

Zero Launch Mass 3D Print Head

Lead: Rob Mueller

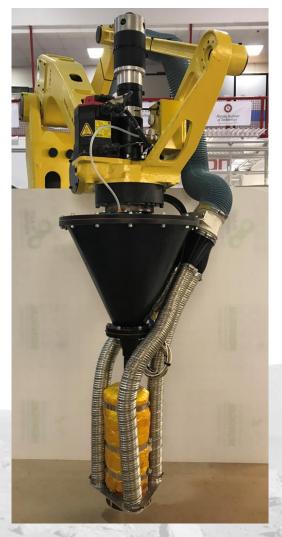
Team Members:

Nathan Gelino Brad Buckles Drew Smith Tom Lippitt Jason Schuler AJ Nick

Matt Nugent Van Townsend

- To create a sustainable long term human presence on other planetary bodies, structures must be constructed to protect people, equipment and resources from environmental conditions such as:
 - Vacuum
 - Radiation
 - Micrometeorites
 - o Large Thermal Changes

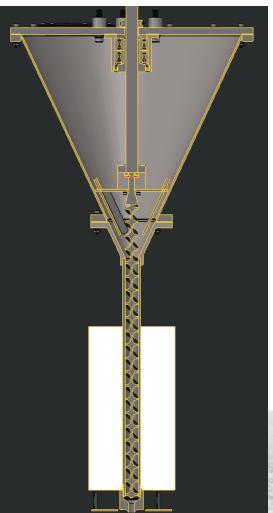
- **o** Dust
- Rocket Plume Blast Effects
- Topography
- Night Conditions
- Costs and logistics make the provision of construction materials from Earth impractical – indigenous resources must be used
- Polymer composite concrete can be locally sourced and is a suitable construction material
- The Zero Launch Mass 3D Print Head was developed to demonstrate automated additive construction of civil structures


o Goal:

- To 3D print a proof of concept habitable structure using ISRU materials in the form of a dome
- Requirements, the printed structure shall:
 - Be a one meter diameter, one piece, without support structure
 - Consist of at least 70% regolith derived materials with the remainder from in-situ resources
 - Be constructed via an automated 3D printing process

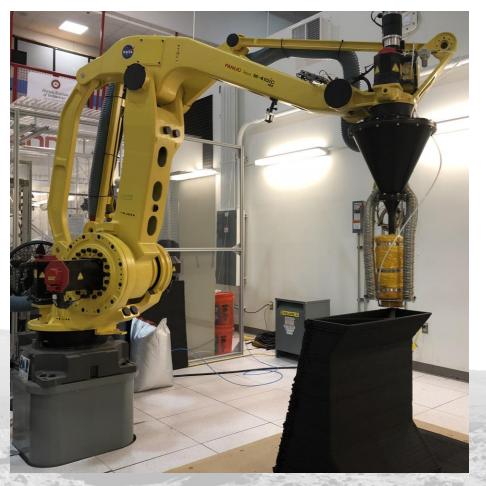
Key Performance Parameters					
Parameter	State of the Art	Threshold for Success	Goal		
ISRU Material Usage	None	70% Regolith Derived	85% Regolith Derived		
Overhang Capability	Use of Support Material	Ogive Shape	Dome Shape		

ZLM System Overview


- Structure
- Feeding/
 - Conveying
- **o** Fume Extractor

O Heater

• Dry Air Purge



• Mounted to a FANUC M-410iC/185

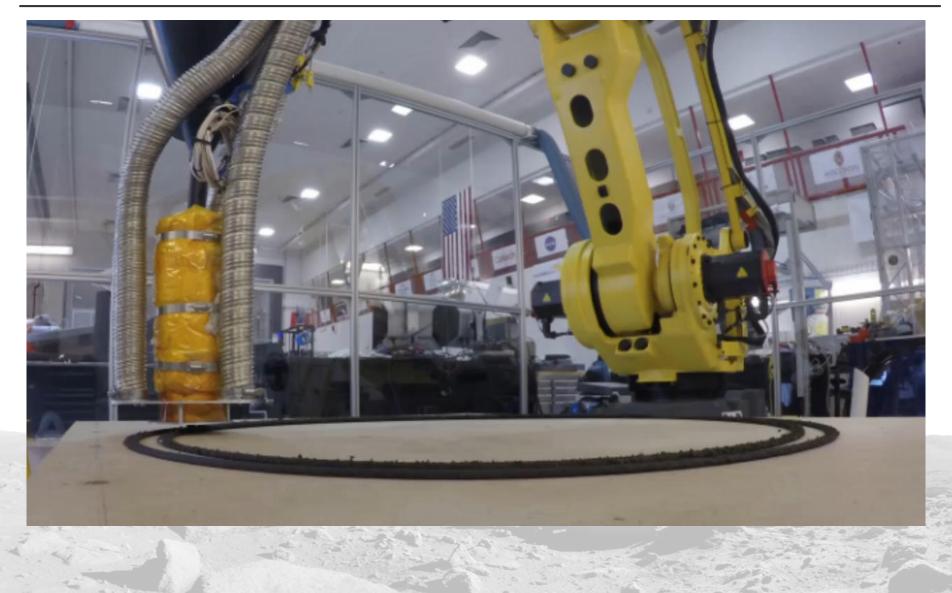
- Four Degrees of Freedom
- Max Print Height = 5.5 ft

- **o** The Project focused on two materials:
 - Powdered Black Point-1 (BP-1) regolith simulant and High Density Polyethylene (HDPE)
 - Pelletized basalt glass fibers and Polyethylene Terephthalate Glycol (PETG)

- For this project the goal was to use existing Slicer software and g-code to control the robot
- This would provide a workflow to design in CAD, slice, and print nearly anything
- FANUC industrial robots cannot interpret G-Code and have very limited program memory. Several solutions were investigated:
 - Building custom "Teach Pendant Programs"
 - Streaming points to the robot using FANUC Socket Messaging and a custom modified driver
- Building Teach Pendant programs was the best solution.
 - Motion performance is greatly improved by using look ahead functions and kinematics only available when using "Teach Pendant Programs"

- To be able to build custom teach pendant programs, software was developed with the following capabilities:
 - Convert G-Code to Proprietary Teach Pendant Programs
 - Extract all motion and extrusion information from G-Code
 - Allow user to shift the coordinates to the desired robot tool frame
 - Modify commands to include custom motion between extrusions for cleaner print results
 - Allow configuration of the following parameters:
 - X,Y,Z center
 - Print speed (mm/sec)
 - Movement speed between extrusion (mm/sec)
 - Termination type of motion
 - Acceleration value (mm/sec^2)
 - Feed system motor speed (rpm)
 - Pause times when starting and stopping extrusion
 - Enable/disable extrusion control
 - Generate a 3D plot of the toolpath for verification
 - Allow Saving/Loading of configurations for later use
 - Provide a GUI interface for operation

NASA K	ENNEDY SPACE	CENTER	
	Desktop/TP_Generator/saved_co	onfigs/10_23_17.json	
G-Code File: C:/Users/NES/Desktop/TP_Generator/gci	ada/cc tert culinder acada		
LS File:	bde/cc_test_cylinder.gcode		_
C:/Users/NES/Desktop/TP_Generator/Is/	cc test cylinder.ls		
	Configuration:		_
	,		
X Center:	1822.8	mm	
Y Center:	210.8	mm	
Z Center:	441.9	mm	
Print Speed:	15	mm/sec	
Move Speed:	150	mm/sec	
Termination Type:	CR5	CRx, CNTx, FINE	
Acceleration:	150	mm/sec^2	
Extrusion Speed:	2000	RPM (FeedScrew)	
Pause Time:		seconds	
	Enable Extrusion Control		
	Pause After Extrusion		
		Convert to LS File	
Plot	Plot		



- The ZLM print head project successfully met the objectives
- Maximum overhang angle of 35 deg from horizontal
- The project took the concept from TRL2, to TRL3
- Getting adequate print results required fine tuning of:
 - Temperatures
 - Extrusion Speeds
 - Print Speeds
 - Material Selection and Composition
- A one meter diameter ogive was printed without any additional support material

- Eliminating Moisture In Raw Materials is crucial
- Feed screw design is critical
- Controlling Nozzle Temperature improves print consistency
- Material selection is key to Eliminating Warping and Cracking
- Using industry standard pelletized materials simplifies the system
- Industrial robots with 6DOF or more would allow for many improvements to the toolpath and printing process
- Existing toolpath generation software does not work well for additive construction, specialized software needs to be developed

- Future work goals are to take the technology to TRL6, making it feasible for a mission to the Moon and Mars.
- **O** The goals for future work include:
 - Development of custom "additive construction" focused software suites to allow smarter toolpath generation
 - Revised print head design for higher flow rates and increased print speed and quality
 - Development of custom materials for stronger prints, etc.
 - Automation of entire system, addition of material feed system
 - Increase print volume
 - Demonstrate printing of a full scale habitat
 - 6 DOF arm, free form 3D printing
 - Demonstrate additional applications, e.g. Barrier Wall...

Questions?

