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Nomenclature 
 
 

CD = coefficient of total drag 
 
CL = coefficient of total lift 
 
CP = coefficient of pressure 
 
dSP = damping of short period oscillation  
 
g    =    acceleration due to gravity, ft/sec 
 
M = Mach number 
 
q     =  pitch rate  
 
Q = dynamic pressure in lbs/sqft 
 
S = surface area in sqft 
 
u0 = initial velocity, ft/sec 
 
V = flight-path velocity vector  
 
α   = angle of attack in degrees 
 
wSP =    frequency of short period oscillation in radians/sec  
 
 

 

I Introduction 

 There is renewed interest in developing new supersonic transports [1] after the discontinuation of the 

Concorde supersonic jet [2], which was mostly limited for flights over trans-oceanic routes due to the severe 

noise of the sonic boom. In order to avoid the sonic boom, more slender configurations, such as the Low 

																																																								
1	Sr. Aerospace Engineer, Computational Physics Branch, AIAA Associate Fellow	



	 2	

Boom Flight Demonstrator (LBFD) configuration [3], are being considered. The aeroelastic characteristics 

of these new supersonic transports can significantly differ from conventional aircraft. Both rigid and 

flexible body modes can play a significant role in aeroelastic stability. For unconventional configurations, 

such as aircraft with forward swept wings, the short period oscillation (SPO) has been found to significantly 

impact the aeroelastic response [4]. SPO can occur due to unanticipated events such as gusts, abrupt 

maneuvering, etc. During the design of the Concorde, the effects of SPO was considered in detail, though 

its impact is not publically disclosed [5]. 

     Assuring stability of supersonic aircraft, particularly during descent from the supersonic Mach regime 

to the transonic regime, is critical. An aircraft can deviate from its normal descent trajectory due to coupling 

between flows and body motions. The effect of SPO needs to be considered in aeroelastic responses. 

Preliminary studies using quasi-steady aerodynamics show that the presence of SPO can lead to unstable 

response	 [6]. The well-established Reynolds Averaged Navier-Stokes (RANS) equations, which are 

computationally feasible with current supercomputers, have been in use for aeroelastic computations for 

the last three decades [7]. Recently, such efforts have begun to include trajectory motions [8]; for instance, 

the effect of phugoid motion on stability is studied in Ref. 9 using the RANS equations. 

 In this paper, the effect of SPO on aeroelastic responses of a typical supersonic transport is studied.  

 

I Short Period Oscillation Equations of Motion 

Following the derivations of Ref. 10, the frequency of short period oscillations is defined as:  
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)(𝐶A= + 𝐶C8), Cmq is the pitching moment 

coefficient with respect to pitch rate (q), l is the reference length (root chord), Q is the dynamic pressure, 

S is surface area, c is mean aerodynamic chord, u0 is initial velocity, Iy is moment of inertia about center 

of gravity, m is mass of aircraft, Cla is lift coefficient, and Cd0 is initial drag coefficient.  
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The damping is defined as:  
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These equations are superimposed on the aeroelastic equations of motion [11]. 

𝑊 {ℎ} + 𝐺 {ℎ} + 𝐾 {ℎ} = {𝐹}       (3) 

where [W], [G], and [K] are the modal mass, damping, and stiffness matrices, respectively. {F} and {h} 

are generalized aerodynamic force and displacement vectors, defined as: 

 

𝐹 = 	𝑄 𝜓 𝐴 {𝑐#}       (4) 

 

where y is the transpose of mode shape matrix, [A] is the control area matrix of the CFD grid, and {cp} is 

the average pressure coefficient on the CFD control area. The structural damping G is assumed to be 

negligible compared to aerodynamic damping. The aerodynamic unsteady load vector {F} is computed 

by solving the RANS equations.  

   In this work, Eq. (3) is solved using the Newmark’s time integration method in association with the 

instantaneous Lagrangian-Eulerian approach (also known as Arbitrary-Lagrangian-Eulerian [ALE]) [12], 

with the aerodynamic data computed by solving the RANS equations [13]. For this work, the RANS 

equations are numerically solved using the OVERFLOW code [14], which uses the diagonal form of the 

Beam-Warming central difference algorithm [15], along with the one-equation Spalart-Allmaras turbulence 

model [16]. An aeroelastic solution module is embedded into the OVERFLOW code and validated with 

wind tunnel data for a rectangular wing [17]. Figure 1 shows the aeroelastic responses at M¥ = 0.90. 

Computed results show neutrally stable response at Q = 1.25 psi compared to 1.20 as measured in the wind 

tunnel [17]. 
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        Starting from the converged steady state solution for a given Mach number, time integration of Eq. (3) 

is solved with and without superposition of SPO applied while vehicle is experiencing stable aeroelastic 

oscillation such as limit-cycle oscillation(LCO). SPO simulates induced oscillation due to abrupt gust or 

sudden changes in maneuvering. The effects of SPO on aeroelastic oscillations are then studied. 

 

 

 

 

  

 

 

 

 

Fig.1. Dynamic aeroelastic responses at M¥ = 0.90. Measured flutter dynamic pressure q = 1.20 

psi, from [17]. 

II Results 

    A generic supersonic transport conceived by NASA Langley Research Center [18] was selected for 

demonstration since it exists in the public domain. A grid that satisfies engineering requirements, such as 

in spacing and stretching factors, was selected from Ref. 9. Figure 1 shows alternate grid lines of the 

surface grid including the wake grid (red), defined by 174 points in the axial-direction (x) and 422 points 

in the circumferential direction (y-z), and near-body section grid at the tail. With H-O topology (H 

meaning stacked as surfaces in the x-direction and O meaning each surface wrapped around the body), the 

outer boundary surfaces are placed at a distance of about 15 vehicle lengths using 75 grid points. 

Numerical experiments similar to that reported in Ref. 9 were performed for this grid to assess its 
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resolution quality.  The selected grid of size 422x174x75 is found adequate to give acceptable force 

quantities needed for this work.  

 

   This grid was validated with wind tunnel data and the linear theory results as reported in Ref. 9. Figure 

3 shows typical flow results at M¥= 0.90. 

 

 

                     (a)                                                                                 
(b)     
 
Fig. 2.  Grids :  a) Surface and wake (red) grids of a typical supersonic transport.                              
   b) Section grid at the tail.  

.  

 

 

 

 

 

 

 

 

Fig. 3. Surface Cp and tail region Mach number distributions at M¥ = 0.90, α = 5 degs. 
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By using the structural properties of a typical supersonic transport [18], Eq. (3) is solved at Mach 

numbers 0.70 and 0.90 with and without superposition of SPO. Figure 6 shows the first bending and 

torsion modes of the aircraft obtained using a stick-model [19].  

 

 

 

  

 

 

 

 

 

 

Fig. 4 First two modes and frequencies.  

     Based on Eqns. 1 and 2, the short period oscillatory motion is computed at M¥= 0.70 and 0.90. 

Figure 5 shows the damped motion of duration 0.08 seconds for M¥= 0.90 with assumed initial angle 

attack of 3 deg.   

 

 

 

 

 

 

 

Fig. 5 Short Period Motion at M¥ = 0.90. 
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     Computations are first made by solving Eq. 3 without SPO. A well-established time integration 

method [11] is used to solve Eq. 3. It is found that near-limit-cycle oscillations occur at Q = 130 and 80 

lbs/sqft at M¥ = 0.70 and 0.90, respectively. The SPO is superimposed on this response at a time of 0.5 

secs. Figure 6 shows responses with and without SPO for M¥ = 0.70. Without SPO, the limit cycle 

response is mostly close to the twist mode. With SPO, the response is initially magnified but finally 

reaches a neutrally stable condition. Figure 7 shows responses of the first generalized displacement with 

and without SPO for M¥= 0.90. The response without SPO is neutrally stable with contributions from 

both bending and torsion modes. The addition of SPO finally leads to a diverging response.  

 

Fig 6. Responses with and without SPO at M¥ = 0.70 

 

 

 

 

 

                               

 

Fig. 7 Responses with and without SPO at M¥ = 0.90. 
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III Concluding Remarks 

      This work presents a complete time-accurate procedure based on the RANS equations to compute 

responses including short period oscillations (SPO). The procedure presented in this paper will help in the 

design of highly slender, next-generation supersonic transports. The fully time-accurate approach 

presented here can be used to determine if aeroelastic oscillations are initiated from short period 

oscillations.  Present computations show that SPO can make a system less stable in the transonic regime. 

Demonstration of use of the RANS equations for advanced aeroelastic applications as presented in this 

paper can help to expand the scope of new CFD codes such as FUN3D [20] and LAVA [21] that are 

under development based on modified RANS algorithms.  Future work involves modeling active controls 

[22] to alleviate aeroelastic instabilities due to SPO.  
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