

Layered Pressure Vessels (LPV)

Validating an Aging, Non-compliant Product

May 24, 2018

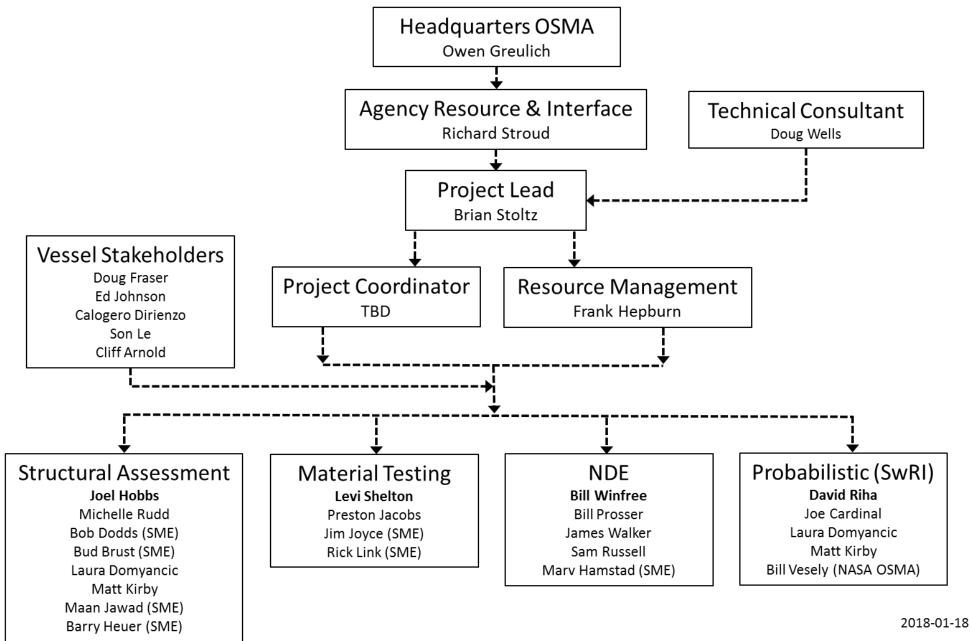
Owen R. Greulich, P.E.

Pressure and Energetic Systems Safety Manager

Office of Safety and Mission Assurance

NASA Headquarters

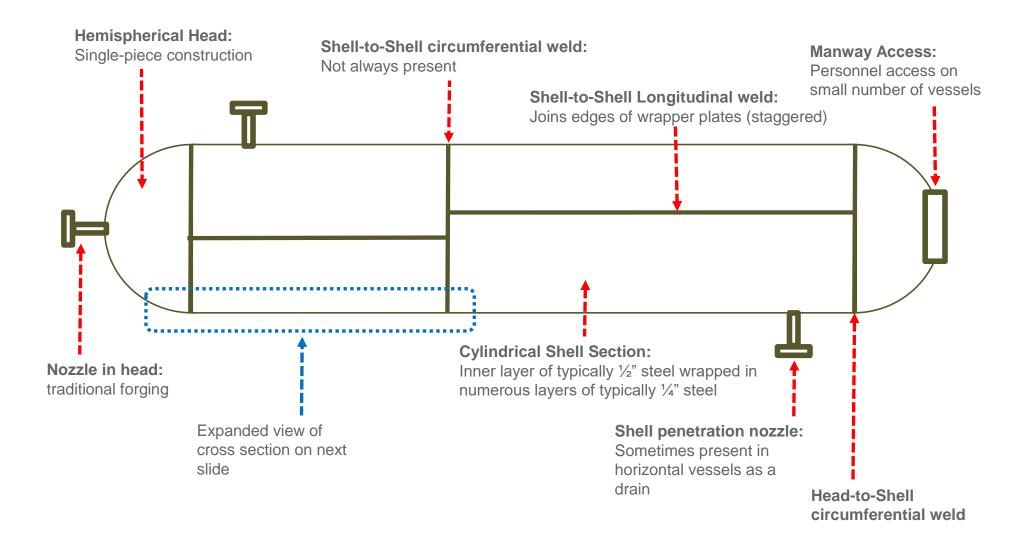
owen.greulich@nasa.gov

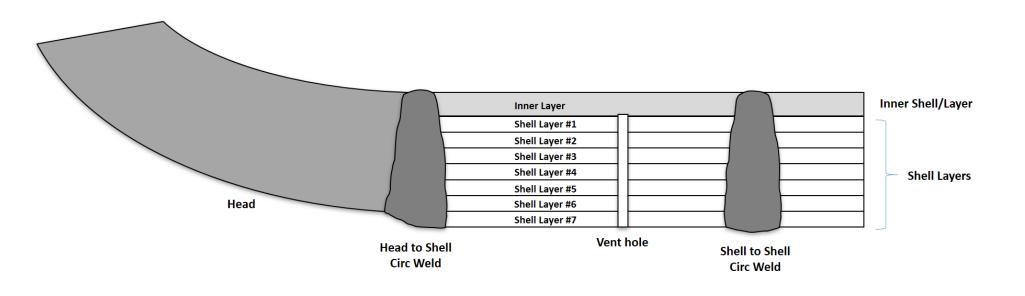

Outline

- Project scope
- Team membership
- What are they
- Why we're concerned
- Background, history, issues
- Service, materials, construction, inspection
- Risk based approach
- How many vessels, and project funding
- LPV project elements
- Final product
- Opportunities for collaboration

Project Scope

- ...To assess and reduce risks associated with LPV, with the goal of developing a standard Agency process for continued usage, maintenance, and inspection of LPV.
- This team will also configure an online repository to document, to the extent practical, LPV design, fabrication, materials, operation, inspection, maintenance, and repair data. This repository will facilitate implementation of a consistent program of minimum maintenance and vessel inspection requirements.
- (Charter letter from Terrence W. Wilcutt, Chief, Safety and Mission Assurance, NASA)


LPV Program Organizational Chart


Layered Pressure Vessels – What Are They?

- A pressure vessel using layered construction of relatively thin material to provide pressure retaining capability equivalent to a thicker monolithic vessel.
 - Various constructions are permitted, including concentric layers, coil wound, shrink fit, and spiral wrapped.
 - The ASME Boiler and Pressure Vessel Code has allowed for layered heads as well as shells since 1978.
- NASA vessels:
 - Concentric wrapped layered shells and monolithic heads.
 - Most from late 1950's and early 1960's (prior to inclusion in ASME Code)
 - Material non-code and not well characterized
 - Not inspected in full compliance with code
 - Originally rated by yhe manufacturers based on lower safety factor (not compliant with Code), generally 2.5:1 on UTS vs. 4:1 then, or 3.5:1 today.
 - Mostly 3/8 1/2 inch liner and 1/4 inch layers
 - 299 out of 302 not code-stamped

Generic LPV Geometry

Generic LPV Geometry

Construction

- Rolled and welded shells
- Formed or forged heads
- Forged nozzles in head and sometimes in shell
- Shell longitudinal welds offset, circumferential welds through-thickness
- Layer gaps and efficiency
- Good construction for the time, but many welding defects

Background

- NASA has approximately 300 layered pressure vessels (LPV)
 - Currently about 200 in service but desirable to return the others to service as well
- Replacement cost \$0.5B to \$1.0
- Some purchased directly, some acquired from DoD
- High stored energy
- Challenges ensuring safety and reliability, how to mitigate risks
- Not equivalent to ASME Section VIII Division 2 compliant vessels

Regulatory Issues

- OSHA General Industry regulations require ASME Code construction for many pressure vessel applications
- OSHA regulations fail to address some NASA LPV applications
- Most NASA LPV are not ASME Code stamped
- OSHA Basic Program Elements for Federal Employees 29 CFR 1960 requires an Alternate Standard for cases in which an Agency does not comply with regulations.
- 29 CFR 1960 requires a Supplementary Standard for those cases in which an Agency has operations not specifically addressed by the OSHA regulations.
- NASA has operations in both of these categories and intends to develop an Alternate/Supplementary Standard for use of LPV

History

- Manufacturing method developed in 1930's
- Incorporated in ASME Boiler and Pressure Vessel Code in 1978
- Fabrication advantages
- Some purchased directly, some acquired from DoD
- High stored energy
- Some failures in industry (about 10 out of total ~ 23,000 constructed)
- OSHA discussions
- LaRC, DWC and SwRI work

Issues

Advantages

.

.

- Easier to form thin material
- Less full thickness welding and less total weld
- More favorable toughness properties in thin material
- Possible favorable pre-stress
- Leak detection via vent holes

Disadvantages

- Non-code material with very limited fracture properties characterization (toughness, crack growth rate, and transition temperature)
- Layer gaps, possible inconsistent tension, and welding residual stresses make analysis a non-trivial task (particularly for older vessels)
- Difficult to inspect inner layers and shell to shell welds
- Very high MDMT for solid heads and full thicknesses welds, typically ~120F per current Code

LPV at NASA

Manufacturers of NASA LPV

- AO Smith
- CBI
- Nooter Corp
- Hahn and Clay
- Struthers Wells
- Consolidated Western Steel
- Others

Service Conditions

- Industry:
 - Urea reactors
 - Low cycles
 - Stress Corrosion Cracking (SCC) potential
 - Often elevated (300-400F) temperature operation, some low temperature
- NASA:
 - Most in air or inert gas service (a few in hydrogen service)
 - Cyclic operation (pressure swings
 - No SCC
 - Ambient temperature operation which is below Code MDMT limits at every NASA Center
 - Some blowdown service resulting in lower temperature at nozzle and surrounding area
 - Often sited in uncontrolled areas with significant staff exposure

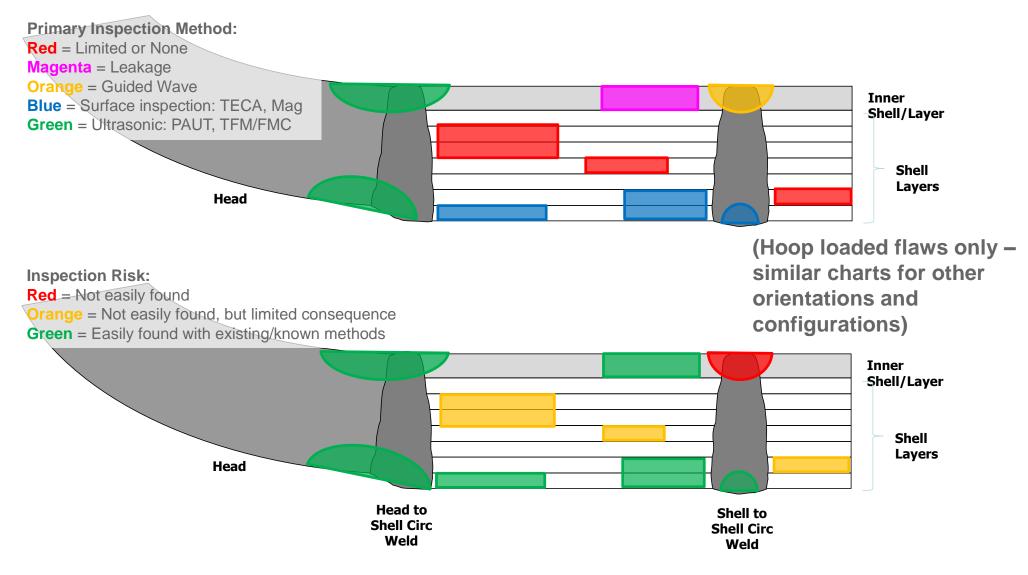
Materials

- Frequently proprietary specifications and non-code
- Not well characterized from a fracture perspective
- Frequently fairly high ductile-brittle transition
- 19 material and condition combinations in NASA vessels, reduced for testing purposes:
 - Availability of data
 - Similarities of materials
- AOS 1146, AOS 1135G Gr. B, CBI 1143, AOS 1148B, A225B, A212B, A225C, A302B, SA516-70, SA517F (T-1), A350-LF3, SWC 100302, SA302B SS clad, SA724B

Analysis

- Models and case studies to understand details and criticality
- Incorporation of layered construction
- Layer gaps
- Welding residual stresses
- Development of analysis tools

Inspection


- Original fabrication inspection did not meet 1978 ASME Code
- Head, outer layer, and head to shell weld inspections manageable
- Inspection of intermediate layers difficult
 - Weld locations?
 - UT not effective beyond first layer for plate in intermediate weld inspections
 - RT sensitivity limited by thickness
- Nozzle to head inspections manageable
- Nozzle to shell inspections challenging
- Shell to shell welds currently difficult to inspect

Risk Based Approach

- Understand materials
- Understand physics
- Identify potential defects
- Identify risk associated with each
- Determine critical crack sizes for each flaw based on bounding properties and stresses
- Find/Develop capability to inspect for defects of concern
- Address issues of operational temperature on case by case basis
- All flaws addressed logically in some way probabilistic, analytic, inspection (e.g., deterministic analytical approach, can reliably find, always LBB, no crack growth)

Potential Hoop Loaded Flaws/Inspection Techniques

(Current thinking)

OSHA Alternate/Supplemental Standard

Will:

- Be part of NASA-STD-8719.17 NASA Requirements for Ground-Based Pressure Vessels and Pressurized Systems (PVS)
- Address material properties, construction variability, welding residual stress, fabrication defects, analysis, and inspection.
- Define analysis approach
- Defect categories will be identified, then in order to validate operation of a vessel all categories must be addressed and their safety validated.

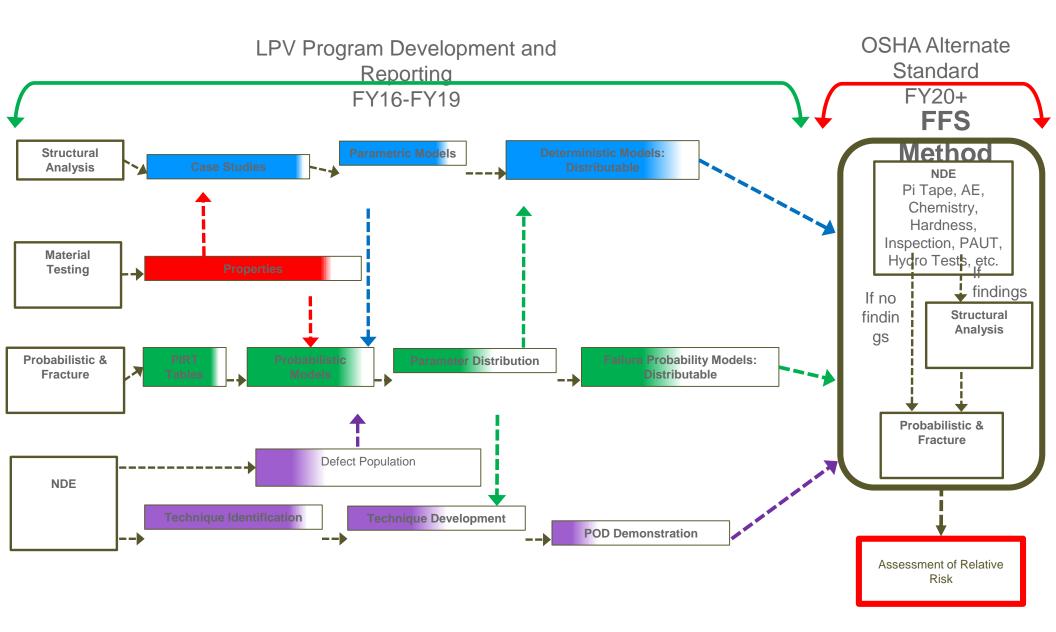
Flaw Catalog and Inspection Techniques (Tentative)

Risk Cube Classification: 1 (good) -3												ethod(s): I				_			
Name (bad)																			
Region	Orientatio	Flaw Type	Location	Severity	Probability	Detection	Rank %	PAUT	TFM/FM	EMATS	TECA	EC	RT	Mag	AE	Leak	GW	Analyt.	Comments
	n								С										
SS	Н	Si	W	3	1	3	29.6	Т	S	N/A	N/A	N/A	Т	N/A	Т	S	Р	S	
SS	А	Si	W	2	2	3	11.6	Т	Р	N/A	N/A	N/A	Т	N/A	Т	S	S	S	
NH	М	Si	F	1	3	2	2.3	Р	Р	S	N/A	N/A	N/A	N/A	Т	N/A	N/A		
NS	Н	Si	Н	2	2	2	7.4	Р	Р	Р	N/A	N/A	N/A	N/A	Т	N/A	N/A		
NH	М	So	F	1	2	2	1.9	Р	Р	S	N/A	N/A	N/A	N/A	Т	N/A	N/A		
HS	Н	Si	А	2	1	2	4.2	Р	S	N/A	N/A	N/A	Т	N/A	Т	S	S		
HS	А	Si	W	2	2	1	4.2	Р	S	N/A	N/A	N/A	Т	N/A	Т	N/A	Т		
HS	А	So	А	2	2	1	4.2	Р	S	N/A	Р	N/A	Т	Т	Т	N/A	N/A		
SS	А	So	А	2	2	1	4.2	Т	Р	N/A	Р	N/A	Т	S	Т	N/A	N/A		
NS	Н	C	Р	3	1	1	3.7	Т	Т	S	S	Р	N/A	N/A	Т	S	N/A		
SS	Н	So	W	3	1	1	3.7	Т	S	N/A	Р	N/A	Т	S	Т	N/A	S		
HS	Н	So	А	3	1	1	3.7	Р	S	N/A	Р	N/A	т	S	т	N/A	S		
WP	Н	Т	Р	1	3	3	2.8	N/A	N/A	N/A	N/A	N/A	S	N/A	Р	N/A	N/A		
NS	Н	E	F	1	3	3	2.8	Р	Р	S	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
SS	А	E	F	1	3	3	2.8	S	Р	N/A	N/A	N/A	Т	N/A	N/A	N/A	N/A	Р	
LW	Н	Т	W	1	3	3	2.8	N/A	N/A	N/A	N/A	N/A	S	N/A	Р	N/A	N/A	Р	Middle
NH	М	E	F	1	3	2	2.3	Р	Р	S	N/A	N/A	N/A	N/A	Т	N/A	N/A		
IP	Н	Si	Н	1	1	3	1.9	N/A	N/A	N/A	N/A	N/A	Т	N/A	S	N/A	N/A	Р	Bounded by IP-H-T-A
NS	Н	Si	F	1	3	1	1.9	Р	Р	S	N/A	N/A	N/A	N/A	Т	Р	N/A		
NP	А	So	Н	1	2	3	2.3	Р	Р	N/A	N/A	N/A	N/A	Т	Т	N/A	N/A		
LW	Н	Т	W	1	3	1	1.9	N/A	N/A	N/A	Ρ*	N/A	S	P*	Р	N/A	N/A		Outer
NH	С	С	Р	2	1	1	1.9	Р	Т	Т	Т	S	N/A	N/A	Т	N/A	Т		
HS	А	E	F	1	3	1	1.9	Р	S	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
NP	Н	So	F	1	2	2	1.9	Р	Р	N/A	S	N/A	N/A	Т	Т	N/A	N/A		
SS	А	Si	F	1	2	1	1.4	Т	S	N/A	N/A	N/A	N/A	N/A	Т	Р	N/A		
HS	А	Si	F	1	2	1	1.4	Р	S	N/A	N/A	N/A	Т	N/A	Т	Р	Т		
IP	Н	Т	А	1	1	1	0.9	N/A	N/A	N/A	N/A	N/A	Т	N/A	S	Р	N/A	Р	

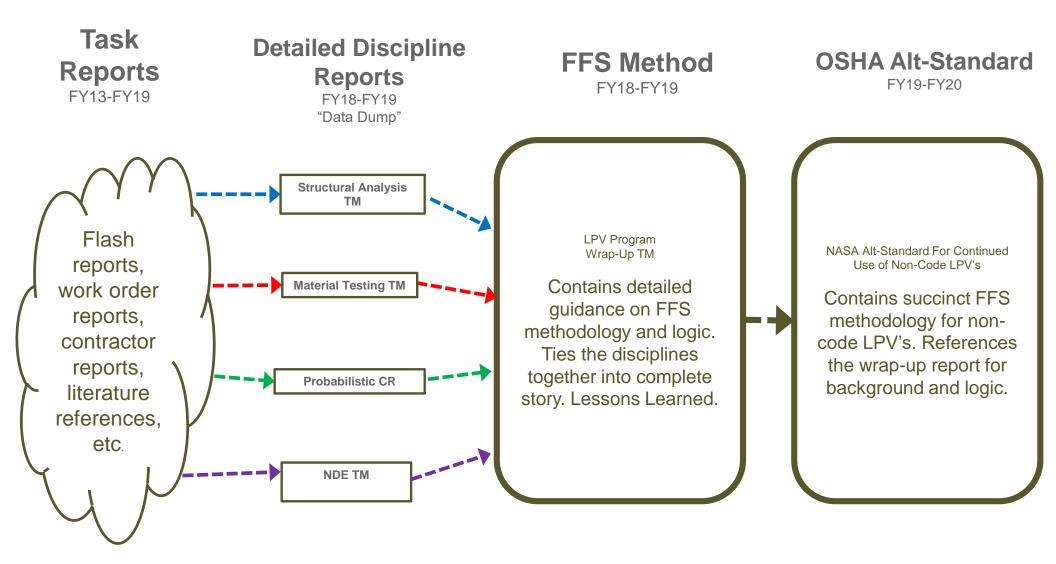
Quantities / Locations

• NASA

• Total of approximately 300 vessels at eight Centers (currently ~200 in service)


• DoD

- AEDC
- Vandenberg
- White Oak
- Others?
- DOE?
- Private Sector
 - Typically in urea reactors in fertilizer plants
 - Petro-chemical?
 - Other commercial applications


Project Elements (status/schedule next slide)

- Materials studies
- Stress analysis
- NDE
- Probabilistic aspects
- Documentation
- OSHA Alternate and Supplemental Standard

LPV Program Anticipated Technical Path

LPV Program Documentation

NASA Funding, Commitment

- 1975 First material testing
- \$1 Million OSMA funding prior to focused Agency effort
 - Cyclic testing
 - NESC effort 2014
- Current \$5.2M budget began 2016
 - 2016 \$1M
 - 2017 \$1.2M
 - 2018 \$1.0M
 - 2019 \$1.0M (est.)
 - 2020 \$1.0M (est.)
- Significant staffing and testing resources at Marshall Space Flight Center

Other Agency Participation

- AEDC Project F2F meetings
- Vandenberg Project F2F meetings

Opportunities for Collaboration

- NASA currently "tapped out" on engineering and test resources
- Course to completion fairly well defined
- Opportunities to contribute through testing
 - Improve data fidelity (larger sample size)
 - Test materials outside those in NASA LPV

Questions?

