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1 Introduction
We are nearing the limits of Moore’s Law [1] with current computing technology.
As industries push for more performance from smaller systems, alternate methods
of computation such as Graphics Processing Units (GPUs) should be considered.
Many of these systems utilize the Compute Unified Device Architecture (CUDA) to
give programmers access to individual compute elements of the GPU for general pur-
pose computing tasks. Direct access to the GPU’s parallel multi-core architecture
enables highly efficient computation and can drastically reduce the time required
for complex algorithms or data analysis. Of course not all systems have a CUDA-
enabled device to leverage, and so applications must consider optional support for
users with these devices. Resource Intelligent Compilation addresses this situation
by enabling GPU-based acceleration of existing applications without affecting users
without GPUs.

Resource Intelligent Compilation (RIC) creates C/C++ modules that can be com-
piled to create a standard CPU version or GPU accelerated version of a program,
depending on hardware availability. This is accomplished through a toolbox of
programming strategies based on features of the CUDA API. Using this toolbox,
existing applications can be modified with ease to support GPU acceleration, and
new applications can be generated with just a few simple modifications. All of this
culminates in an accelerated application for users with the appropriate hardware,
with no performance impact to standard systems. This memorandum presents all
the important features involved in supporting RIC and an example of using RIC to
accelerate an existing mathematical model, without removing support for standard
users. Through this memorandum, NASA engineers can acquire a set of guidelines to
follow for RIC-compliant development, seamlessly accelerating C/C++ applications.

A basic knowledge of CUDA and it’s compilation pipeline is assumed, and some
CMake familiarity.

2 Background
2.1 Prior GPU Work
Researchers at the NASA Ames Research Center have shown that many parallel
applications implemented in CUDA outperform their CPU equivalents by multiple
orders of magnitude [2]. In this research, parallelized Monte Carlo algorithms were
used to demonstrate the application of GPUs towards computationally expensive
algorithms and the expected performance increase. Furthermore, researchers hoped
to leverage this technology to improve algorithm resolution (through more samples)
and run-time. Simulation techniques like Monte Carlo algorithms are perfect can-
didates for GPU implementations, as they satisfy the optimal attributes within a
CUDA program:
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1. Algorithm operations may be easily parallelized

2. Parallelized operations follow the same instructions (no divergence)

3. Require an immense amount of resources to solve

2.2 Inspiration for RIC
Consider a case where a large pre-existing C++ library with thousands of users
is found to be a good candidate for GPU acceleration, as it has computationally
demanding components that can be easily parallelized. Pulling the rug out from the
userbase and suddenly introducing CUDA-enabled devices as a hard requirement for
using the library is not ideal, as not all users may possess the necessary hardware.

An alternative approach is to maintain a separate project that implements a GPU
accelerated version of the demanding functions. The problem with this strategy is
that this now requires additional support, as a second copy of the library must now
be maintained and kept in stream with the original.

This problem is the inspiration for RIC. The ideal GPU accelerated program has
all changes made inline with the original program, avoiding code duplication that
requires extra maintenance, but at the same time does not impact users that don’t
have CUDA-enabled devices to leverage. RIC enables the acceleration of code within
their original models by dynamically generating the code based on the available
hardware. This is accomplished using a small set of tools and design strategies for
seamless GPU acceleration.

3



3 RIC Toolbox
3.1 Preprocessor Definitions
As indicated in the background, RIC aims to dynamically generate the code needed
to build a program based on the available hardware. This implies deciding what
code to compile in advance, which can be accomplished using the preprocessor and
different CUDA compilation pipelines. When compiling CUDA applications, the
NVIDIA CUDA Compiler (nvcc) is used in place of gcc/g++. This allows appli-
cations to be built that include any CUDA host code (code executed on the CPU)
and CUDA device code (code executed on the GPU).

Preprocessor definitions can be used to make code generation decisions, as the pre-
processor resolves them before code is sent to the compiler. Fortunately, CUDA
provides some useful definitions that can be used to help make these preprocessor
decisions when compiled with nvcc. Below are two important preprocessor defini-
tions, which serve similar purposes with a subtle difference between the two.

1. __CUDACC__

This macro is used by source files executed on the host to determine if they
are currently being compiled by nvcc. If it isn’t being compiled by nvcc, it’s
left undefined which enables the definition to be used to dictate which blocks
of code on the host should be compiled. This is very useful as most of the
work with CUDA is not in writing the kernels themselves, but the setup and
cleanup required outside of the kernel call.

Below shows an example of when CUDACC is necessary, by using it to decide
if device memory or host memory should be allocated for some histogram to
be populated later.

// CUDA/C++ host code

// Code that is executed on the host but affects a possible
// kernel call
#ifdef __CUDACC__
cudaMalloc((void **)&dayHistogram, sizeof(int) * timeHorizon));
cudaMemset((void *)dayHistogram, 0, sizeof(int) * timeHorizon));

#else
dayHistogram = (int *)calloc(timeHorizon, sizeof(int));

#endif
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2. __CUDA_ARCH__

This macro is used to identify in device code what virtual architecture it
is currently being compiled for. For RIC purposes, it is simply used as an
indication of whether or not code is currently being compiled on a device, as
it’s otherwise undefined. Note that absolutely no host code can be dependent
on the existence of __CUDA_ARCH__.

Below shows an example of when ARCH is necessary, using it to decide how
to update a histogram that might be executed on the host or a device.

// CUDA/C++ device code

// Code that is executed on either the host or device
if (someCondition) {
#ifdef __CUDA_ARCH__
atomicAdd(&dayHistogram[t], 1); // Avoid race conditions in threads

#else
dayHistogram[t] += 1;

#endif
}

Formally, the difference between these two definitions is that __CUDA_ARCH__
should exclusively be used to decide if code is being compiled to execute on a device,
while __CUDACC__ should be used to check what compiler is being used for the
current source file. This is important as any CUDA program includes more than
just the kernel that executes on the device, but the handler that is executed on the
host. Simply put, decisions that will be made on the GPU must use CUDA_ARCH,
while decisions made on the CPU must use CUDACC.

3.2 Qualifiers
Another set of critical tools used in RIC are function qualifiers. These are common
tools used in most CUDA programs, but they are critical to RIC in order to support
multiple compilation pipelines.

1. __host__

This qualifier is implicitly declared for any function that doesn’t already own
a qualifier. It simply states that the function is to be compiled for execution
on the host. The existence of this qualifier is important later.

2. __global__

This qualifier indicates that a function is to be executed on the device and
therefore must be put in the device compilation pipeline. Functions with this
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qualifier can be invoked directly from host code, which is essentially where
execution is transferred from host to device.

3. __device__

Device qualified functions are similar to global qualified functions in that they
must be executed on the device, and compiled in the device pipeline. An
additional requirement for device qualified functions is that they can only be
invoked while already on the device (so within the scope of another device
function, or a kernel function).

A neat trick with CUDA is that it allows functions to carry both a __host__
and __device__ qualifier at the same time, which puts a copy of the function
into the host compilation pipeline and another into the device compilation pipeline.
This is extremely useful in the context of RIC as this combined qualifier essentially
eliminates the need to duplicate code that otherwise would require near identical
computation steps. Combined, the definitions described earlier and these qualifiers
create a powerful set of tools.

The example below shows how using a combination of preprocessor definitions and
qualifiers, a few small modifications can be made to an existing CPU-implemented
model to now support GPU accelerated. Of course, users who don’t leverage a
CUDA-enabled device won’t see any difference while compiling this module as the
preprocessor definitions protect their host compiler from any unfamiliar code.

// CUDA/C++ host OR device code

// Necessary to prevent qualifiers from getting in host pipeline
#ifdef __CUDACC__
#define HOSTDEVICEQUALIFIER __host__ __device__

#else
#define HOSTDEVICEQUALIFIER

#endif

HOSTDEVICEQUALIFIER void someModel(int particles) {
#ifdef __CUDA_ARCH__
int index = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
for (int i = index; i < particles; i += stride) {

#else
for (int i = 0; i < particles; i++) {

#endif
// 50 lines of common computation here
}

}
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Again, in order to support compilation on machines without CUDA, code such as
the CUDA qualifiers cannot be present as it will cause errors. The preprocessor
definitions described in the prior section are therefor used to create the proper def-
inition, depending on what type of system the program is being compiled for. On
a system with a CUDA-enabled device the HOSTDEVICEQUALIFIER is popu-
lated and therefor the function someModel is placed in both the GPU and CPU
compilation pipelines. On a system without a CUDA-enabled device the HOSTDE-
VICEQUALIFIER is left blank, so it is ignored when resolved by the preprocessor.

3.3 Wrappers
In section 4.2, it was indicated that functions with the __device__ qualifier pre-
fixing them can only be called from other device or kernel functions. The simple
solution here is to create a kernel function that simply passes on any necessary argu-
ments to the host-device qualified code. This also means that a kernel function must
be launched to call the device code, if being compiled for a GPU. This results in a
second layer of wrapper functions that is required when using the GPU model. An
example below shows example wrappers that would be required to launch a model
in parallel using CUDA.

// CUDA/C++ host OR device code

#ifdef __CUDACC__
#define KERNEL __global__

#else
#define KERNEL

#endif

KERNEL void modelCallKern (int particles) {
someModel(particles);

}

// Again, only exists in device compilation pipeline. Transfers program
// from host to device.
#ifdef __CUDACC__
void someModelGPU(int particles, int threadsPerBlock, int blocksPerThread)

{
modelCallKern<<<blocksPerGrid, threadsPerBlock>>>(particles);

}
#endif

void someModelCPU(int particles) {
someModel(particles);

}
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Using __CUDACC__ it is ensured that compilation is unaffected on systems
without CUDA-enabled devices. Above there are two nearly identical functions,
someModelGPU and someModelCPU, which both cause someModel to eventually
be invoked. The key difference is that a second wrapper, modelCallKern, exists for
device compilation. It serves as the entry point to the device as it is prefixed with
KERNEL, and is launched using CUDA notation, initiating all modelCallKern calls
in parallel.

In summary, one of someModelGPU or someModelCPU will get invoked directly,
but both end up making a call to someModel in their pipeline. The difference be-
tween the two is the extra layer of abstraction caused by someModelGPU launching
a wrapper in parallel, with each parallel thread making a call to someModel.

4 Compilation
4.1 CUDA Compilation for RIC
An important component of RIC is the management of file extensions for source files.
Files that include CUDA code are expected to have the “.cu” file extension, which
can only be compiled by nvcc. Supporting multiple compilation modes presents a
significant problem: if host-only compilation is to be supported, all the files must
have “.cc” or “.cpp” as their file extension. In doing this, nvcc believes all source
files to be standard C++ and won’t compile for device usage. Fortunately, CUDA
provides a compilation flag to get around this, -x, which indicates that the source
file being compiled is to be treated as if it was a CUDA module and had the “.cu”
file extension.

Example: A model that supports RIC exists as “someModel.cpp”. The following
two lines demonstrate how to compile someModel if only the CPU is to be used,
and how to compile if there is a CUDA-enabled device is available.

g++ -c someModel.cpp // Compile for standard C++
nvcc -c -x cu someModel.cpp // Compile for CUDA

Using this feature, existing libraries can conveniently be left in their existing cpp/cc
modules. At this point, a simple makefile could be created to build a RIC-compliant
application. The only additional requirements would be to have two possible targets,
one for a CPU build and the other for a GPU build, where the GPU target compiles
using nvcc in place of gcc/g++, and the ’-x cu’ flag is passed.

4.2 Adding CMake Support with FindCUDA
Instead of using the same makefile and defining multiple targets for each form
of compilation (CPU and GPU targets), it’s worth utilizing CMake to generate
buildsystems. CMake provides full support for CUDA, in the form of the Find-
CUDA toolset [3]. This means almost all of the legwork with CUDA is done for us,
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and only a few extras are required to get CMake to support RIC.

The first step to incorporating CUDA to a CMake file is to add the FindCUDA
project with a quick find_package call. This adds in a bunch of CMake functional-
ities and populates variables with useful CUDA related information.

# CMake code

# Grab the CUDA package
find_package(CUDA)
set(GPU_ACCELERATED ${CUDA_FOUND})

CMake provides a useful functionality where the variable CUDA_FOUND is auto-
matically populated with the result of attempting to find CUDA on a system. This
can be used hereafter for all decision related problems in the CMakeLists file that
depend on whether or not a GPU can be leveraged. FindCUDA also populates nu-
merous other variables, which get used for other commands [4]. A great example is
CUDA_NVCC_FLAGS, which can be populated with any additional flags to pass
to NVCC. This means it can hold the virtual architecture parameters to compile
with, and more. Another useful flag is CUDA_PROPAGATE_HOST_FLAGS, a
boolean value indicating if all host compiler flags (the ones passed to C++) should
also be passed to NVCC. This can cause compilation issues, so it is best to disable
flag passing and exclusively indicate what flags need to be turned on for NVCC.

# CMake code

set(CUDA_NVCC_FLAGS "${CUDA_NVCC_FLAGS} -gencode
arch=compute_53,code=sm_53; -gencode arch=compute_53,code=compute_53;
-std=c++11;")

set(CUDA_PROPAGATE_HOST_FLAGS off)

4.3 Setting up a project for RIC and CMake
Some modules in a project may only be necessary for specific compilation modes
(GPU or CPU). Using some FindCUDA populated flags, it is possible to optionally
include user created directories as needed. A good example of this is including a
random number generation model that operates in parallel on GPUs, in place of
using the standard <random> library. For a typical project that has ‘inc’ and ‘src’
directories setup, it’s worth creating a new pair of directories ‘incGPU’ and ‘srcGPU’
to store all GPU-only modules.
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|____build
|____CMakeLists.txt
|____inc
| |____callModels.h
|____incGPU
| |____prng.h
| |____debugCFP.h
|____src
| |____callModels.cpp
| |____main.cpp
|____srcGPU
| |____prng.cu
| |____debugCFP.cu

Continuing with this example, GPU only files prng.cu and prng.h, would be stored
in the GPU directories and then only included if the variable from the previous
section, GPU_ACCELERATED, was defined.

# CMake code

# Add directories
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/inc/)
if (${GPU_ACCELERATED})
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/incGPU/)

endif()

# Setup environments, depending on GPU accel. status
set(SRCS src/main.cpp src/callModels.cpp)
set(INCS inc/callModels.h)

if (${GPU_ACCELERATED})
set(SRCS ${SRCS} srcGPU/prng.cu)
set(INCS ${INCS} incGPU/prng.h)

endif()

Another important feature described in section 5.1 was how to compile files with the
‘cpp’ extension as CUDA files in place of C++. This is accomplished using the ‘-x
cu’ compilation option when generating the binary for a source file. With CMake,
this option can’t be passed directly through CUDA_NVCC_FLAGS, and instead
set_source_file_properties must be used. This way when compilation time comes
around, the file extension is ignored and, source files such as callModels.cpp can be
treated as CUDA sources.
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# CMake code

if (${GPU_ACCELERATED} AND ${GPU_SUPPORTED})
set_source_files_properties(${CMAKE_CURRENT_SOURCE_DIR}/src/callModels.cpp

PROPERTIES CUDA_SOURCE_PROPERTY_FORMAT OBJ)
endif()

This feature was added in CMake version 3.3.0 (2015-07-23 release) [5], so RIC re-
quires a modern version of cmake. The additional variable, ‘GPU_SUPPORTED’
above, gets manually populated as a boolean value indicating whether or not the
version of CMake used is 3.3.0 or above. This is because the ‘-x cu’ compile option
to compile cpp files as cu files isn’t supported in lower versions of CMake.

The final requirement of CMake is to indicate how to actually make the executable.
FindCUDA has its own version of add_executable, named cuda_add_executable.
It operates in the same manner as it’s predecessor, but instead uses NVCC. Note
that cuda_add_executable will still attempt to use g++ when compiling modules
unless they have the CUDA_SOURCE_PROPERTY indicated, which is enabled
by default for ’.cu’ files, or enabled manually as performed in this section.

# CMake code

if (${GPU_ACCELERATED} AND ${GPU_SUPPORTED})
# Create GPU executable and link CUDA library
cuda_add_executable(stockModel ${SRCS} ${INCS})
target_link_libraries(stockModel -L/usr/local/cuda/lib64 -lcurand)

else()
# Create executable
add_executable(stockModel ${SRCS} ${INCS})

endif()

As before, the flags set to determine what target is being compiled for are used to
decide if add_executable is used, or it’s CUDA equivalent. An extra line is also
used to link a standard CUDA library, ’curand’. This can also be extended to any
other members of the standard library such as cudart. FindCUDA operates in an
interesting manner as it verifies the existence of the CUDA standard library when
find_package is initially called, but doesn’t add it to the known paths for the linker
to search through. Hence, it must be manually indicated for any CUDA libraries to
be linked.
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5 Results
5.1 Example Software: Stock Price Model
Most of the code samples provided throughout this memorandum have been lifted
from a Monte Carlo simulation involving stock prices created as a demonstration of
RIC properties.

The sample code uses the Monte Carlo method to simulate stock prices over
time, attempting to come up with an approximate amount of time in which a spe-
cific price boundary (upper or lower) on the stock is hit. Because this simulation
uses the Monte Carlo method, it is a prime candidate for GPU acceleration by
making the numerous samples in the simulation operate in parallel. Of course, this
simulation might still need to support systems which do not have CUDA-enabled
devices, making RIC design principles crucial.

5.2 Performance
The culmination of all previous sections is that the application has been seamlessly
updated to support accelerated compilation, without abandoning architectures by
introducing a new hard dependency. Testing for the stock model is conducted on an
NVIDIA Jetson TX1 (Maxwell GPU with 256 CUDA cores), and a 2013 Macbook
Air (Haswell i7 @ 1.7 GHz). Below are the results of running the same program
on the two different systems; the former with a CUDA-enabled device, the latter
without.

Macbook Air 2013, Intel i7 1.7 GHz NVIDIA Jetson TX1 (CUDA enabled)
$ cd build $ cd build
$ cmake .. $ cmake ..
$ make $ make
$ ./stockModel 32 128 1000000 1 200 $ ./stockModel 32 128 1000000 1 200
Calling CPU version of model! Calling GPU version of model!
Mean day boundary hit: 84 Mean day boundary hit: 84
Duration: 8.36235 Duration: 0.003602

The most important take away from these results, aside from the clearly superior
performance of a GPU accelerated program, is that the pipeline from compilation
to output is the exact same. RIC has permitted seamless introduction of GPU
acceleration as the 1st column, a system without a CUDA-enabled device, is still
able to build and run the same application without issue.

6 Summary
Using RIC, many existing applications can easily be modified to support GPU ac-
celerated programs, with no impact whatsoever to a standard user who doesn’t have
a CUDA-enabled device to leverage. This methodology only requires a small fixed
initial cost when modifying existing application and has next to no variable cost as
the application is updated over time. New applications can also be created with
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ease that support RIC using the toolbox described in this memorandum.

This memorandum covered a brief background on GPU acceleration, the inspira-
tion for RIC, the toolbox that makes this design paradigm possible, and results from
applying it to an existing software model.
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