
NASA/TM–2018–219824

Stochastic Reduced Order Models
with Python (SROMPy)

James E. Warner
Langley Research Center, Hampton, Virginia

April 2018

NASA STI Program. . . in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part
in helping NASA maintain this important
role.

The NASA STI Program operates under the
auspices of the Agency Chief Information
Officer. It collects, organizes, provides for
archiving, and disseminates NASA’s STI.
The NASA STI Program provides access to
the NASA Aeronautics and Space Database
and its public interface, the NASA Technical
Report Server, thus providing one of the
largest collection of aeronautical and space
science STI in the world. Results are
published in both non-NASA channels and
by NASA in the NASA STI Report Series,
which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and
feeds, providing information desk and
personal search support, and enabling data
exchange services.

For more information about the NASA STI
Program, see the following:

• Access the NASA STI program home page
at http://www.sti.nasa.gov

• E-mail your question to
help@sti.nasa.gov

• Phone the NASA STI Information Desk at
757-864-9658

• Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

NASA/TM–2018–219824

Stochastic Reduced Order Models
with Python (SROMPy)

James E. Warner
Langley Research Center, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

April 2018

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an offical endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Available from:

NASA STI Program / Mail Stop 148
NASA Langley Research Center

Hampton, VA 23681-2199
Fax: 757-864-6500

Abstract

Stochastic Reduced Order Models with Python (SROMPy) is a software package
developed to enable user-friendly utilization of the stochastic reduced order model
(SROM) approach for uncertainty quantification. A SROM is a low dimensional, dis-
crete approximation to a random quantity that enables efficient and non-intrusive
stochastic computations. With SROMPy, a user can easily generate a SROM to
approximate a random variable or vector described by several different types of
probability distributions using the Python programming language. Once a SROM
is constructed, the software can be used to propagate uncertainty through a user-
defined computational model to estimate statistics of a given quantity of interest.
This report is meant to introduce the SROMPy module and briefly demonstrate
its capabilities. A simple example of a spring-mass system with a random input is
included to illustrate the practicality of the SROM approach to uncertainty quan-
tification and relative ease of applying it with SROMPy. The example includes a
comparison with a solution obtained using classical Monte Carlo simulation, demon-
strating the similarities and advantages of using the SROM approach.

1 Introduction

Stochastic Reduced Order Models with Python (SROMPy1) is a software pack-
age developed to enable user-friendly use of the stochastic reduced order model
(SROM) approach for uncertainty quantification [1]. A SROM is a low-dimensional
discrete approximation to a random quantity that enables efficient and non-intrusive
stochastic computations [2]. With SROMPy, a user can easily generate a SROM
to approximate a random variable or vector described by several different types
of probability distributions using the Python programming language [3]. Once a
SROM is constructed, the software can be used to propagate uncertainty through
a user-defined computational model to estimate statistics of a given quantity of
interest. This report introduces the SROMPy package and its capabilities, while
providing a brief review of the SROM theory that it implements.

The SROM concept was originally proposed by Grigoriu in 2009 [2] and then
further developed by Warner et al. [4] and Grigoriu [5]. The use of SROMs has
primarily focused on propagating uncertainty through computational models, in-
cluding the determination of effective conductivities for random microstructures [6],
the quantification of uncertainty in intergranular corrosion rates [7] and laser weld
reliability [8], and the estimation of random linear dynamic system states [9]. How-
ever, there have been more recent efforts to extend their applicability to inverse [10]
and design [11] problems as well. The primary strength of SROMs, as demonstrated
in the referenced works, is their ability to represent a target random quantity with
low dimensionality and to subsequently solve uncertainty propagation problems in
a fraction of the computation time required by traditional Monte Carlo simulation.
Furthermore, the approach is practical and straightforward to employ, given that it
is a non-intrusive method, i.e., it does not require modification of the computational

1Publicly available at https://github.com/nasa/SROMPy

1

model being analyzed; the model can be used simply as a “black box”.
SROMPy is the first open-source software library that implements the SROM

approach for uncertainty quantification. The goal of this report is to provide an
overview of SROMPy’s features and capabilities and to demonstrate its usage on a
simple example problem2. As the first document that discusses SROMPy, the report
also represents a citable source for future research that leverages the software. While
the functionality of SROMPy is summarized and illustrated within, this report is
not meant to serve as the package’s user documentation, which can be found with
the source code [1] itself. The report is also not intended to provide an all-inclusive
description of SROM theory, which can be found instead by consulting the references
herein.

A short background on SROM theory is first provided in the following section.
Here, the definition of a SROM is given, along with how it is constructed to model
a given random quantity and how it is used to propagate uncertainty through a
computational model. An overview of the SROMPy software package is then pre-
sented, including descriptions of submodules for representing target random quan-
tities, constructing and using SROMs, and postprocessing results. Next, details of
using SROMPy to propagate uncertainty through a simple model of a spring-mass
system with random spring stiffness are illustrated. Finally, the report is concluded
in the summary section.

2 Background - SROM Theory

SROMs can be viewed as a “smart” Monte Carlo method for uncertainty quantifi-
cation. The approach efficiently discretizes the stochastic space and significantly
reduces the computational complexity associated with propagating uncertainty, rel-
ative to Monte Carlo simulation, while retaining the benefit of being a non-intrusive
method. This section provides a brief overview of the definition and construction
of SROMs, followed by their use in propagating uncertainty. The interested reader
can consult the relevant references [2, 4, 8] for a more detailed discussion.

2.1 SROM Definition

Let X ∈ Γ ⊂ Rd be a d-dimensional random vector with known probability, i.e., its
statistics are known and available:

Fi(xi) = P (Xi ≤ xi) (1)

µi(q) = E[Xq
i] (2)

r = E[XXT], (3)

where Fi and µi(q) are the marginal cumulative distribution function (CDF) and
marginal moment of order q for component i of the random vector, respectively, and
r is the (unscaled) correlation matrix. A SROM X̃ for X is simply a finite collection

2Syntax provided in this report is for Version 1.0 of SROMPy. Slight modifications may be
necessary for future versions.

2

of samples {x̃(1), ..., x̃(m)} and corresponding probabilities (p(1), ..., p(m)) such that
p(k) = P (X = x̃(k)), p(k) ≥ 0 ∀k, and

∑m
k=1 p

(k) = 1 [2]. Here, m is referred
to as the SROM size. With these SROM parameters specified, the statistics of X̃
corresponding to those of X given in Equations (1) - (3) are

F̃i(xi) =

m∑
k=1

p(k)1
(
x̃

(k)
i ≤ xi

)
(4)

µ̃i(q) =

m∑
k=1

p(k)(x̃
(k)
i)q (5)

r̃(i, j) =

m∑
k=1

p(k)x̃
(k)
i x̃

(k)
j , (6)

where 1(condition) is the indicator function, evaluating to 1 if the condition is true
and 0 otherwise.

2.2 SROM Construction

The defining SROM parameters (samples and probabilities) are chosen such that X̃
is an optimal representation of X in a statistical sense. This is done through the
solution of the following optimization problem:

X̃ ≡ argmin
{x̃},p

(
3∑

i=1

αiei({x̃},p)

)
(7)

s.t.
m∑
k=1

p(k) = 1 and p(k) ≥ 0, k = 1, ...,m,

where e1, e2, and e3 quantify the error between the SROM and target CDFs, mo-
ments, and correlation matrix, respectively, and αi are weighting factors. A typical
error metric used is the sum-of-squares error (SSE) function [4], i.e.,

eSSE
1 ({x̃},p) =

1

2

d∑
i=1

n∑
j=1

(
F̃i(x

j
i)− Fi(x

j
i)

Cij
1

)2

(8)

eSSE
2 ({x̃},p) =

1

2

d∑
i=1

q̄∑
q=1

(
µ̃i(q)− µi(q)

Ciq
2

)2

(9)

eSSE
3 ({x̃},p) =

1

2

d∑
i=1

d∑
j=i+1

(
r̃ij − rij
Cij

3

)2

, (10)

where {xji}nj=1 is a set of preselected grid points over the range of xi and q̄ is the

maximum moment order considered. Here, either relative (Cij
1 = Fi(x

j
i), C

iq
2 =

µi(q), and Cij
3 = rij) or absolute (Cij

1 = Ciq
2 = Cij

3 = 1) errors can be used. Other

3

choices for objective function include maximum errors [8]:

emax
1 ({x̃},p) = max

1≤i≤d
max

1≤j≤n

∣∣∣∣∣ F̃i(x
j
i)− Fi(x

j
i)

Cij
1

∣∣∣∣∣ (11)

emax
2 ({x̃},p) = max

1≤i≤d
max

1≤q≤q̄

∣∣∣∣∣ µ̃i(q)− µi(q)Ciq
2

∣∣∣∣∣ (12)

emax
3 ({x̃},p) = max

1≤i≤d
max
i<j≤d

∣∣∣∣∣ r̃ij − rijCij
3

∣∣∣∣∣ , (13)

and mean errors:

emean
1 ({x̃},p) =

1

dn

d∑
i=1

n∑
j=1

∣∣∣∣∣ F̃i(x
j
i)− Fi(x

j
i)

Cij
1

∣∣∣∣∣ (14)

emean
2 ({x̃},p) =

1

dq

d∑
i=1

q̄∑
q=1

∣∣∣∣∣ µ̃i(q)− µi(q)Ciq
2

∣∣∣∣∣ (15)

emean
3 ({x̃},p) =

2

d(d− 1)

d∑
i=1

d∑
j=i+1

∣∣∣∣∣ r̃ij − rijCij
3

∣∣∣∣∣ . (16)

An advantage of using the SSE objective function with Equations (8)-(10) is its
differentiability , which provides an analytical gradient that can be used with opti-
mization software to solve Equation (7) more efficiently.

An additional strength of the SROM approach is that X̃ can be formed even
if the probability law of X is unknown and there is only access to a collection of
N independent, equally likely samples {x̂(k)}Nk=1 of the vector. In this case, the
empirical estimators for the statistics of X can be used in the optimization problem
in Equation (7):

F̂i(xi) =
1

N

N∑
k=1

1
(
x̂

(k)
i ≤ xi

)
(17)

µ̂i(q) =
1

N

N∑
k=1

(x̂
(k)
i)q (18)

r̂(i, j) =
1

N

N∑
k=1

x̂
(k)
i x̂

(k)
j (19)

2.3 SROMs for Propagating Uncertainty

SROMs are typically used as a smart Monte Carlo method for uncertainty propa-
gation. Here, the components of the random vector, X, represent some uncertain
parameters to a deterministic model, M. Using the SROM approach, one can ef-
ficiently estimate the statistics of a quantity of interest, Y ∈ Γ′ ⊂ Rd′ , that is
dependent on X through the model:

Y =M(X) (20)

4

After a SROM, X̃, is generated according to the developments in Section 2.2, Y
can be estimated by first evaluating the model for each SROM sample

ỹ(k) =M(x̃(k)), for k = 1, ...,m. (21)

The collection of output samples, {ỹ(k)}mk=1, and original probabilities p from X̃
now define a new SROM, Ỹ, for the model output. Using Ỹ, the statistics of Y
can be directly estimated using expressions analogous to Equations (4)-(6). For
instance, the distributions and moments of the output can be approximated using
the solutions from Equation (21) as

P (Yi ≤ yi) ≈ P (Ỹi ≤ yi) =
m∑
k=1

p(k)1
(
ỹ

(k)
i ≤ yi

)
(22)

E[Y q
i] ≈ E[Ỹ q

i] =
m∑
k=1

p(k)(ỹ
(k)
i)q (23)

2.3.1 SROM Surrogate Models

In addition to directly estimating statistics of the output as described in the pre-
vious sections, SROMs can also be used to generate closed-form surrogate models
for the output that can be efficiently sampled [5]. For example, the SROM-based
distribution and moment estimates in Equations (22) and (23) can be seen as a
result of constructing the following piecewise constant approximation, denoted by
the subscript C, of the output:

ỸC(X) =
m∑
k=1

1 (X ∈ Γk) ỹ(k) (24)

where {Γk, k = 1, ...,m} is a partition of Γ such that P (X ∈ Γk) = p(k). Specifically,
{Γk} is a Voronoi tessellation of Γ with centers at samples x̃(k) of the SROM X̃
[5,8]. In practice, however, the partition does not have to be constructed explicitly.
Instead, a given sample of X is simply allocated to a particular cell depending on
its distance to the SROM samples.

The expression in Equation (24) effectively provides a piecewise constant approx-
imation to the model output Y that can be sampled. Building on this relatively
crude approach, Grigoriu also proposed a SROM-based surrogate model that con-
structs a piecewise linear response surface, denoted by the subscript L, to map
samples of X to the output via the truncated Taylor expansion [5]:

ỸL(X) =

m∑
k=1

1 (X ∈ Γk)
[
ỹ(k) +∇ỹ(k) · (X− x(k))

]
, (25)

where the ∇ỹ(k) denotes the gradient of the output with respect to the components
of X evaluated at sample k, and is computed numerically with finite difference.
Equation (25) represents a more accurate surrogate model for the output Y but

5

with the added expense for computing gradients, requiring m(d+ 1) model evalua-
tions versus m required (via Equation (21)) for the piecewise constant surrogate in
Equation (24). Note that Equation (25) can be generalized to higher order approx-
imations by including addition terms of the Taylor expansion.

3 SROMPy Functionality

This section provides an overview of how SROMPy allows users to apply SROM
theory to solve uncertainty quantification problems. The first step in the solution
process is defining the target random quantities that will be modeled by SROMs; this
is described in the first subsection. Then, the SROMPy functionality for generating
SROMs to represent these random quantities is described, followed by their use
in propagating uncertainty through a computational model. Finally, the SROMPy
features for postprocessing results are briefly discussed.

3.1 Target Random Quantities

One of the strengths of the SROM approach to uncertainty propagation is that
it can be used whether the user has an explicit analytical representation of the
random quantity, X, being modeled or only a collection of independent samples
that describes it. The following subsections describe modeling random quantities
from both cases in SROMPy.

3.1.1 Standard Random Variables

Random variables can be modeled directly for one-dimensional problems or ag-
gregated to form the components of a random vector, as described in the follow-
ing section. Currently, SROMPy supports random variables described by beta,
gamma, and Gaussian distributions with the Python classes BetaRandomVariable,
GammaRandomVariable, and GaussianRandomVariable, respectively.

While only a small subset of all possible probability distributions are currently
available in SROMPy, it is straightforward to add classes to the package to model
new random variables with SROMs. In order to be compatible with SROMPy,
a class must be added that implements the following methods (in addition to an
appropriate constructor method for initializing the object):

• get variance()

– Returns the variance of the random variable.

• compute moments(max order)

– Returns array of non-central moments up to order max order.

• compute CDF(x grid)

– Returns array of CDF values at the points in x grid.

• compute inv CDF(x grid)

6

– Returns array of inverse CDF values at the points in x grid.

• compute pdf(x grid)

– Returns array of probability density function values at the points in
x grid.

• draw random sample(num samples)

– Returns array of random samples with length num samples.

For the random variables that are currently supported in SROMPy, the above
methods are simply wrappers around the appropriate function calls supplied by
the SciPy [12] Python module. Users should consult the SciPy documentation to
see if the probability distribution they are adding to SROMPy exists there to adopt
a similar approach.

3.1.2 Analytic Random Vector - AnalyticRV

The AnalyticRV class implements a translation random vector [13, 14] whose com-
ponents follow standard analytic probability distributions. To model an analytic
random vector in SROMPy, random variable objects (Section 3.1.1) representing
each component of the random vector must first be properly initialized and created.
A user can then create a AnalyticRV object by supplying these random variables
as well as the correlations between them, using the following constructor:

• AnalyticRV(random variables, correlation matrix),

where random variables is a Python list of SROMPy random variable objects and
correlation matrix is a two-dimensional NumPy [15] array representing the scaled
correlation between the components of the random vector. Note that this correlation
matrix must be square and symmetric with size d × d and have entries between -1
and 1.

Once initialized, the primary functionality of AnalyticRV is to compute and
return statistics of the random vector. These methods are listed below, along with
the corresponding equations from Section 2.1:

• compute CDF(x grid) - implements Equation (1)

• compute moments(max order) - implements Equation (2)

• compute correlation() - implements Equation (3).

There is also a draw sample(num samples) method to generate random vector sam-
ples that follow the specified distributions and correlations.

7

3.1.3 Sample-Based Random Vector - SampleRV

If an explicit probability law is not available to describe a random quantity and
the user only has access to a collection of N independent, equally likely samples
{x̂(k)}Nk=1, the SampleRV class in SROMPy can be used to model it. This class can
be initialized from a NumPy array, samples, containing those independent samples:

• SampleRV(samples),

where the samples array has size N × d.
Similarly to the AnalyticRV class described previously, the primary functionality

of SampleRV is to compute and return statistics of the random vector. The only
difference is that sample-based estimators are used with SampleRV. These methods,
along with their corresponding equations from Section 2.1, are listed below:

• compute CDF(x grid) - implements Equation (17)

• compute moments(max order) - implements Equation (18)

• compute correlation() - implements Equation (19).

The draw sample(num samples) method randomly selects entries from the provided
samples array that was used to initialize the random vector.

3.2 SROM Functionality

The goal of SROMPy is to allow users to easily model random quantities, X, using
SROMs, X̃, and use them to efficiently propagate uncertainty through computa-
tional models, as described in Sections 2.2 and 2.3. The SROMPy classes SROM and
SROMSurrogate that enable this functionality are now discussed.

3.2.1 SROM

The fundamental component of the SROMPy package is the SROM class, used to
model a user-specified target random quantity. It is initialized by providing the
SROM size, m, and the random vector dimension (1 for a scalar random variable),
d:

• SROM(size, dim)

The primary role of the SROM class is to select the SROM parameters (samples and
probabilities) such that the SROM is an optimal approximation of a target random
quantity, using the optimize method:

• optimize(targetRV) - implements Equation (7),

where targetRV is an initialized standard random variable, analytic random vector,
or sample-based random vector object, as introduced in Section 3.1. The optimize

method also accepts many default arguments for fine tuning the optimization, in-
cluding an error input for specifying which error metric to use in the objective
function in Equation (7). The options are SSE (default) for the sum-of-squares error

8

functions in Equations (8)-(10), MAX for the maximum errors in Equations (11)-(13),
and MEAN for the mean errors in Equations (14)-(16).

The statistics of the SROM can be computed using methods analogous to those
of the target random quantities, listed below:

• compute CDF(x grid) - implements Equation (4)

• compute moments(max order) - implements Equation (5)

• compute correlation() - implements Equation (6).

There are several additional SROM utility methods, including those for manually
specifying and retrieving the SROM parameters (samples and probabilities) and
saving and loading SROM parameters to and from file. See the user documentation
in the source code [1] for more details.

After SROM parameters have been selected to approximate a random quan-
tity using the optimize method, a user would need to write code to implement
Equation (21) in order to facilitate uncertainty propagation (as described in Sec-
tion 2.3). This would involve using the SROM method get params to retrieve the
optimal SROM samples, evaluating the computational model for each sample, and
storing the corresponding outputs. Then, to directly estimate the statistics of the
output, a new SROM is initialized using these output samples, and Equations (22)
and (23) are employed using the statistics methods listed above. This process will
be demonstrated in a numerical example in Section 4.

3.2.2 SROMSurrogate

The SROMSurrogate class in SROMPy allows a user to construct a closed-form
surrogate model that can be sampled for propagating uncertainty as described in
Section 2.3.1. It provides an implementation of the piecewise constant, ỸC(X), and
piecewise linear, ỸL(X), approximations to a model output given by Equations (24)
and (25), respectively.

The class is initialized as follows:

• SROMSurrogate(inputsrom, outputsamples, gradients=None)

where inputsrom is the SROM object that was used to model the random model
inputs, outputsamples is an array of the model outputs corresponding to each
input SROM sample, and gradients is an array containing the gradient of the
output with respect to each input sample. In terms of the notation from the SROM
theory section, inputsrom represents X̃, outputsamples represents {ỹ(k)}mk=1 from
Equation (21), and gradients represents {∇ỹ(k)}mk=1 from Equation (25).

When initializing the SROMSurrogate class, the piecewise linear surrogate, ỸL(X),
will be automatically used if the gradients argument is provided, whereas the
piecewise constant surrogate, ỸC(X), will be used if not. Note that SROMPy also
provides a FiniteDifference class that contains static methods to assist in com-
puting the gradient, ∇ỹ, using the finite difference method. More details can be
found in the documentation in the source code [1].

9

Once a SROMSurrogate object is properly initialized, the primary class method
is:

• sample(newinputsamples),

which evaluates Equation (24) or (25) for the provided newinputsamples array and
returns an array of the corresponding outputs. The output samples can subsequently
be used to construct sample-based estimators of the true output statistics. These
concepts will be illustrated in more detail in Section 4.

3.3 Postprocessing Results - Postprocessor

SROMPy provides a few simple utilities for comparing statistics of a SROM versus a
target quantity it is approximating. The Postprocessor class that carries out these
comparisons is initialized by providing a SROM object (srom) and the corresponding
target random variable or vector object (targetrv) being modeled:

• Postprocessor(srom, targetrv).

After initialization, the methods

• compare CDFs()

• compare moments()

can be used to generate plots comparing the SROM and target CDFs and a text out-
put comparing the SROM and target moments along with associated errors, respec-
tively. There are several optional formatting arguments for the compare CDFs();
more details can be found in the user documentation. It is also straightforward for
a user to extend this simple functionality or to write their own comparison codes
based on the SROM and target statistics methods provided by SROMPy.

4 Example

SROMPy is now applied to an example of uncertainty propagation in a simple
spring-mass system (Figure 1), demonstrating the functionality introduced in the
previous section. The governing equation of motion for the system is given by

msz̈ = −ksz +msg, (26)

where ms is the mass, ks is the spring stiffness, g is the acceleration due to gravity,
z is the vertical displacement of the mass, and z̈ is the acceleration of the mass. The
source of uncertainty in the system will be the spring stiffness, which is modeled as
a random variable of the following form:

Ks = γ + ηB (27)

where γ and η are shift and scale parameters, respectively, and B = Beta(α, β)
is a standard Beta random variable with shape parameters α and β. Let these

10

Figure 1. Spring-mass system.

parameters take the following values: γ = 1.0N/m, η = 2.5N/m, α = 3.0, and
β = 2.0. The mass is assumed to be deterministic, ms = 1.5kg, and the acceleration
due to gravity is g = 9.8m2/s.

Since uncertainty has been introduced to the system, the resulting displacement,
Z, is now random as well. The output of interest will be the maximum displacement
over a time interval of 10 seconds. In terms of the general stochastic model in
Equation (20), the input is X = [Ks], the output is Y = [max(Z)] ≡ Zmax, and the
computational modelM numerically integrates Equation (26) starting from rest and
then finds the maximum displacement over a time period of 10 seconds. SROMPy
will be used to approximate the CDF, F (zmax), of the maximum displacement using
SROMs and compare it to the solution using Monte Carlo simulation. The highlights
of the Python code used to carry out the analysis with be shown throughout this
section, while it can be seen in its entirety in the Appendix. Note that the source
code shown uses SROMPy Version 1.0, and syntax changes may be necessary for
future versions of the package.

4.1 Step 1: Define target random variable and initialize model

The first step in the analysis is to define the target random variable in SROMPy that
models the random spring stiffness, Ks, in Equation (27). Here, the BetaRandomVariable
class (Section 3.1.1) is used to represent Ks:

#Random variable for spring stiffness

stiffness_rv = BetaRandomVariable(alpha=3.,beta=2.,shift=1.,scale=2.5)

Next, the computational model, M, of the spring-mass system that carries out the
numerical integration of Equation (26) is initialized:

#Specify spring -mass system and initialize model:

m = 1.5 #deterministic mass

state0 = [0., 0.] #initial conditions at rest

t_grid = np.arange(0., 10., 0.1) #time discretization

model = SpringMass_1D(m, state0 , t_grid)

More details on the source code and implementation of the SpringMass 1D model
can be found in the Appendix.

11

4.2 Step 2: Construct SROM for the input

To facilitate efficient uncertainty propagation, a SROM, K̃s, must first be formed
to model the random stiffness input, Ks, with SROMPy. This is done by ini-
tializing the SROM class (Section 3.2.1), and then calling the optimize function
(Equation (7)) to determine the optimal parameters to match the previously de-
fined BetaRandomVariable object. The code to implement this with a SROM size,
m = 10, is shown below:

#Generate SROM for random stiffness

sromsize = 10

dim = 1

input_srom = SROM(sromsize , dim)

input_srom.optimize(stiffness_rv)

#Compare SROM vs target stiffness distribution:

pp_input = Postprocessor(input_srom , stiffness_rv)

pp_input.compare_CDFs ()

Here, the input srom object is constructed to match the previously initialized tar-
get random variable, stiffness rv. In the second block of code, the SROMPy
Postprocessor (Section 3.3) class is used to compare the resulting SROM CDF
with that of the target beta random variable, which can be seen in Figure 2(a).

4.3 Step 3: Propagate uncertainty using SROM

4.3.1 Approach (a). Estimate output statistics directly

The SROM generated to represent the random stiffness in SROMPy can now be used
to propagate uncertainty through the spring-mass system model. In the first ap-
proach here, the distribution of Zmax is estimated directly by producing the SROM
Z̃max through the implementation of Equations (21) and (22) in Section 2.3. Equa-
tion (21) is carried out by executing the model to get the maximum displacement
corresponding to each SROM sample of the spring stiffness. An output SROM is
then formed using the resulting samples of Zmax. The code to implement this is
shown below:

#Run model to get max disp for each SROM stiffness sample

srom_disps = np.zeros(sromsize)

(samples , probs) = input_srom.get_params ()

for i, stiff in enumerate(samples):

srom_disps[i] = model.get_max_disp(stiff)

#Form new SROM for the max disp. solution using samples from the model

output_srom = SROM(sromsize , dim)

output_srom.set_params(srom_disps , probs)

#Compare solutions

pp_output = Postprocessor(output_srom , mc_solution)

pp_output.compare_CDFs ()

Here, a new SROM object, output srom is formed from the array of maximum dis-
placement samples, srom disps. The SROM approximation to the CDF of Zmax

12

1.0 1.5 2.0 2.5 3.0 3.5
ks

0.0

0.2

0.4

0.6

0.8

1.0

F
(k
s
)

SROM

Beta

(a)

10 15 20 25
zmax

0.0

0.2

0.4

0.6

0.8

1.0

F
(z
m
a
x
)

SROM

Monte Carlo

(b)

10 15 20 25
zmax

0.0

0.2

0.4

0.6

0.8

1.0
F
(z
m
a
x
)

SROM Surrogate

Monte Carlo

(c)

Figure 2. (a) SROM CDF versus the Beta random variable for spring stiffness. (b)
SROM CDF versus the Monte Carlo solution for maximum displacement. (c) SROM
surrogate model CDF versus the Monte Carlo solution for maximum displacement.

is then compared to that of a Monte Carlo simulation solution, mc solution, with
5000 samples. The comparison of CDFs is shown in Figure 2(b), where reasonable
agreement can be seen between SROM and Monte Carlo, despite the relatively crude
piecewise constant SROM approximation. Note that the benefit of the SROM solu-
tion is that it requires only 10 model evaluations compared to the 5000 used for the
Monte Carlo simulation solution. The code to generate mc solution can be seen in
the complete Python script provided in the Appendix.

4.3.2 Approach (b). Form SROM surrogate model for output

This section demonstrates an alternative approach for estimating the distribution of
maximum displacement in the spring-mass system. Here, a SROM surrogate model
is generated for Zmax using the input SROM K̃s, as described in Section 2.3.1, that
is then sampled in order to estimate the CDF. Specifically, the piecewise linear
approximation in Equation (25) is used to approximate Zmax using the SROMPy
SROMSurrogate class (Section 3.2.2). Equation (25) provides more accurate pre-
dictions relative to the piecewise constant estimates in the previous section, but
requires gradient information and additional model evaluations.

In order to construct the piecewise linear SROM surrogate model in SROMPy,

the gradient of Zmax with respect to each SROM stiffness sample, k̃
(k)
s , must first

13

be computed using finite difference:

∇Z̃(k)
max =

M(k̃
(k)
s + δ)−M(k̃

(k)
s)

δ
(28)

for k = 1, ...10. Here, δ is a small perturbation. The SROMPy code to implement
Equation (28) is shown below:

#Get perturbed input srom samples to run through model for FD

stepsize = 1e-12

samples_fd = FD.get_perturbed_samples(samples ,perturb_vals=[stepsize])

#Run model to get perturbed outputs for FD calc.

perturbed_disps = np.zeros(sromsize)

for i, stiff in enumerate(samples_fd):

perturbed_disps[i] = model.get_max_disp(stiff)

gradient = FD.compute_gradient(srom_disps , perturbed_disps ,[stepsize])

where stepsize represents the perturbation δ in Equation (28) and FD is the
SROMPy FiniteDifference class that provides utilities to assist in calculating
gradients with the finite difference method.

Now, the SROMSurrogate class can be initialized to implement Equation (25)
using this gradient information. The surrogate model can then be used to generate
samples of Zmax for new values of Ks without needing to evaluate the spring-mass
computational model. The code below carries out this initialization and sampling,
and then estimates the CDF of Zmax from its samples:

#Form SROM surrogate and draw samples from it:

surrogate_PWL = SROMSurrogate(input_srom , srom_disps ,gradient)

stiffness_samples = stiffness_rv.draw_random_sample(5000)

output_samples = surrogate_PWL.sample(stiffness_samples)

solution_PWL = SampleRV(output_samples)

#Compare SROM piecewise linear solution to Monte Carlo

pp_pwl = Postprocessor(solution_PWL , mc_solution)

pp_pwl.compare_CDFs ()

Here, the SampleRV class (Section 3.1.3) was used to generate a sample-based ran-
dom variable object from the surrogate model samples that could then be used to
estimate the distribution of Zmax. Again, the Postprocessor class is used to com-
pare the SROM CDF solution versus the Monte Carlo simulation solution, which
can be seen in Figure 2(c). The SROM CDF using the piecewise linear approxi-
mation is significantly more accurate than the piecewise constant approximation in
Figure 2(b), showing good agreement with the Monte Carlo solution. Note that
the advantage of using the SROM surrogate in Equation (25) here is that it is an
analytical expression and does not require additional model evaluations to produce
output samples. For applications with computationally expensive models, this can
provide substantial performance gains.

14

5 Summary

This report provides an introduction to the SROMPy Python package and its func-
tionality while supplying a brief background on the corresponding SROM theory
that it implements. SROMs are a practical and general tool for efficient uncertainty
propagation and SROMPy is the first publicly available software library that en-
ables the methodology. To help potential users understand the advantages of using
SROMPy, a simple example of uncertainty propagation in a random spring-mass
system was illustrated. Here, the distribution of an output of interest (maximum
displacement) was calculated using SROMs when the spring stiffness was assumed
to be a random variable. It was shown that this analysis could be carried out with
relatively few lines of code by relying on SROMPy functionality. The report also
explained how the package could be straightforwardly extended to handle random
variables from new probability distributions that are not currently supported. The
interested reader is referred to the SROMPy documentation that accompanies the
source code [1] for more practical details of using the software, and to the citations
herein for more background on SROM theory.

References

1. Warner, J. E.: Stochastic Reduced Order Models with Python (SROMPy),
Version 1.0. https://github.com/nasa/SROMPy. 2018.

2. Grigoriu, M.: Reduced Order Models for Random Functions. Application to
Stochastic Problems. Applied Mathematical Modelling , vol. 33, 2009, pp. 161–
175.

3. Python Software Foundation: Python Language Reference, version 2.7. www.
python.org. 2016.

4. Warner, J. E.; Grigoriu, M.; and Aquino, W.: Stochastic reduced order models
for random vectors. Application to random eigenvalue problems. Probabilistic
Engineering Mechanics, vol. 31, 2013, pp. 1–11.

5. Grigoriu, M.: A method for solving stochastic equations by reduced order mod-
els and local approximations. Journal of Computational Physics, vol. 231, 2011,
pp. 6495–6513.

6. Grigoriu, M.: Effective Conductivity by Stochastic Reduced Order Models
(SROMs). Computational Materials Science, vol. 50, 2010, pp. 138–146.

7. Sarkar, S.; Warner, J. E.; Aquino, W.; and Grigoriu, M.: Stochastic reduced
order models for uncertainty quantification of intergranular corrosion rates. Cor-
rosion Science, vol. 80, 2014, pp. 257–268.

8. Emergy, J. M.; Field, R. V.; Foulk, J. W.; Karlson, K. N.; and Grigoriu, M. D.:
Predicting laser weld reliability with stochastic reduced-order models. Interna-
tional Journal for Numerical Methods in Engineering , vol. 103, 2015, pp. 914–
936.

15

9. Grigoriu, M.: Linear Random Vibration by Stochastic Reduced-Order Mod-
els. International Journal for Numerical Methods in Engineering , vol. 82, 2010,
pp. 1537–1559.

10. Warner, J. E.; Aquino, W.; and Grigoriu, M.: Stochastic reduced order models
for inverse problems under uncertainty. Computer Methods in Applied Mechanics
and Engineering , vol. 285, 2015, pp. 488–514.

11. Aguilo, M. A.; and Warner, J. E.: Multi-material structural topology optimiza-
tion under uncertainty via a stochastic reduced order model approach. Proceed-
ings of the 28th Annual International Solid Freeform Fabrication Symposium -
An Additive Manufacturing Conference, Austin, TX, Aug 2017.

12. Jones, E.; Oliphant, T.; Peterson, P.; et al.: SciPy: Open source scientific tools
for Python. 2001.

13. Grigoriu, M.: Applied Non-Gaussian Processes: Examples, Theory, Simulation,
Linear Random Vibration, and Matlab Solutions. Prentice Hall, Englewoods
Cliffs, NJ, 1995.

14. Arwade, S. J.: Translation vectors with non-identically distributed components.
Probabilistic Engineering Mechanics, vol. 20, 2005, pp. 158–167.

15. Van der Walt, S.; Colbert, S. C.; and Varoquaux, G.: The NumPy Array: A
Structure for Efficient Numerical Computation. Computing in Science & En-
gineering , vol. 13, no. 2, 2011, pp. 22–30. URL http://aip.scitation.org/

doi/abs/10.1109/MCSE.2011.37.

6 Appendix

6.1 Full Python script for SROMPy example

import numpy as np

from model import SpringMass_1D

from postprocess import Postprocessor

from srom import SROM , FiniteDifference as FD, SROMSurrogate

from target import SampleRV , BetaRandomVariable

#Random variable for spring stiffness

stiffness_rv = BetaRandomVariable(alpha=3.,beta=2.,shift=1.,scale=2.5)

#Specify spring -mass system:

m = 1.5 #deterministic mass

state0 = [0., 0.] #initial conditions

t_grid = np.arange(0., 10., 0.1) #time

#Initialize model

model = SpringMass_1D(m, state0 , t_grid)

#----------Monte Carlo ------------------

16

#Generate stiffness input samples for Monte Carlo

num_samples = 5000

stiffness_samples = stiffness_rv.draw_random_sample(num_samples)

#Calculate maximum displacement samples using MC simulation

disp_samples = np.zeros(num_samples)

for i, stiff in enumerate(stiffness_samples):

disp_samples[i] = model.get_max_disp(stiff)

#Get Monte carlo solution as a sample -based random variable:

mc_solution = SampleRV(disp_samples)

#-------------SROM -----------------------

#generate SROM for random stiffness

sromsize = 10

dim = 1

input_srom = SROM(sromsize , dim)

input_srom.optimize(stiffness_rv)

#Compare SROM vs target stiffness distribution (See Fig 2a):

pp_input = Postprocessor(input_srom , stiffness_rv)

pp_input.compare_CDFs ()

#Run model to get max disp for each SROM stiffness sample

srom_disps = np.zeros(sromsize)

(samples , probs) = input_srom.get_params ()

for i, stiff in enumerate(samples):

srom_disps[i] = model.get_max_disp(stiff)

#Form new SROM for the max disp. solution using samples from the model

output_srom = SROM(sromsize , dim)

output_srom.set_params(srom_disps , probs)

#Compare solutions (See Fig 2b)

pp_output = Postprocessor(output_srom , mc_solution)

pp_output.compare_CDFs ()

#--------Piecewise LINEAR surrogate with gradient info -------

#Need to calculate gradient of output wrt input samples first

#Perturbation size for finite difference

stepsize = 1e-12

samples_fd = FD.get_perturbed_samples(samples ,perturb_vals=[stepsize])

#Run model to get perturbed outputs for FD calc.

perturbed_disps = np.zeros(sromsize)

for i, stiff in enumerate(samples_fd):

perturbed_disps[i] = model.get_max_disp(stiff)

gradient = FD.compute_gradient(srom_disps , perturbed_disps ,[stepsize])

#Form SROM surrogate and draw samples from it:

surrogate_PWL = SROMSurrogate(input_srom , srom_disps , gradient)

stiffness_samples = stiffness_rv.draw_random_sample(num_samples)

17

output_samples = surrogate_PWL.sample(stiffness_samples)

solution_PWL = SampleRV(output_samples)

#Compare SROM piecewise linear solution to Monte Carlo (See Fig 2c)

pp_pwl = Postprocessor(solution_PWL , mc_solution)

pp_pwl.compare_CDFs ()

6.2 Spring-Mass System Python Model

#Saved as "model.py"

import numpy as np

from scipy.integrate import odeint

#--

#Helper function to use scipy integrator in model class

def mass_spring(state , t, k, m):

’’’

Return velocity/acceleration given velocity/position and values

for stiffness and mass

’’’

unpack the state vector

x = state[0]

xd = state[1]

g = 9.8 # metres per second

compute acceleration xdd

xdd = ((-k*x)/m) + g

return the two state derivatives

return [xd, xdd]

#--

class SpringMass_1D(object):

’’’

Defines Spring Mass model with 1 free param (spring stiffness , k)

’’’

def __init__(self , m=1.5, state0=None , time_grid=None):

self._m = m

#Give default initial conditions & time grid if not specified

if state0 is None:

state0 = [0.0, 0.0]

if time_grid is None:

time_grid = np.arange(0.0, 10.0, 0.1)

self._state0 = state0

self._t = time_grid

def simulate(self , k=2.5):

’’’

Simulate spring mass system for given spring constant. Returns

state(position , velocity) at all points in time grid

18

’’’

return odeint(mass_spring , self._state0 ,

self._t, args=(k, self._m))

def get_max_disp(self , k=2.5):

’’’

Returns the max displacement over the course of the simulation

’’’

state = self.simulate(k)

return max(state[:,0])

19

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

1. REPORT DATE (DD-MM-YYYY)
01-04-2018

2. REPORT TYPE

Technical Memorandum
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Stochastic Reduced Order Models with Python (SROMPy)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

James E. Warner

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, Virginia 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER

L–12345

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSOR/MONITOR’S ACRONYM(S)
NASA

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

NASA/TM–2018–219824
12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category 61
Availability: NASA STI Program (757) 864-9658

13. SUPPLEMENTARY NOTES

An electronic version can be found at http://ntrs.nasa.gov.

14. ABSTRACT
Stochastic Reduced Order Models with Python (SROMPy) is a software package developed to enable user-friendly utilization of
the stochastic reduced order model (SROM) approach for uncertainty quantification. A SROM is a low dimensional, discrete
approximation to a random quantity that enables efficient and non-intrusive stochastic computations. With SROMPy, a user can
easily generate a SROM to approximate a random variable or vector described by several different types of probability
distributions using the Python programming language. Once a SROM is constructed, the software can be used to propagate
uncertainty through a user-defined computational model to estimate statistics of a given quantity of interest. This report is meant
to introduce the SROMPy module and briefly demonstrate its capabilities. A simple example of a spring-mass system with a
random input is included to illustrate the practicality of the SROM approach to uncertainty quantification and relative ease of
applying it with SROMPy. The example includes a comparison with a solution obtained using classical Monte Carlo simulation,
demonstrating the similarities and advantages of using the SROM approach.
15. SUBJECT TERMS

Uncertainty quantification, stochastic methods

16. SECURITY CLASSIFICATION OF:

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

24

19a. NAME OF RESPONSIBLE PERSON

STI Information Desk (help@sti.nasa.gov)

19b. TELEPHONE NUMBER (Include area code)

(757) 864-9658

533127.02.16.07.06

