 Speed-up for the Coarray code on different machines with different core counts per run nor-

malized to the slowest chip set. 29
16 Speed-up of the Coarray Calculation section over the single threaded Calculation section with

Amdahl’s Law Theoretical Speed-up, TSU . 29

List of Figures

1 Time comparisons of a serial executable and a parallel executable where x is the time for
input, y is the time per loop, and z is the time for output. 20

2 HZETRN marching algorithm that produces the database needed by the interpolation method.
Each arrow can represent a serial execution order or a thread with the same shade of gray
representing concurrent threads. 21

3 A possible timing versus thread count diagram for the HZETRN control algorithm. 21
4 K Cluster core versus Calculation times. 22
5 HZE Cluster core versus Calculation times. 22
6 Normalized Calculation times for all machines. 23

List of Fortran Snippets

1 Single Material MARCH Call . 5
2 Three Material Database MARCH Call . 6
3 Definition and Allocation of the psi Coarray . 8
4 Ultimate Thread Identification . 8
5 Initial Thread Identification . 8
6 Fortran 77 Initialization of psi . 9
7 Coarray Initialization of psi . 9
8 Acquire Spatial Data on a Single Thread . 10
9 Copy Spatial Data to Other Threads, Fortran 2008 . 10
10 Copy Spatial Data to Other Threads, Fortran 2018 . 10
11 First Pass for the Coarray MARCH Subroutine . 11
12 Second Pass for the Coarray MARCH Subroutine . 11
13 Third Pass for the Coarray MARCH Subroutine . 12
14 Single Threaded Coding Necessary to Output psi . 12
15 Coarray or Multithreaded Coding Necessary to Output psi . 13
16 Reading Coarray Written psi in to a Single Array . 13
17 MARCH Subroutine Structure for Testing . 14

vi

Acronyms
10GigE 10 Gigabit per second Ethernet

1GigE 1 Gigabit per second Ethernet

AMD Advanced Micro Devices

AVX Advanced Vector Extension

CPU Central Processing Unit

DDR Double Data Rate

DDTRB Durability, Damage Tolerance, and Reliability Branch

Exa- 1018

FDR Fourteen Data Rate

FLOPS FLOating Point operationS or FLoating point Operations Per Second plus others

FP Floating Point

GB GigaBytes

GHz GigaHertz

GPGPU General Purpose Graphics Processing Unit

GT GigaTransfers

HT AMD’s HyperTransport or Intel’s Hyperthreading

HZETRN High Z and Energy TRaNsport

I/O Input and Output

LaRC Langley Research Center

MB MegaBytes

MIC Many Integrated Cores

MIMD Multiple Instructions Multiple Data

MP/ACC Multi-Processing/ACCelerator

MPI Message Passing Interface

NASA National Aeronautics and Space Administration

NFS Network File System

nm nano-meters

NTFS New Technology File System

OLTARIS On-Line Tool for the Assessment of Radiation In Space

PBS Portable Batch System

Peta- 1015

QPI Intel’s QuickPath Interconnect

SAS Serial Attached SCSI - Small Computer System Interface

SATA Serial AT (Advance Technology) Attachment

SGE Sun Grid Engine

SIMD Single Instruction Multiple Data

SIREST Space Ionizing Radiation Effects and Shielding Tool

SSD Solid State Drive

SSE Streaming SIMD Extensions

UPC Universal Parallel C

vii

Abstract

Exa-scale computing is the direction by industry and government are going to generate solutions to
problems they deem necessary. Computing hardware is being developed to achieve the transition from
Peta-scale to Exa-scale with more CPUs that have more cores per CPU and more accelerators (GPGPUs
and MICs) per node. To fully utilize the hardware available now and in the future, algorithms must
become multi-threaded. There are a few methods to generate multi-threaded software such as MPI and
OpenMP/OpenACC. This paper concentrates on using Coarray Fortran to convert the Fortran 95 based
HZETRN code’s control algorithm from a single threaded code to a multithreaded code. The resultant
Coarray code was 32.5 times faster (with a theoretical speed-up of 74.5 times) than the single threaded
version on the hardware tested, as reliable as the Fortran 95 version, and, as it uses native Fortran, was
as maintainable as the Fortran 95 version. The Coarray code can be maintained by the same project
engineers and scientists who created the original single threaded code. This transition process can be
utilized on a C language based code with a compiler that has the UPC extensions to C.

1 Introduction and Background

In the past, project engineers and scientists achieved shorter time-to-solution by buying new and faster
hardware and compiling and running their production codes on the new hardware. This new hardware
allowed better results by either reducing tolerances in computing a result or allowing more results to be
calculated in the same time frame. However, there has been a movement away from faster hardware towards
more hardware. This has caused a radical advancement of computer hardware and software in the last
few years. For hardware, chip manufacturers have reduced the speed of an individual CPU, or chipset,
because of thermal limitations but have made available more cores or computational units per CPU, since
the feature size on each chip is shrinking which allows more transistors to be placed on the chip – the so-
called Moore’s Law.[1] Manufacturers are also introducing new computational accelerators like GPGPUs
and MICs. These give the user more options to accelerate their algorithms so that either more calculations
can be run, generating more results, or enabling calculations that could not be done in the past because of
the execution time needed to complete the calculation.

Giving the user slower but more cores to do the work instead of fewer and faster cores has been called
by many experts “the single thread to multithread revolution”. The top machines in the world achieved one
Peta-FLOPS using the multithreading hardware construct in November 2008a. To obtain faster execution
speeds, hardware vendors are now adding computational accelerators to their multithreaded machines and
this is called a hybrid machine that can operate at 55 Peta-FLOPSb. However, most of this computing
power comes from the accelerators and not the CPU based cores. Industry and government[2] estimate that
Exa-FLOPS (1000 Peta-FLOPS) machines are needed to solve problems they deem necessary. The hybrid
machine is positioned to become the Exa-scale machine by 2023.[3] These architectures, to include the
hybrid architecture, will then impact smaller machines on the Top-500 List and will quickly impact desktop
machines. Then multithreaded programming will be necessary at all levels from high performance computing
to desktop analysis.

What has lagged behind this incredible hardware leap is the ability for the software developer to uti-
lize this advanced clustered hardware easily. However, in the past couple of years, that lag is being tackled
through improvements in compilers and their ability to automatically generate multithreaded code and accel-
erator programming paradigms. In the past, developers were limited to the MPI and/or OpenMP/OpenACC
paradigmsc. These paradigms are akin to assembly language inside a high level language (MPI) and sugges-
tions to the compiler to help it multithread the code (OpenMP/OpenACC). However, several new paradigms,
Coarrays for Fortran and UPC for C, are native to the languages. UPC will not be discussed further in this

aSee the second ranked machine from Oak Ridge (JAGUAR) at the Top 500 List as of November 2008 website. Note, the
top machine, ROADRUNNER from Los Alamos, had achieved one Peta-FLOPS in June 2008, but it is a hybrid machine and
utilized accelerators to get to one Peta-FLOPS.

bSee the second ranked machine from China (Tianhe-2) at the Top 500 List website as of November 2016. To compare, the
NASA machine Pleiades, is thirteenth on that Top 500 list at seven Peta-FLOPS and is not a hybrid machine.

cMIMD and SIMD architectures: MIMD – a distributed memory system like Pleiades utilizing MPI. SIMD – an array
processor, or GPGPU, like a single node on a distributed system or a shared memory architecture utilizing OpenMP/OpenACC.
In a cluster environment, both programming paradigms can be used: OpenMP/OpenACC within a node and MPI between
nodes.

1

http://top500.org/lists/2008/11/
http://top500.org/lists/2016/11/

report as the nature of Fortran Coarrays can be easily translated to UPC. This allows compiler manufac-
turers to fit the programmed algorithm to existing and new hardware transparently through native Fortran
constructs that already exist: Arrays. These tools are relatively new and still being investigated by software
developers. NASA has easy access to these new compilers but must change the method and sometimes the
algorithm used to access the multithreaded nature of the new hardware using the new software.

For an entry level investigation of Coarrays, this report will try to illuminate two questions:

Q1 do Coarrays increase the efficiency of a code, and

Q2 can project engineers and scientists closest to the code use Coarrays to achieve multithreaded coding
without the use of multithreading coding experts?

This paper will use the control algorithm in the space radiation particle transport code HZETRN[4–6] as an
example to answer question Q1. The suggestion put forward in question Q2 is that if the answer to question
Q1 is true, then the project engineers and scientists who are closest to the project should be and can be doing
the coding without the assistance of multithreading coding experts. While this suggestion is subjective and
influenced by many factors unique to each coding project, if the answer to question Q1 is true, then Q2 is a
question that each project needs to answer.

1.1 Fortran

While Fortran is perceived as a deprecated language by many (the language is no longer offered in most
computer science curricula), it is far from dead. In technical computing, Fortran offers explicit data references
in the form of native Fortran arrays that speed the execution of programs by having the compiler determine
where data exists in memory at the time of compilation instead of at runtime. If space is allocated at runtime,
then data is placed there and the starting address of the data is explicitly associated with the data. With
C and C++, an indirect pointer to the starting address of the data is associated with the data and not the
address itself. C and C++ have no programming constructs like a Fortran array because C and C++ treat
an “array” as just a pointer to contiguous memory which must be dereferenced before an array element can
be accessed. This is twice the number of memory lookups than using Fortran arrays. However, constructs
within C and C++ are now allowing explicit data references for interoperability with Fortran and the speed
associated with this data reference methodology.

1.1.1 Fortran Coarrays

While C++ is expanding its capabilities rapidly for multithreaded processing, so is Fortran. Coarrays were
added to the Fortran 2003 Standard. Currently, the Fortran 2008 Standard[7] is in force and most compilers
conform to that standard. Only Cray (version 8.4.0 and higher), Intel (version 16.0 and higher), and GNU
(version 5.2 and higher) Fortran compilers currently implement Coarrays. The 2008 Standard added more
capability and clarified some language difficulties associated with Coarrays. The Fortran standard committee
is currently working on a minor revision of the 2008 standard to be called Fortran 15[7] and introduces more
capability associated with Coarrays.

A Coarray is the same as the native Fortran array construct except that one or more of the array
dimensions designates a thread or execution of that particular array element on a separate core. While
this is a simple construct and native to Fortran programming, it has hidden complexities. Unlike the MPI
multithread programming paradigm, a few simple rules added to a Fortran programmer’s knowledge can
create native Fortran coding that allows the use of the new hardware and increases the execution speed of
the code. With pure MPI calls instead of Coarrays, those coding complexities must be explicitly managed by
the programmer with non-native Fortran MPI library subroutines. The resultant pure MPI code is usually
faster than Coarray code; however, it is more complex to program and maintain – as illustrated by a relevant
analogue from the history of computing: high level versus assembly programmed code.

Assembly code programming produces executables that are very fast since a skilled programmer is directly
manipulating the basic objects and processes in the CPU. However, it is complex and very time consuming
to produce the coding necessary to perform the desired task and requires a more in-depth understanding
of the hardware and software interaction at a low level. If pure speed is all that is relevant, then assembly
code is the programming paradigm of choice. Usually technical programming performs the same operations

2

on large quantities of data. In assembly language, this becomes tedious and error prone. Therefore, higher
level programming languages were introduced. The C language macrotizes assembly language tasks to hide
the complexity. This can be very useful but still is a very complex programming paradigm; however, it
is portable amongst CPU architectures. High level languages like Fortran, Cobol, C++, Pascal, Ada, etc.
abstract the CPUs basic objects and processes into appropriate constructs. For Fortran, these constructs
are variables and arrays, arithmetic, loops and branches, and input/output. Fortran and the other high
level languages will never be as fast as hand-coded assembly language; however, execution speed is not the
only metric to optimize in programming. Other metrics include the overall time to solution, reliability and
maintainability of the code, and portability which are more readily achieved by high level languages.

Coarrays abstract the basic MPI objects and processes into simple and native Fortran constructs to better
balance all of the Fortran programmer’s time and resource constraints. Therefore, Coarrays allow non-MPI
experts, usually the project engineers and scientists, to create programs that can be used on multithreaded
clustered hardware. It is true that expert MPI programmers would create faster, but more complex, pro-
grams. The MPI coding would be a “black box” to the project engineers and scientists. However, Coarray
Fortran is more reliable and easier to maintain than equivalent MPI coding as Coarrays are extensions of
native Fortran constructs and not “black boxes”. As an added benefit, since the compiler manufacturers
are responsible for the execution of Coarrays on the hardware, future hardware will still be able to utilize
Coarrays without re-programming.

Coarrays are not a comprehensive solution for all algorithms. The algorithms must be created to fit within
the Coarray construct and yet still produce the wanted results on the hardware available. Fortunately, most
technical computing already utilize Fortran arrays. Coarrays are just extensions to arrays. In this paper,
Coarrays will be applied to the control algorithm used in the HZETRN space radiation particle transport
code. Section 1.2 discusses what parallelism is and some basic metrics. Section 2 will discuss the HZETRN
control algorithm in its current form. Section 3 will convert the control algorithm to enable Coarrays.
Section 4 will report on actual runtime experiments. Section 5 will conclude if Coarrays are viable for
multithreading the HZETRN control algorithm and speculate on how different the resultant code is from
the original and if project engineers and scientists can utilize this coding paradigm.

1.2 Parallelism

Parallelism is a multifaceted subject as Section 1 shows. It is clear that computational machines are becoming
more complex and software is not abstracting the hardwared to the programmer unless experts in the
fundamentals of parallelism are involved. The question really is: what is parallel and how is it implemented?
This section is not a tutorial on parallelism, but a discussion about it is necessary to see how Coarrays fit
into parallelism and how the project engineers and scientists class of programmers fit into utilizing it.

Coarrays usually bundle MPI calls and are suppose to take the complexity out of utilizing MPI. Therefore,
the control algorithm being converted from serial to parallel utilizing Coarrays must already have a MIMD,
or a distributed memory environment through multiple threads running the same algorithm on multiple
data streams, compatible algorithm. The distributed memory environment means that computer nodes are
connected by a network infrastructure that link data between the nodes and presents a seamless memory
environment (arrays in Fortran) to the programmer. Therefore, data must be spread and collected to a
master thread or acquired by a thread through disk access. If a thread needs data from another thread,
that must be accommodated also. The concept of data passing by Coarrays is straight forward, since the
programmer’s mechanism is the well understood Fortran array, which abstracts the MPI calls that do the
actual data passing.

The “thread” is the new idea to a serial programmer. The interaction of these threads and their data
create new program logic error paths that must be avoided. The structure of Fortran and Coarrays helps
with avoiding these error paths, but do not eliminate them. In order to understand what an individual
thread must accomplish, the avoidance of these error paths can cause threads to wait for data to arrive from
other threads. Of course, while the thread is waiting, it is not computing and therefore, not being “parallel”.

d“abstracting the hardware” is a term of art. Its meaning is to hide the hardware from the software programmer and give
the hardware details a simpler interface to the programmer. This is akin to how a high level language abstracts the details of
each CPU from the programmer. In Fortran, this allows a programmer to code x = a + b and not worry about the details of
the CPUs registers, adding hardware, memory hierarchy, and other details.

3

The “Do Loop” structure in Fortran is used to index through Fortran arrays and is essential in the parallel
Coarray structure. However, if part of a computation in a thread is dependent on the outcome of a different
thread, that can slow down the overall performance. Also, if one thread has more work to do than another
thread, then overall performance can be affected.

A visual mechanism can be used to see the overall performance of a parallel program. For this paper, each
thread is depicted as either green for computing or red for idling. All threads are depicted at once. A simple
example will be used to show the features of one of these plots. Figure 1a shows the serial version of this
example which consists of reading some input, looping over a single index (1-4) without data dependencies,
and writing output. Figure 1b shows the parallel version of this plot. The dependent axis is the concurrent
thread count. It is assumed each loop index takes y milliseconds to execute, x milliseconds to read the data,
and z milliseconds to write the data. It is also assumed that data transfer is very fast and therefore not
depicted on the plots. All threads execute 100% of the time (i.e., no red).

Figure 1a shows that the serial code takes x + 4y + z milliseconds to execute while the parallel code in
Figure 1b takes x + y + z milliseconds to execute. The gives a speed-up of (x + 4y + z)/(x + y + z). This
speed-up seems to be in error. Since there are four threads, intuitively, shouldn’t it run four times faster?
Assume that if x = y = z, then the speed-up is two because there are still serial parts of the code that must
be accounted for.

If all parts of the program can run in parallel, then the best a programmer can do is a factor of four
speed-up. Amdahl’s law[8] gives the actual speed-up of a whole program due to parallelism

SU(s) =
1

(1 − p) + p
s

where SU is the speed-up of the program, s is the speed-up of the part of the program that is serial, and p
is the part of the program that is parallel. This law can be very complex in this form if multiple parts of
the code are sped-up at different rates (as with the HZETRN example used in this paper). Therefore, this
paper will report the theoretical maximum speed-up, TSU , by taking the limit as s goes to infinity of SU(s)

TSU = lim
s→∞

SU(s) =
1

1 − p
.

For the x = y = z example above, s = 4 and p = 4/6 which gives SU(s) = 2 and TSU = 3. The actual
speed-up was shown to be two. Therefore, even though four threads are used concurrently in this example,
only a two times speed-up is seen with a theoretical maximum speed-up of three. This is driven by the
amount of serial code left after parallelization. This effect will be shown by the HZETRN control algorithm
example as appropriate.

2 HZETRN

HZETRN is a particle transport code for space radiation using the linearized Boltzmann transport equation.
The code analyzes space radiation particles (projectile particles of the stable nuclei of hydrogen through
nickel) as they traverse materials in a space vehicle or habitat (spacecraft). The physics of the code includes
interactions such as nuclear stars or the interaction of projectile particles with the nuclei of the materials
in the spacecraft to create secondary radiation, the slowing down of charged particles through materials by
Coulomb scattering with the materials’ electrons and nuclei, and the nuclear scattering of particles that do
not create nuclear stars. For this analysis, the computational process flow and associated data structures are
critical, whereas the physics of HZETRN are a representation of the computation process and less important
in this context.

HZETRN developers used various approximations to achieve the solution algorithm. The eight dimen-
sional phase space represented in the full Boltzmann transport equation (one of particle type, three of space,
one of energy, two of angle, and one of time – ψp(x, y, z, E, θ, φ, t)) was reduced to three (one of particle type,
one of space and one of energy – ψp(x,E)) through the use of the straight-ahead, the continuous slowing
down, and steady state approximations among others. It is also assumed that the Z > 2 particles do not gain
total energy through any interaction and do not create larger particle types in any interaction. Numerical
marching techniques are then used to solve the problem along a gridded spatial number line in the direction

4

of the projectile particles. The marching technique is a function of the current location on the number line
and the next location on the number line. This can be represented as a Fortran subroutine called MARCH
as shown in Fortran Snippet 1.

Fortran Snippet 1: Single Material MARCH Call

! x is allocated as x(Number_Spatial_Points)

Call Read_Spatial_Data (1, Number_Spatial_Points, x)

!

Allocate (psi(Number_Energy_Points, &

Number_Particle_Types, &

Number_Spatial_Points))

!

! Set the Boundary Condition stored in F(l,m)

!

BC: Do l = 1, Number_Energy_Points

PA: Do m = 1, Number_Particle_Types

psi(l,m,1) = F(l,m)

End Do PA

End Do BC

!

! March down the spatial number line for all energies and particle types

!

TR: Do i = 2, Number_Spatial_Points

EN: Do l = 2, Number_Energy_Points

PB: Do m = 2, Number_Particle_Types

Call MARCH (x(i-1), psi(l-1,m,i-1), x(i), psi(l,m,i))

End Do PB

End Do EN

End Do TR

The boundary condition of interest is F(l,m), Read Spatial Data is a subroutine that reads the spatial data
from a file, MARCH is the subroutine that marches the solution to the next phase space point, psi holds the
phase space solutions, and x holds the spatial grid. For executions with a galactic cosmic ray boundary condi-
tion, Number Energy Points is 100 and Number Particle Types is 59. The value of Number Spatial Points

can vary for each application, but 11 has been used for this analysis and is comparable to values used on
the OLTARIS website[9] which implements the HZETRN solution algorithm. This sets the number of calls
to MARCH at 57,420 and can be handled by all modern single threaded machines in a few minutes.

In order to evaluate complex spacecraft shielding geometry with HZETRN, ray-tracing procedures are
utilized. In a ray-trace procedure, the material types and thicknesses traversed by a large number of rays
covering the full 4π steradian are computed and then are coupled to the HZETRN solution to estimate
radiation exposure. Two solution methods exist that OLTARIS calls ray-by-ray and interpolation. The ray-
by-ray solution method performs an execution of HZETRN on each ray and integrates the response function
from all the rays at the source point for the rays. This method’s conversion to Coarrays will be explored
in the future. This paper just focuses on the interpolation solution method, which creates a database of all
combinations of materials for preset thicknesses of those materials. The ray trace is then used to interpolate
on this database and the response functions integrated as with the ray-by-ray method. The control algorithm
that creates the database is what will be converted to Coarray Fortran.

The current configuration of the interpolation method used for HZETRN is shown graphically in Figure 2.
There are three materials with 11 thicknesses per material. The boundary condition is at box (1,1,1) in the
figure. The marching technique is broken down into three passes. The first pass, Figure 2a, is an execution
of the boundary condition through the first material from box two to box 11. This calculation becomes the
boundary condition for the second pass. Figure 2b shows that the second pass is executed 11 times and that
takes the second material from box two to 11. This calculation then becomes the boundary condition for the

5

third pass. Figure 2c shows that the third pass executes 121 times and that takes the third material from
box two to 11. This changes Fortran Snippet 1 to Fortran Snippet 2.

Fortran Snippet 2: Three Material Database MARCH Call

! Number_Material_Points is allocated as Number_Materials_Points(3)

! x is allocated as x(max(Number_Material_Points),3)

Call Read_Spatial_Data (3, Number_Material_Points, x)

!

Allocate (psi(Number_Energy_Points, &

Number_Particle_Types, &

Number_Material_Points(1), &

Number_Material_Points(2), &

Number_Material_Points(3)))

!

BC: Do l = 1, Number_Energy_Points

PA: Do m = 1, Number_Particle_Types

psi(l,m,1,1,1) = F(l,m)

End Do PA

End Do BC

!

! First Pass

j = 1

k = 1

M11: Do i = 2, Number_Material_Points(1)

E1: Do l = 2, Number_Energy_Points

P1: Do m = 2, Number_Particle_Types

Call MARCH (x(i-1,1), psi(l-1,m-1,i-1,j,k), x(i,1), psi(l,m,i,j,k))

End Do P1

End Do E1

End Do M11

!

! Second Pass

k = 1

M12: Do i = 1, Number_Material_Points(1)

M22: Do j = 2, Number_Material_Points(2)

E2: Do l = 2, Number_Energy_Points

P2: Do m = 2, Number_Particle_Types

Call MARCH (x(j-1,2), psi(l-1,m-2,i,j-1,k), x(j,2), psi(l,m,i,j,k))

End Do P2

End Do E2

End Do M22

End Do M12

!

! Third Pass

M13: Do i = 1, Number_Material_Points(1)

M23: Do j = 1, Number_Material_Points(2)

M33: Do k = 2, Number_Material_Points(3)

E3: Do l = 2, Number_Energy_Points

P3: Do m = 2, Number_Particle_Types

Call MARCH (x(k-1,3), psi(l-1,m-2,i,j,k-1), x(k,3), psi(l,m,i,j,k))

End Do P3

End Do E3

End Do M33

6

End Do M23

End Do M13

To establish a baseline for comparison, a default set of values are used: Number Material Points are 11
each, Number Energy Points is 100, and Number Particle Types is 59. These values set the number of
calls to MARCH at 7,636,860 which is again not unreasonable for a single thread on modern machines and
compilers. It might take several tens of minutes depending on the chip set used. The amount of memory for
the psi array is 15 MB (Megabytes) for 64-bit reals.

Something unexpected occurs if a non-expert user of HZETRN wants to increase the fidelity of their
answer to say 170 particle typese, have five or seven materials with 21 points per materialf and have 100
energy points. This then gives the number of calls to MARCH at 68,331,077,100 for five materials and
30,618,505,180,000 for seven materials. Therefore, the time to execute this model in a single thread could
take 0.51 years for five materials and 225.1 years for seven materials if the default database took 30 minutes
to generate. Even if the default database took one minute to generate, then these new models would take
6.2 days for five materials and 7.5 years for seven materials. The memory needed for seven materials is 1.2
GB (Gigabytes) for 64-bit reals.

2.1 Conversion of the HZETRN Control Algorithm from Fortran 77 to Modern
Fortran

The history of the development of HZETRN is an important aspect to the Coarray investigation. When
HZETRN was officially released in 1995, the user interacted with it by editing the source code in Fortran
77 with the model to be analyzed, compiling the new source code, and running the executable to get the
wanted results. Only experts could run the code and get any intelligible results out of it; even then, experts
made mistakes and those errors had a large chance of being propagated in the code and taint other results.

A few years after the official 1995 release, Singleterry created an input deck driven version of the code
for use by non-experts. This fixed the coding in time, or archived it, because it was no longer edited every
time a model was run. This also had the added benefit of prescribing the compilation parameters to fit the
coding needs. This version was never released as an official version because the resultant executable was very
large in order to have predefined arrays to cover all probable inputs. Singleterry then reworked the code to
incorporate dynamically allocated arrays and other elements from Fortran 95 as they were introduced into
the production Fortran compilers. This reduced the size of the resultant executable and made the code run
faster. However, the code was still input deck driven with text based data files and never released as an
official version.

A web interface was added to this last version of HZETRN created by Singleterry and the result was
called SIREST.[12] The HZETRN code was broken into pieces and made easier to maintain along with the
ancillary codes associated with HZETRN. More Fortran 95 elements were added to aid in compilation and
runtime. The web interface to SIREST became a maintenance problem very quickly due to the tools used
to create the website. A proposal was put forward and accepted by NASA to make HZETRN and all of its
ancillary codes into a modern and easier to maintain website called OLTARIS. The OLTARIS website is still
operating but is still using the antiquated coding of Fortran 77/95 and the quirks of the compilers at the
initial time it was broken up for SIREST.

Many changes have been made to Fortran in the intervening years. The Coarray investigation coincides
with an investigation into what a modern Fortran version of HZETRN should be. The physics routines
(those routines used by MARCH in this paper) are not being modernized at this time. First, deprecated and
obsolete Fortran constructs are being eliminated (minus those used in the physics routines). Then, related
variables are being grouped and placed into derived data types. Subprograms and their related data are
being placed into modules (a crude first attempt at object oriented programming by encapsulating related

eThis reference[10] makes a case that tracking 170 instead of 59 particles types is more accurate.
fFive or seven spacecraft materials is not unreasonable and could allow the OLTARIS programmers to enable the more

accurate bi-directional neutron transport methodology[11] for the interpolation database. The center material would be tissue
(and the source for the ray traces), mirrored by one spacecraft material and one or two shielding materials. With 21 points per
material, the interpolation errors would be reduced. The ultimate effect of this new model would be to reduce the uncertainty
of the solution and could be used to create a benchmark quality solution.

7

data and processes). The major modernization is in the input and the output of the code. The current
version of HZETRN is based on an old Intel Fortran compiler which contained some proposed but not
finalized Fortran 95 constructs. As Fortran 95 was finalized and language elements changed in the newer
versions of the compiler, the older Fortran elements were not deprecated, but better, more readable and
easier to maintain elements were allowed. These newer and Fortran Standard compliant elements were never
implemented in HZETRN and the non-standard coding was left alone. Therefore, the central read and write
routines, which had the worst of the non-standard code, were rewritten based on unlimited polymorphic
constructs. Again, the physics routines in the code were not modified for this work, still contain deprecated
and obsolete constructs, and should be pointing to pre-calculated values instead of recalculating or re-reading
those values. The results of this paper for Coarrays will be incorporated into this testbed and published
separately. The Fortran Snippets in this paper contain some of the modernized Fortran constructs developed
and not the current production version (OLTARIS) constructs.

3 Conversion of the HZETRN Control Algorithm to Coarrays

The Coarray construct in Fortran allows array memory allocation to be more amenable to distributed
memory parallel processing. This changes the meaning of the arrows in Figure 2. Instead of executing in
a single thread, they can now be executed concurrently or multithreaded. This gives two passes that are
multithreaded as the first pass is still a single thread. The control algorithm for MARCH as shown in Fortran
Snippet 2 has to change. This affects the psi array as shown in Fortran Snippet 3.

Fortran Snippet 3: Definition and Allocation of the psi Coarray

Real, Allocatable, Dimension(:,:,:), Codimension[:,:] :: psi

!

Allocate (psi (Number_Energy_Points, &

Number_Particle_Types, &

Number_Material_Points(3))[Number_Material_Points(1),*]

The * is necessary in the second dimension of the Coarray as per the standard.
Since each thread is being executed concurrently, each thread needs to have an identity. Therefore, new

code must be added to identify threads as shown in Fortran Snippet 4.

Fortran Snippet 4: Ultimate Thread Identification

pid = this_image(psi)

p1 = pid(1)

p2 = pid(2)

This coding can only be used once psi has been allocated. Therefore, if thread identification is needed before
the allocation of the psi Coarray, then Fortran Snippet 5 is used.

Fortran Snippet 5: Initial Thread Identification

p = this_image()

Thinking in Parallel: This is where a new type of thinking is necessary for programmers who predom-
inately code single threaded programs. A Coarray program executes by starting all threads at the same
time. If there are more threads than cores, then the threads are scheduled by whatever algorithm the op-
erating system has implemented to manage threads. For the Windows and Linux operating systems, the
algorithm starts all the threads and lets them compete amongst each other for CPU resources utilization
using a scheduler based on the round robin algorithm with qualifiers like priority.

8

An example of this thinking in parallel can be explored through the simple task of initializing the psi

array. The Fortran 77 code is shown in Fortran Snippet 6.

Fortran Snippet 6: Fortran 77 Initialization of psi

I1: Do i = 1, Number_Material_Points(1)

I2: Do j = 1, Number_Material_Points(2)

I3: Do k = 1, Number_Material_Points(3)

IE: Do l = 1, Number_Energy_Points

IP: Do m = 1, Number_Particle_Types

psi(l,m,i,j,k) = 0.0

End Do IP

End Do IE

End Do I3

End Do I2

End Do I1

Of course, in most Fortran 95 compilers (and now is standard in Fortran 2003), to initialize an array is psi
= 0.0. This allows the compiler to optimize or parallelize the step without the programmer dictating the
algorithm. However, to perform the same task in a Coarray program is shown in Fortran Snippet 7.

Fortran Snippet 7: Coarray Initialization of psi

i = p1

j = p2

I3: Do k = 1, Number_Material_Points(3)

IE: Do l = 1, Number_Energy_Points

IP: Do m = 1, Number_Particle_Types

psi(l,m,k)[i,j] = 0.0

End Do IP

End Do IE

End Do I3

Sync All

This utilizes Number Material Points(1)*Number Material Points(2) threads. The new Fortran com-
mand introduced here is Sync All. This command makes sure that all threads are finished with their task
before execution continues past this point in the code.

It is important to remember that each thread only has direct (local memory) access to certain data. In
the case for Fortran Snippet 7, only the portion of the psi array that the (p1,p2) thread has initialized is
local. However, this thread can access the other parts of the psi array non-local to it, but an underlying
data transfer call (for the Intel compiler, a series of MPI calls) is made and will, of course, take more time
than a local memory data access.

Reading a File and Processing the Data: Learning to think in parallel can have a stumbling block if
the programmer is not careful and does not understand that all threads execute at once. The first difficulty
encountered is reading a file and making that data available on all threads. Only one thread can read a file
safely (i.e. without race conditionsg). Even though a file can be opened READONLY for concurrent utilization,
records are locked when being read by a thread and can cause an error if two or more threads are trying
to read the same record (a race condition). Therefore, an if-block construct should be placed around the
Open/Close Fortran construct so that all threads do not try and read the file. Also, that data only exists on
the thread that read it and must be propagated (or copied) to the other threads to be local to all threads. This
can be accomplished for the spatial data with normal Fortran 95 constructs as shown in Fortran Snippet 8.

gParallel programming jargon for an explicit coding error type. See https://en.wikipedia.org/wiki/Race_condition for a
detailed explanation of this term.

9

https://en.wikipedia.org/wiki/Race_condition

Fortran Snippet 8: Acquire Spatial Data on a Single Thread

Real, Dimension(:) :: Number_Material_points_SD

Real, Dimension(:,:) :: x_SD

If (p .eq. 1) Then

Open (unit=10, file=’spatial.dat’, status=’old’)

Allocate (Number_Material_Points_SD(3))

Read (unit=10, fmt=*) (Number_Material_Points_SD(i), i=1,3)

MaxX = maxval (Number_Material_Points_SD)

Allocate (x_SD(MaxX,3))

Do i = 1, 3

Read (unit=10, fmt=*) (x_SD(j,i),j=1,Number_Material_Points_SD(i))

End Do

Close (unit=10)

End If

Sync All

The suffix SD designates a “Single Dimension” or no Coarray Dimension. The data only exist on thread 1
and must be copied to the other threads for utilization there. This can be accomplished in a Fortran 2008
manner as shown in Fortran Snippet 9.

Fortran Snippet 9: Copy Spatial Data to Other Threads, Fortran 2008

Real, Dimension(:), Codimension[:] :: Number_Material_Points

Real, Dimension(:,:), Codimension[:] :: x

Allocate (Number_Material_Points(3)[*])

Allocate (x(MaxX,3)[*])

If (p .eq. 1) Then

Number_Material_Points(:) = Number_Material_Points_SD(:)

x(:,:) = x_SD(:,:)

Deallocate (Number_Materials_SD, x_SD)

End If

Sync All

If (p .ne. 1) Then

Number_Material_Points(:) = Number_Material_Points(:)[1]

x(:,:) = x(:,:)[1]

End If

Sync All

If the 2018 Fortran standard is used, then Fortran Snippet 10 is used.

Fortran Snippet 10: Copy Spatial Data to Other Threads, Fortran 2018

Real, Dimension(:), Codimension[:] :: Number_Material_Points

Real, Dimension(:,:), Codimension[:] :: x

Allocate (Number_Material_Points(3)[*])

Allocate (x(MaxX,3)[*])

If (p .eq. 1) Then

Number_Material_Points(:) = Number_Material_Points_SD(:)

x(:,:) = x_SD(:,:)

Deallocate (Number_Materials_SD, x_SD)

End If

Call Co_Broadcast (Number_Material_Points, 1)

Call Co_Broadcast (x, 1)

10

This type of two step procedure must be performed for all the data to be read. The beauty of Coarrays
is that while thread 1 is reading the spatial data, thread 2 is concurrently reading the energy data, thread 3
is concurrently reading the particle type data, and so on. Therefore, all the data can be read in and copied
around concurrently.

First Pass: After all the input data is read and propagated to all the threads, the three passes of the
MARCH subroutine can begin. The coding for the first pass must change as in Fortran Snippet 11 (but it is
still a single thread).

Fortran Snippet 11: First Pass for the Coarray MARCH Subroutine

Real :: Temp

!

! First Pass

!

If (p1 .eq. 1 .and. p2 .eq. 1) Then

M11: Do i = 2, Number_Material_Points(1)

E1: Do l = 2, Number_Energy_Points

P1: Do m = 2, Number_Particle_Types

Call MARCH (x(i-1,1), psi(l-1,m-1,1)[i-1,1], x(i,1), Temp)

psi(l,m,1)[i,1] = Temp

End Do P1

End Do E1

End Do M11

End If

!

Sync All

The Coarray dimension, [p1,p2], is not required for the x array as it has been previously copied to all
threads. Since the return value from the physics subroutine MARCH is a Real value and not a Coarray, the
Temp variable is needed to store the value in the Coarray properly.

Second Pass: For the second pass, the Coarray coding needs to change as shown in Fortran Snippet 12.

Fortran Snippet 12: Second Pass for the Coarray MARCH Subroutine

!

! Second Pass

!

i = p1

If (p2 .eq. 1) Then

M22: Do j = 2, Number_Material_Points(2)

E2: Do l = 2, Number_Energy_Points

P2: Do m = 2, Number_Particle_Types

Call MARCH (x(j-1,2), psi(l-1,m-2,1)[i,j-1], x(j,2), Temp)

psi(l,m,1)[i,j] = Temp

End Do P2

End Do E2

End Do M22

End If

!

Sync All

This utilizes Number Material Points(1) threads. Because of the Coarray structure, data is being passed
from thread to thread as different cores are calculating different parts of the Coarray.

11

Third Pass: For the third pass, the Coarray coding is shown in Fortran Snipett 13.

Fortran Snippet 13: Third Pass for the Coarray MARCH Subroutine

!

! Third Pass

!

i = p1

j = p2

M33: Do k = 2, Number_Material_Points(3)

E3: Do l = 2, Number_Energy_Points

P3: Do m = 2, Number_Particle_Types

Call MARCH (x(k-1,3), psi(l-1,m-1,k-1)[i,j], x(k,3), Temp)

psi(l,m,k)[i,j] = Temp

End Do P3

End Do E3

End Do M33

!

Sync All

This utilizes Number Material Points(1) times Number Material Points(2) threads.

Advantages of Coarrays in the Conversion: There are some advantages to this method of program-
ming in parallel. First, the actual coding does not change significantly from the serial version. An MPI-based
version of the HZETRN control algorithm would be complex to generate and not easy to maintain by the
project programmers (and is why an MPI version was not generated for this analysis). The Coarray coding
on the other hand is very much like the original Fortran 77 coding with a small amount of new thinking
and syntax and one new Fortran statement. As shown with the use of the Temp variable, Coarray elements
are not identical to Fortran 77 array elements and some simple accommodations must be made. Second,
the amount of data that must be stored by each thread is much smaller than for the single threaded version
of the code. The single threaded version needs the entire psi array to reside on or be accessible to a sin-
gle thread tied to a single core. The manner in which memory is managed and utilized in Intel (QPI) and
AMD (HT) CPUs mandates that some of the data needs to be transferred from other cores on the same chip
which is not really local to the core executing the code and wanting the data. Also, the smaller the data
set, the more effective on-core and on-chip data cache utilization becomes. These memory access issues are
important for the overall throughput of the code but have not been investigated in this work.

Output of the Data: To output the psi array in the single threaded code, a simple Write procedure is
necessary as sown in Fortran Snippet 14.

Fortran Snippet 14: Single Threaded Coding Necessary to Output psi

Open (unit=10, file=’Flux.dat’, status=’replace’)

Write (unit=10, fmt=*) Number_Energy_Points, &

Number_Particle_Types, &

Number_Material_Points(1), &

Number_Material_Points(2), &

Number_Material_Points(3)

Write (unit=10, fmt=*) psi

Close (unit=10)

This writes psi in normal Fortran order (l,m,i,j,k) where l is indexed first, m second, i third, etc.
For the Coarray version, the data exists in different threads. Those threads could all be on one CPU or

node or on many nodes connected with a networking infrastructure. There are many methods to gather the

12

data to one thread and write the data to disk. To try and write the data in the same order as is written in
Fortran Snippet 14, the data transfer would be very inefficient. Therefore, the data is written efficiently for
Coarrays as shown in Fortran Snippet 15.

Fortran Snippet 15: Coarray or Multithreaded Coding Necessary to Output psi

COA: If (p .eq. 1) Then

Open (unit=10, file=’Flux_coa.dat’, status=’replace’)

Write (unit=10, fmt=*) Number_Energy_Points, &

Number_Particle_Types, &

Number_Material_Points(1), &

Number_Material_Points(2), &

Number_Material_Points(3)

COA1: Do i = 1, Number_Material_Points(1)

COA2: Do j = 1, Number_Material_Points(2)

Write (unit=10, fmt=*) psi(:,:,:)[i,j]

End Do COA2

End Do COA1

End If COA

No Sync All is needed because the threads are accessed one at a time by the COA1 and COA2 loops. To read
the data from the file, the Coarray structure in a single thread is structured like Fortran Snippet 16.

Fortran Snippet 16: Reading Coarray Written psi in to a Single Array

Allocate (psi_coa(1:Number_Energy_Points, &

1:Number_Particle_Types, &

1:Number_Material_Points(3), &

1:Number_Material_Points(2), &

1:Number_Material_Points(1)))

Open (unit=10, file=’Flux_coa.dat’, status=’old’)

Read (unit=10, fmt=*) psi_coa

Close (unit=10)

This can then be compared with psi from Fortran Snippet 14 for each index.
The important parts of the HZETRN interpolation method control algorithm have been converted from

a single thread version to a multithreaded, Coarray version. The resultant Coarray coding is very under-
standable by Fortran 77 programmers and mirrors the single threaded code.

Amdahl’s Law: The control algorithm as stated in this paper is complex. There are three passes with
some being serial, some being parallel, and have differing speed-up rates. Some of the threads could be idle
while some are still calculating. A calculation of SU(s) would be very complex due to the multiple speed-ups
available to the code in different places. Therefore, the theoretical speed-up, TSU , will be calculated and
reported with p being the ratio of the calculation serial execution time (the rows labeled Calculation in the
tables) over the total serial execution time (the rows labeled Total in the tables) for each case.

Figure 3 shows a possible timing versus thread count diagram for the HZETRN control algorithm. Block
A represents the initial setup. Block B represents the reading and sharing of the data where the green color
represents computation and the red color represents idle time. Block C represents initialization of the psi

array for each pass. Block D represents the first pass which is serial. Block E represents the second pass.
Block F represents the third pass. Finally, Block G represents the output of the results. The complexity is
evident in this figure and why SU(s) is very complex to compute.

13

4 Runtime Comparisons

Since the physics of the code has been stripped out of this work to focus on the Coarray aspects, some data
generation had to be accomplished in order to make sure that the Coarray version gave the same results as
the single threaded version. To this end, the MARCH subroutine was simulated as shown in Fortran Snippet 17.

Fortran Snippet 17: MARCH Subroutine Structure for Testing

Module MARCH_Mod

! No explicit typing

Implicit None

! Make all names private

Private

! Make these Subroutine names Public

Public :: MARCH

Contains

Subroutine MARCH (psi_next, X_next, psi, X)

Use Target_Material_Mod, only : TM

Implicit None

Real, Intent(in) :: psi, X, X_next

Real, intent(out) :: psi_next

Integer :: i, j

FK1: Do j = 1, 5000

psi_next = psi

FK2: Do i = 1, TM%Num_Isotopes

psi_next = psi_next + (TM%A_Target_Material_p(i) * &

TM%Z_Target_Material_p(i) * X)

End Do FK2

End Do FK1

Return

End Subroutine Propagate

End Module Propagate_Mod

The TM defined type structure contains the atomic number (Z) and atomic weight (A) of the target material
for each pass. This algorithm creates a unique set of numbers that can be compared between versions.

The next issue that this algorithm addresses is the nature of the Coarray execution: the time to execute
the underlying MPI subroutine calls used by the Coarray runtime executable. This is called Coarray overhead
or the tasks needed to be performed simply because Coarrays are used. The actual routine called in HZETRN
simulated by this MARCH routine calls numerous functions and performs numerous calculations. This takes
time to perform. This is simulated with the loop labeled FK1 in Fortran Snippet 17. With this loop, the
Coarray overhead is then not the only execution item being timed. No study was performed to actually
determine that 5000 loops was sufficient to cover the actual execution time for the real routine. However,
5000 gives wall-clock times that can be compared without Coarray overhead being the primary execution
time consumer.

4.1 Timing Issues

At NASA LaRC, there are two cluster machines used for this analysis: the K and HZE clusters. The K
cluster is a LaRC resource that is not a hybrid machine. Computing power comes from CPUs only and is
a smaller mimic of the Pleiades cluster, the NASA (Agency) engineering and scientific computing resource.
The HZE cluster is a branch resource available to one of the authors, Singleterry. Computing power comes
from CPUs only. Also used for the timing comparisons is a workstation class Windows laptop, a workstation
class Windows desktop, and a Linux based workstation. Hardware, compiler, and operating system details
are shown in Table 1.

14

The timing data gathered on each execution was the time to read (and copy to all threads for the Coarray
version) all the input, the three pass database generation calculation, the output of the psi array, and then
the total time for execution. This was performed for the single thread and the Coarray versions of the code.
The timings were generated ten times on each system, averaged, and a variance (standard deviation in this
case) calculated to look for calculation stability. After each execution of the single thread and the Coarray
version, the output flux files were compared and validated.

4.2 Compiler Issues

Compilers are complex and the manufactures can change option defaults, even between minor versions.
Therefore, using the same minor version for each machine is critical. All simulations were compiled with the
Intel Fortran Compiler Version 16.0. In order to better understand how to compile a Coarray containing
code, the compiler and its options must be explained and are complex.

There are three license versions of the Intel compiler but only two types of licenses matter for Coarray
compilation. The first license type is found in the Composer and Professional Edition versions. They allow
for single node execution of Coarrays using a runtime version of the Intel-MPI libraries. The Composer
version was used on the the Linux and Laptop machines. The second license type is found in the Cluster
Edition version. This allows for multiple node or distributed execution of a Coarray program again, using the
Intel-MPI libraries. This version was used on the HZE and K clusters along with the Desktop workstation
even though the Desktop was compiled to be run in the non-distributed or shared mode.

The Intel compiler has some details that must be addressed to get the best performance from a particular
machine and consistent performance from all machines. The details of the HZE and K Clusters, the Linux,
Desktop, and Laptop workstations are shown in Table 1. First, the two versions of the compiler noted in the
table are deemed sub-minor versions and the defaults between the two versions did not change. Second, the
chip sets are noted in the table and have real relevance on the floating point performance of that machine
and how the Intel compiler generates chip specific instructions. As is shown for the FP Acceleration Item in
Table 1, different FP acceleration hardware is used that can directly affect execution times, and if compiled
improperly, can throw runtime exceptions that terminate the execution or can just slow down the execution.

To make the compiler generate the instructions necessary to fully utilize the FP hardware, a delicate issue
must be examined: the Intel compiler generates faster code on Intel chip sets using the compiler defaults as
is shown in Table 2. There are many compiler options available to make the compiler generate the proper
FP instructions. The first problem is that for this major version of the compiler, the Windows and Linux
options are not the same. For the Linux version of the compiler, the only option that works across AMD and
Intel chip sets is the -mtune option although as shown in Table 2, the -mtune option is not needed for Intel
chip sets. The other code generation options throw illegal instruction runtime exceptions on the AMD chip
set and terminate the execution. The values used for -mtune are listed in Table 1. The use of corei7-avx
is counterintuitive since these are Xeon or Opteron chip sets and not Core-i7 chip sets, even though all have
the AVX vector processor. The use of slm for the Xeon based Linux workstation chip set is taken verbatim
from the Intel Compiler documentation. The Windows version of the compiler does not have the -mtune

option. Since the Windows machines are Intel chip sets and they are single node executions, the /QxHost

option, or compile to the FP parameters that exist on the host, was used to get the proper FP acceleration.
Using these compiler options allows the AMD and Intel chip sets to generate the appropriate and consis-

tent FP instructions for the chip sets. This then allows for a fair comparison amongst different manufactures
and versions of chip sets.

4.3 Execution Issues

How the Coarray version of the code is compiled and executed is important in understanding the results.
When the code is executed under Linux or Windows, the number of threads started is designated by either the
compiler command with -coarray-num-images=$value (Linux) or /Qcoarray-num-images=%value% (Win-
dows) or by setting this environment variable setenv FOR COARRAY NUM IMAGES=$value (cshell in Linux)
or set FOR COARRAY NUM IMAGES=%value% (Windows). Since the default values of the looping parameters
in Fortran Snippet 2 were used, the value in all of these cases is set at 121 (or Number Materials(1) times
Number Materials(2), which is 11 times 11 or 121). When the Coarray code is executed, 121 threads are

15

created. The HZE Cluster machine uses SGE to dispatch batch jobs. The K Cluster uses PBS to dispatch
batch jobs. The other machines execute the command from the command line (cshell in Linux and cmd in
Windows).

The Fortran Snippets above implicitly assume each thread executes on one core. However, that may not
always be the case. The Workstations (Linux, Desktop, and Laptop in this paper) all have many fewer cores
than the default case needs. If there are not enough cores available, then there are two strategies that can
be implemented. The first is to just allow all the threads to execute on the cores available. However, this
can cause problems by spending more time thread context switching than computing and thrashingh. The
second is to rewrite the Codimension indexes and loops to only execute one thread per core. However, this
slightly complicates the resultant coding by introducing another loop over the number of cores and adjusting
the other loops and Codimension indexes to compensate. For the purposes of this paper, less complex coding
was used and the effects of more threads per core, and the context switching involved, was investigated.

The K Cluster is configured to assign whole nodes, with increments of 16 cores per node, to a job.
Therefore, if 64 cores are wanted for a job, the job asks for four nodes at 16 cores per node. If the job asks
for a number of cores not divisible by 16, then more cores are given to the next 16 increment and the extra
cores on the last node are idle. No node can execute more threads than 16 and all threads belong to the
same job.

The HZE Cluster is set to assign cores to jobs. Each node has the capability to run 32 threads with one
thread per core. Therefore, if 64 cores are asked for in a job needing 121 threads, then SGE could give the
job one core on 64 nodes or any other combination of cores and nodes. A problem occurs with this method
when two (or more) threads are assigned to one core. Now, more than 32 threads are running per node and
then the other job’s threads are impacted and slowed along with the Coarray job’s threads. Care must be
taken in order to not impact other jobs with this method of assigning threads to cores.

4.4 Raw Timing Data

Because of the three pass execution of the Coarray code for the interpolation version of HZETRN, it is
not straightforward to compare different simulations on different machines or even the same machine with
different number of threads per core (as explained in Section 4.3). However, the raw timing simulations will
be discussed here and then normalized, compared, and discussed in Section 4.5.

HZE Cluster: Table 3 shows the execution times for the HZE Cluster with 121 cores at one thread per
core. The Coarray calculation has a 4.0 times speed-up over the single threaded calculation. For the single
threaded version, the variance of the calculation was very small in comparison to the value, assuming that
the means form a normal distribution. This implies that the variation between simulations was small and
the single threaded calculation is stable. The Coarray calculation has a much larger variance but was still
small in comparison to its value. The Coarray calculation was still stable, but was also a function of the
traffic from itself and others on the 10GigE Network Infrastructure; however, the execution of the reported
instance in Table 3 ran on four nodes with no other jobs running on those nodes. The variance for the input
and output for both the Coarray and single threaded executions shows that the time to perform input and
output was dependent on the traffic from itself and others on the 1GigE NFS mounted disk array.

K Cluster: Table 4 shows the execution times for the K cluster with 121 cores at one thread per core. The
Coarray calculation has a 32.5 times speed-up over the single threaded calculation. For the single thread,
the variance was very small and the calculation was stable. The same can be said for the Coarray variance;
however, the Infiniband Network Infrastructure was not being shared with other jobs between nodes. The
variances on the input and output were small; however, while the file system is a parallel file system, it’s
speed from run to run was dependent on the load of the file system from other jobs. Intel’s HT, or two
threads concurrent per core, was turned off.

hThrashing is where the virtual memory system of the OS is spending more time paging than computing. Paging is where
the OS brings a memory page into or out of the CPUs cache. See https://en.wikipedia.org/wiki/Thrashing_%28computer_

science%29 for more details.

16

https://en.wikipedia.org/wiki/Thrashing_%28computer_science%29
https://en.wikipedia.org/wiki/Thrashing_%28computer_science%29

Linux Workstation: Table 5 shows the execution times for the Linux workstation with 3.78125 threads
per core. The Coarray calculation has a 3.4 times speed-up over the single threaded calculation. For the
single thread, the variance was small in comparison to its value. This means that the calculation was stable.
The same can be said for the Coarray variance. The variances for the input and output were also small. It
cannot be guaranteed that these were the only executing user processes on the machine, but the machine
appeared to be empty during the execution of these tests. Intel’s HT, or two threads concurrent per core,
was turned off.

Desktop Workstation: Table 6 shows the execution times for the Desktop workstation with 10.083
threads per core. The Coarray calculation has a 3.8 times speed-up over the single threaded calculation. For
the single thread, the variance was small in comparison to its value. This means that the calculation was
stable. The same can be said for the Coarray variance. The variances for the input and output were also
small. It can be guaranteed that these were the only executing user processes on the machine. Intel’s HT,
or two threads concurrent per core, was turned off.

Laptop Workstation: Table 7 shows the execution times for the Laptop workstation with 30.25 threads
per core. The Coarray calculation shows a 1.2 times slow down over the single threaded calculation (see
Section 4.5 for possible reasons for the slowdown). The variances for the single thread and the Coarray were
small in comparison to their values and show that the calculation is stable. The variances for the input
and output were also small. It can be guaranteed that these were the only executing user processes on the
machine. Intel’s HT, or two threads concurrent per core, was turned off.

Intel Hyperthreading (HT): To better understand Intel’s HT in this simulation, it was turned on for
the Desktop and Laptop and the simulations run again. Therefore, for the Desktop workstation there were
5.04167 threads per apparent core, and for the Laptop there were 15.125 threads per apparent core. Tables 8
and 9 show the results for these simulations. If Intel’s HT really gives two times more core capability, then
the speed-ups should also be doubled. When Intel’s HT was turned off for the Desktop run, the speed-up
was 3.8; therefore, when Intel’s HT was turned on, the expected speed-up should be 7.6. With Intel’s HT
turned on for the Desktop, the speed-up was 4.8 and only a 1.3 times core increase instead of two. The
Intel’s HT differences for the Laptop run was a speed-up of 0.85, or a slow down; therefore, when Intel’s HT
was turned on, the expected speed-up should be 1.7. With Intel’s HT turned on, the speed-up was 0.92 and
only a 1.1 times core increase instead of two. Intel’s HT does not increase any speed-ups by a factor of two.
While a small speed-up was seen, in more intensive computational cases, Intel’s HT could slow down the
code execution and therefore should be turned off.

K Cluster with higher thread per core count: Tables 10 through 11 show the results for reduced
core counts of 64 and 16 cores for the K Cluster still executing 121 threads. A near-linear relationship exists
between the core count and the execution time as shown in Figure 4, as would be expected.

HZE Cluster with higher thread per core count: Tables 12 through 13 show the results for reduced
core counts of 64 and 32 cores for the HZE Cluster still executing 121 threads. All threads ran on nodes that
were running no other job threads. A linear relationship is not shown in Figure 5. More research is required
to determine why this relationship is apparent for this hardware and software set up. There are some things
that could qualitatively explain the non-linearity like cache utilization (see Table 1 for a list of possible
issues pertaining to hardware that must be addressed); however, to determine the exact cause would take a
detailed analysis of the interaction between the code and the hardware and was not performed for this work.

4.5 Normalized Data, Comparison, and Discussion

To compare the Coarray data for each of the machine and core combinations described above, it is important
to determine machine differences. The single thread simulations enable a normalization factor to be deter-
mined based on the machine and its particular equipment. Table 14 shows the normalization factors for all
the times and machines listed in Tables 3 through 13 for the single threaded simulations. While the input

17

and output speed-ups are listed, their values are not relevant to any normalization since the actual amount
of time spent in those tasks was small and is also a function of what the machine was doing when the code
was executing. For example, the Laptop, while running the timed code, was also performing numerous tasks
that support the Windows operating system. Disk I/O is part of those tasks and would lengthen the I/O
time of the timed code. This is shown in the Linux machine’s Input and Output times. While the Linux
machine is the slowest computational machine, its input I/O is the fastest and its output I/O is about aver-
age. These I/O times are closely tied to how the disk drives are attached to the computer, the kind of disk
drive hardware and firmware, and the non-code related disk I/O being performed. The one machine where
this was not a problem is the K Cluster where the disk I/O is performed on a disk farm that is executing
a parallel I/O system (Lustre) and can handle multiple users without single user degradation. Therefore,
the disk I/O speed-ups are similar for Input and Output and show a four to five times speed-up. Of course,
the fastest calculation is performed by the latest chip set which is on the Laptop workstation and shows an
almost three times speed-up over the oldest chip set on the Linux workstation.

Table 15 shows each machine and core combination Coarray speed-ups normalized to the slowest chip
set (the Linux workstation). Therefore, these data compare the Coarray simulations to one another on an
equal per instruction execution basis. It is clear that a faster networking interface gives faster results. The
K Cluster results with the Infiniband networking interface can be 38 times faster than the slowest machine
(the Laptop without HT). The 10GigE networking interface used on the HZE Cluster gives, at most, a 5-10
times speed-up over the slowest machine.

Figure 6 shows the normalized execution times graphically and the machine with the largest slope is
the K Cluster. Even though the K Cluster does not have the fastest chip set, it has the fastest network
and disk I/O. It is unclear from this study how far the slope would continue before the Coarray overhead,
context switching, and the other problems with more than one thread per core would start to overtake the
computational gains. Because of the limits on number of cores per job and other administrative limits, a
study like this would have to be planned closely with the administrators and users and therefore was not
conducted. It is clear that context switching becomes a problem for the lower core count machines. Even
though the Laptop Workstation has the fastest chip set, the Coarray code is actually slower than the single
threaded version.

Table 16 shows in a single table the calculation program section speed-up of the Coarray code over the
single threaded code reported in Tables 3 through 13 with Amdahl’s law theoretical speed-ups. The K Cluster
with one thread per core is the fastest with a 32.5 times speed-up over the single threaded version. Amdahl’s
Law theoretical speed-up of 74.5 times is not achieved because of the nature of the control algorithm with
parallel sections of the code interrupted by serial sections of the code (see Figure 3). The 10GigE networking
infrastructure does not compare to the Infiniband networking infrastructure as the HZE Cluster is at most
ten times faster than the single threaded version. The Laptop workstation, while having the fastest chip
set, because of its limited number of cores, is actually slower than the single threaded version on the same
machine. It is obvious that all of the elements of the machine are important for the speed-up of the Coarray
code over the single threaded code; however, a fast core which is executing optimized code, a large number of
cores, and a fast networking infrastructure are the top contributors to any speed-up. From the HZE speed-
ups at one and two threads per core, the microarchitecture of the chip set (cache, data transfer speeds, etc.)
may also be important as shown in Figure 5; however, this analysis has not been performed.

5 Conclusions

The initial attempt at creating a multithreaded program using Coarrays for the control algorithm in the
HZETRN program that generates an interpolation database in a space radiation environment simulation
generates a speed-up of 32.5 times over the single threaded version on the K Cluster with an Amdahl’s
Law based theoretical speed-up of 74.5 times. If the simulation is run with fewer cores than threads, then
the Coarray execution time can become longer than the single thread version as was shown on the Laptop
workstation. This work shows that the number of threads per core is the important parameter for execution
time. Networking infrastructure and code optimized to the chip set also contribute heavily.

For the scenario with seven materials and 21 points per material, a total of 85,766,121 cores would be
needed if the algorithm developed here is used for a single thread per core. If the K Cluster had this many

18

cores, then instead of taking 225.1 years to execute if the default database took 30 minutes to generate, then
it would take 6.9 years to execute. If the database only took ten seconds to generate (see Table 4), then
the execution would go from 7.5 years to 14.1 days. In single thread mode, the one minute generation time
seemed improbable; however, if this large K Cluster is used, then a one minute database generate time is
very plausible. Therefore, with Coarrays and an appropriate sized cluster, larger problems can be solved or
more problems can be solved in the same time. However, real core counts are important. Even the largest
cluster in the Top 500 list today only has 10,649,600 cores but it is in China and not accessible to the authors.
The NASA Pleiades cluster has 185,344 Xeon cores and is not a hybrid cluster. To run this scenario on
Pleiades, each core would have to run 462 or 463 threads. Context switching would be a problem and the
loop structure would need to be rewritten to handle multiple threads per core.

Because of the parameters used and the computers involved, 121 threads was the maximum number of
threads programmed for the examples in this work. Two more Do Loops in Fortran Snippets 11 through 13
(indexes in the psi array) could be made into Coarrays; however, this would then intrude into the manner in
which the physics and transport algorithms are programmed and was one of the restrictions imposed on this
effort. There are loops and other algorithms within the physics that would benefit from Coarrays or other
threading techniques. HZETRN is rich with chances to take advantage of parallel programming. There are
many other processes and algorithms within the OLTARIS system, and not just HZETRN, that could be
sped up with Coarrays.

Coarrays are the easiest and arguably most productive method for engineering and scientific programmers
to enter into the world of parallel programming in comparison to the MPI programming paradigm. This
paper has shown that with a simple tool and a Fortran 77/95 programmer’s skill set, multithreaded code
using Coarrays is not hard to generate with the current programmers that exist within the project. The
resultant code is just as reliable and as easy to maintain as the Fortran 77/95 code that exists today.
Therefore, an effort should be made by NASA to make HZETRN and the other codes within the OLTARIS
system encompass Coarrays as the starting foray into scalable parallel processing. This paper can also be
used by other engineering and science groups to investigate Coarrays in their analyses.

References

[1] Link: Moore’s Law

[2] Department of Energy, Summary Report of the Advanced Scientific Computing Advisory Committee
(ASCAC) Subcommittee, “The opportunities and Challenges of Exascale Computing,” U.S. Department
of Energy, Office of Science, Office of Advanced Scientific Computing Research, Fall 2010.

[3] Link: HPC Wire: Paul Messina Shares Deep Dive Into US Exascale Roadmap, June, 2016.

[4] Wilson, J.W., Badavi, F.F., Cucinotta, F.A., Shinn, J.L., Badhwar, G.D., Silberberg, R., Tsao, C.H.,
Townsend, L.W., Tripathi, R.K.; “HZETRN: Description of a free-space ion and nucleon transport and
shielding computer program,” NASA Technical Paper 3495, May 1995.

[5] Wilson, J.W., Tripathi, R.K., Mertens, C.J., Blattnig, S.R., Clowdsley, M.S., Cucinotta, F.A., Tweed,
J., Heinbockel, J.H., Walker, S.A., Nealy, J.E.; “Verification and Validation: High Charge and Energy
(HZE) Transport Codes and Future Development,” NASA Technical Paper 2005-213784, July 2005.

[6] Slaba, T.C., Blattnig, S.R., Badavi, F.F.; “Faster and More Accurate Transport Procedures for
HZETRN,” NASA Technical Paper 2010-216213, March 2010.

[7] Link: The Fortran Standards Committee J3.

[8] Rogers, D.P., “Improvements in multiprocessor design,” Assoc. Computing Machinery, Vol. 13 (3),
pp. 225-231, June 1985.

[9] Singleterry Jr., R.C., Blattnig, S.R., Clowdsley, M.S., Qualls, G.D., Sandridge, C.A., Simonsen, L.C.,
Norbury, J.W., Slaba, T.C., Walker, S.A., Badavi, F.F., Spangler, J.L., Aumann, A.R., Zapp, E.N.,
Rutledge, R.D., Lee, K.T., Norman, R.B., “OLTARIS: On-Line Tool for the Assessment of Radiation
In Space”, NASA Technical Paper 2010-216722, July 2010.

19

www.mooreslaw.org
http://www.hpcwire.com/2016/06/14/us-carves-path-capable-exascale-computing
http://www.j3-fortran.org/

[10] Cucinotta, F.A., Premkumar, B.S., Xiaodong, H., Myung-Hee, Y.K., Cleghorn, T.F., Wilson, J.W.,
Tripathi, R.K, Zeitlin, C.J., “Physics of the Isotopic Dependence of Galactic Cosmic Ray Fluence
Behind Shielding,” NASA Technical paper 2003-210792, February 2003.

[11] Slaba, T.C., Blattnig, S.R., “Coupled Neutron Transport for HZETRN,” NASA Technical Paper 2009-
215941, October 2009.

[12] Singleterry, R.C., Wilson, J.W., Shinn, J.L., Tripathi, R.K., Thibeault, S.A., Noor, A.K., Cucinotta,
F.A., Badavi, F.F., Chang, C.K., Qualls, G.D., Clowdsley, M.S., Kim, M.H., Heinbockel, J.H., Norbury,
J., Blattning, S.R., Miller, J., Zeitlin, C., Heilbronn, L.H., “Creation and utilization of a World Wide
Web based space radiation effects code: SIREST,” Physica medica, Vol. 17 Sup. 1, pp. 90-93, 2001.

Acknowledgment

The authors would like to thank the internal NASA Langley review committee: Dana Hammond, William
Seufzer, and Tony Slaba for helping to make this document better by suggestions on general audience read-
ability and technical content for this first-of-a-kind paper. This project was funded through the Comprehen-
sive Digital Transformation (CDT) Project at NASA LaRC.

Time in Milliseconds

x y y y y z

C
o

n
cu

rr
en

t
Th

re
ad

 C
o

u
n

t

(a) Serial execution of the code.

Time in Milliseconds

x

y

y

y

y z
C

o
n

cu
rr

en
t

Th
re

ad
 C

o
u

n
t

(b) Parallel execution of the code.

Figure 1: Time comparisons of a serial executable and a parallel executable where x is the time for input, y
is the time per loop, and z is the time for output.

20

1 11

11

Material 1

M
at

er
ia

l 2

(a) First pass.

1 11

11

Material 1

M
at

er
ia

l 2

(b) Second pass.

1 11

11

Material 1

M
at

er
ia

l 2

(c) Third pass.

Figure 2: HZETRN marching algorithm that produces the database needed by the interpolation method.
Each arrow can represent a serial execution order or a thread with the same shade of gray representing

concurrent threads.

Time in Milliseconds

C
o

n
cu

rr
en

t
Th

re
ad

 C
o

u
n

t

A CB D C E C F G

1 Thread 11 Threads 121 Threads
Reading

Data
Output

Data

Figure 3: A possible timing versus thread count diagram for the HZETRN control algorithm. Block A
represents the initial setup. Block B represents the reading and sharing of the data where the green color
represents computation and the red color represents idle time. Block C represents initialization of the psi

array for each pass. Block D represents the first pass which is serial. Block E represents the second pass.
Block F represents the third pass. Finally, Block G represents the output of the results.

21

Figure 4: K Cluster core versus Calculation times.

Figure 5: HZE Cluster core versus Calculation times.

22

Figure 6: Normalized Calculation times for all machines.

23

Table 1: Machine hardware, software, and compiler parameters.

Item HZE Cluster K Cluster Linux Desktop Laptop

Machine Hardware

Chip Set
AMD Opteron

6220
Intel Xeon
E5-2670

Intel Xeon
E7-4830

Intel Xeon
E5-2640

Intel Core-i7
4900MQ

Chip Set Code
Name

Bulldozer
Iterlagos

Sandy
Bridge-EP

Westmere-EX Ivy Bridge Haswell

CPUs per
Node

4 2 4 2 1

Cores per
CPU

8 8 8 6 4

Base Freq
(GHz)

3.0 2.6 2.13 2.5 2.8

Turbo Freq
(GHz)

3.6 3.3 2.4 3.0 3.8

Cache (MB) 16 20 24 15 8

Feature Size
(nm)

32 32 32 32 22

QPI or HT
(GT/s)

6.4 8.0 6.4 7.2 5.6

DDR3 Mem
(GT/s)

1.6 1.6 1.066 1.333 1.6

FP
Acceleration

AVX AVX SSE 4.2 AVX AVX 2.0

Disk
Infrastructure

SATA SAS SAS SAS/SSD SATA/SSD

Network
Infrastructure

10GigE
4X FDR

Infiniband (56
Gbps)

local local local

Machine Software

Operating
System

CentOS 6.5 CentOS 6.6
OpenSUSE

13.1
Windows 7 Windows 7

File System
1GigE NFS
Disk Array

4X FDR
Infiniband
Lustre 2.5

1GigE NFS
Disk Array

local NTFS local NTFS

Queuing
Software

SGE PBS
Command

Line
Command

Line
Command

Line

Compiler Options

Compiler
Version

16.0.0.109 16.0.0.109 16.0.0.109 16.0.1.146 16.0.1.146

-mtune=value corei7-avx corei7-avx slm – –

/Qx%value% – – – Host Host

Table 2: Calculation average execution times for the single threaded non-accelerated simulations on the
HZE and K Clusters compared to the accelerated simulations.

Machine Accelerated (seconds) non-Accelerated (seconds) Percent Slowdown

HZE Cluster 277.90574 331.46362 16.1580
K Cluster 207.97232 207.95678 −0.0075

24

Table 3: Average execution times and standard deviations for the HZE Cluster. Non-Coarray is a single
thread and Coarray is 121 threads on 121 cores (4 nodes).

Program Section
Non-Coarray Coarray

Coarray Speed-upTime Standard Time Standard
(seconds) Deviation (seconds) Deviation

Input 0.0439200 0.0753504 0.7382200 0.2296453 0.0594945
Calculation 277.9057400 0.3669780 69.4306800 7.6773789 4.0026360

Output 5.2014100 0.2455158 5.6235200 0.4993794 0.9249385

Total 283.1510700 0.4871622 75.7924200 7.9775391 3.7358758

Table 4: Average execution times and standard deviations for the K Cluster. Non-Coarray is a single
thread and Coarray is 121 threads on 121 cores (8 nodes).

Program Section
Non-Coarray Coarray

Coarray Speed-upTime Standard Time Standard
(seconds) Deviation (seconds) Deviation

Input 0.0076800 0.0003868 0.5254800 0.0094424 0.0146152
Calculation 207.9723200 0.1688097 6.3996300 0.0509266 32.4975538

Output 2.8202700 0.1317372 2.8363200 0.0877392 0.9943413

Total 210.8002800 0.1795862 9.7614300 0.1180925 21.5952253

Table 5: Average execution times and standard deviations for the Linux workstation. Non-Coarray is a
single thread and Coarray is 121 threads on 32 cores.

Program Section
Non-Coarray Coarray

Coarray Speed-upTime Standard Time Standard
(seconds) Deviation (seconds) Deviation

Input 0.0027800 0.0000600 9.4729500 0.1190157 0.0002935
Calculation 303.6618400 4.8841879 89.1517700 1.0243597 3.4061224

Output 7.5039400 0.2435973 11.3279600 0.2960703 0.6624264

Total 311.1685600 4.9242029 109.9526800 1.0772603 2.8300225

Table 6: Average execution times and standard deviations for the Desktop workstation. Non-Coarray is a
single thread and Coarray is 121 threads on 12 cores.

Program Section
Non-Coarray Coarray

Coarray Speed-upTime Standard Time Standard
(seconds) Deviation (seconds) Deviation

Input 0.0069000 0.0079931 2.3275000 0.0925724 0.0029646
Calculation 273.5768000 2.3148607 71.6447000 7.3960588 3.8185211

Output 14.3850000 2.3149841 15.0668000 2.4217578 0.9547482

Total 287.9687000 3.5948185 89.0390000 7.5220555 3.2341861

25

Table 7: Average execution times and standard deviations for the Laptop workstation. Non-Coarray is a
single thread and Coarray is 121 threads on four cores.

Program Section
Non-Coarray Coarray

Coarray Speed-upTime Standard Time Standard
(seconds) Deviation (seconds) Deviation

Input 0.0067000 0.0098392 3.9608000 0.0388608 0.0016916
Calculation 103.5555000 0.0735816 121.4335000 3.2176690 0.8527754

Output 7.0956000 1.1046798 7.6294000 1.2062805 0.9300338

Total 110.6578000 1.0679085 133.0237000 3.5879657 0.8318653

Table 8: Average execution times and standard deviations for the Desktop workstation with Hyperthreading
(2 threads per core). Non-Coarray is a single thread and Coarray is 121 threads on 24 apparent cores.

Program Section
Non-Coarray Coarray

Coarray Speed-upTime Standard Time Standard
(seconds) Deviation (seconds) Deviation

Input 0.0040000 0.0048990 1.8492000 0.0210609 0.0021631
Calculation 273.9357000 0.1278515 57.5424000 0.0945476 4.7605887

Output 13.2697000 2.1694012 16.2726000 2.2196714 0.8154628

Total 287.2094000 2.1456527 75.6642000 2.2029522 3.7958427

Table 9: Average execution times and standard deviations for the Laptop workstation with Hyperthreading
(2 threads per core). Non-Coarray is a single thread and Coarray is 121 threads on eight apparent cores.

Program Section
Non-Coarray Coarray

Coarray Speed-upTime Standard Time Standard
(seconds) Deviation (seconds) Deviation

Input 0.0022000 0.0044000 3.3166000 0.0760068 0.0006633
Calculation 103.8067000 0.1238023 112.6399000 0.6198891 0.9215802

Output 7.4051000 1.0881400 9.7905000 1.1631966 0.7563557

Total 111.2140000 1.0375296 125.7470000 1.3398445 0.8844267

Table 10: Average execution times and standard deviations for the K Cluster. Non-Coarray is a single
thread and Coarray is 121 threads on 64 cores (4 nodes).

Program Section
Non-Coarray Coarray

Coarray Speed-upTime Standard Time Standard
(seconds) Deviation (seconds) Deviation

Input 0.0098200 0.0016696 0.8496200 0.0135030 0.0115581
Calculation 207.9615600 0.1358343 14.1771500 0.1303325 14.6687846

Output 2.9539100 0.1333285 3.0344500 0.1018819 0.9734581

Total 210.9252900 0.2053382 18.0612300 0.1673638 11.6783458

26

Table 11: Average execution times and standard deviations for the K Cluster. Non-Coarray is a single
thread and Coarray is 121 threads on 16 cores (1 node).

Program Section
Non-Coarray Coarray

Coarray Speed-upTime Standard Time Standard
(seconds) Deviation (seconds) Deviation

Input 0.0070400 0.0006264 2.6200900 0.0673951 0.0026869
Calculation 207.9733000 0.1291744 63.4550100 0.2197354 3.2774922

Output 2.9104900 0.1052632 8.8242800 0.0895348 0.3298275

Total 210.8908300 0.1918424 74.8993800 0.2408672 2.8156552

Table 12: Average execution times and standard deviations for the HZE Cluster. Non-Coarray is a single
thread and Coarray is 121 threads on 64 cores (2 nodes).

Program Section
Non-Coarray Coarray

Coarray Speed-upTime Standard Time Standard
(seconds) Deviation (seconds) Deviation

Input 0.0420300 0.0737965 0.4927000 0.0120503 0.0853055
Calculation 275.4182100 0.0576928 31.7623000 0.2378710 8.6712300

Output 5.3531000 0.0500943 5.5411300 0.0599317 0.9660665

Total 280.8133400 0.1031759 37.7961300 0.2319002 7.4296850

Table 13: Average execution times and standard deviations for the HZE Cluster. Non-Coarray is a single
thread and Coarray is 121 threads on 32 cores (1 node).

Program Section
Non-Coarray Coarray

Coarray Speed-upTime Standard Time Standard
(seconds) Deviation (seconds) Deviation

Input 0.0327100 0.0430953 0.4274000 0.0108316 0.0765325
Calculation 277.4659400 0.2433768 94.3851500 0.5422694 2.9397203

Output 5.0739500 0.0425017 4.9953700 0.0267222 1.0157306

Total 282.5726000 0.2241162 99.8079200 0.5623280 2.8311641

27

Table 14: Normalization factor for single threaded simulations on different machines.

Name Program Section Normalization

HZE Cluster

Input 1.
Calculation 1.09552

Output 2.67414
Total 1.10191

K Cluster

Input 4.15587
Calculation 1.46013

Output 4.77647
Total 1.47563

Linux Workstation

Input 12.22841
Calculation 1.

Output 1.84268
Total 1.

Desktop Workstation

Input 6.23761
Calculation 1.10924

Output 1.
Total 1.08199

Laptop Workstation

Input 7.63933
Calculation 2.92881

Output 1.90713
Total 2.80494

28

Table 15: Speed-up for the Coarray code on different machines with different core counts per run
normalized to the slowest chip set.

Name
Number of

Nodes
Number of

Cores
Program
Section

Speed-up

HZE Cluster

4 121
Calculation 4.67582

Total 4.46767

2 64
Calculation 10.22109

Total 8.95899

1 32
Calculation 3.43958

Total 3.39267

K Cluster

8 121
Calculation 38.06123

Total 25.90375

4 64
Calculation 17.18101

Total 14.00002

1 16
Calculation 3.83859

Total 3.37596

Linux Workstation 1 32
Calculation 3.98932

Total 3.39349

Desktop Workstation
1 24 (HT)

Calculation 5.57205
Total 4.55763

1 12
Calculation 4.47527

Total 3.87301

Laptop Workstation
1 8 (HT)

Calculation 1.07807
Total 1.05787

1 4
Calculation 1.

Total 1.

Table 16: Speed-up of the Coarray Calculation section over the single threaded Calculation section with
Amdahl’s Law Theoretical Speed-up, TSU .

Name
Number of

Nodes
Number of

Cores
Speed-up TSU

HZE Cluster
4 121 4.00264

53.7882 64 8.67123
1 32 2.93972

K Cluster
8 121 32.49755

72.6654 64 14.66878
1 16 3.27749

Linux Workstation 1 32 3.40612 41.452

Desktop Workstation
1 24 (HT) 4.76059

20.823
1 12 3.81852

Laptop Workstation
1 8 (HT) 0.92158

15.297
1 4 0.85278

29

REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

3. DATES COVERED (From - To)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

8. PERFORMING ORGANIZATION
REPORT NUMBER

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

13. SUPPLEMENTARY NOTES

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

1. REPORT DATE (DD-MM-YYYY)

01-03-2018
2. REPORT TYPE
Technical Publication

4. TITLE AND SUBTITLE

A Single Thread to Fortran Coarray Transition Process for the
Space Radiation Code HZETRN

6. AUTHOR(S)

Singleterry, Robert C., Jr.; Ranjan, Desh; Zubair, Mohammad

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, Virginia 23681-2199 L-20908

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration Washington, DC
20546-0001

5f. WORK UNIT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)
NASA

NASA-TP-2018-219811
12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-
Subject Category 93
Availability: NASA STI Program (757) 864-9658

14. ABSTRACT
Exa-scale computing is the direction by industry and government are going to generate solutions to problems they deem necessary. Computing hardware is being
developed to achieve the transition from Peta-scale to Exa-scale with more CPUs that have more cores per CPU and more accelerators (GPGPUs and MICs) per node. To
fully utilize the hardware available now and in the future, algorithms must become multi-threaded. There are a few methods to generate multi-threaded software such as
MPI and OpenMP/OpenACC. This paper concentrates on using Coarray Fortran to convert the Fortran 95 based HZETRN code's control algorithm from a single threaded
code to a multithreaded code. The resultant Coarray code was 32.5 times faster (with a theoretical speed-up of 74.5 times) than the single threaded version on the
hardware tested, as reliable as the Fortran 95 version, and, as it uses native Fortran, was as maintainable as the Fortran 95 version. The Coarray code can be maintained by
the same project engineers and scientists who created the original single threaded code. This transition process can be utilized on a C language based code with a compiler
that has the UPC extensions to C.

Co-Arrays; Modern Fortran; Space Radiation

 U U U UU 37

19a. NAME OF RESPONSIBLE PERSON

 STI Help Desk(email help@sti.nasa.gov
19b. TELEPHONE NUMBER (Include area code)

(757) 864-9658

 651549.02.07.01

	Acronyms
	Abstract
	Introduction and Background
	Fortran
	Fortran Coarrays

	Parallelism

	HZETRN
	Conversion of the HZETRN Control Algorithm from Fortran 77 to Modern Fortran

	Conversion of the HZETRN Control Algorithm to Coarrays
	Runtime Comparisons
	Timing Issues
	Compiler Issues
	Execution Issues
	Raw Timing Data
	Normalized Data, Comparison, and Discussion

	Conclusions
	References
	Acknowledgment

