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Focus of this talk

0 OCO-2 provides a first-hand look at the space-time evolution of tropical
atmospheric CO, concentrations in response to the 2015-2016 El Nifio

Q The tropical Pacific Ocean plays an early and important role in modulating the
changes in atmospheric CO, concentrations during El Nifio events

QO Net impact of El Nifio on the global carbon cycle is an increase in
atmospheric CO, concentrations
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El Nino 2015-2016
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The ENSO - CO, story ...

T ENSO events

0 Correlations between atmospheric CO, growth rate and
ENSO activity have been reported since the 1970s

Uptake by ocean &

Bacastow [1976], [1980]; Newell and Weare [1977]; Keeling et al. [1985] e A e
QO Studying the response of CO, to ENSO = how

feedbacks between the physical climate system and S

global carbon cycle operates Fa a4 4o

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Does OCO-2 observations
provide insight into the
relationship between ENSO
and the carbon cycle?
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Orbiting Carbon Observatory - 2
Atmospheric Carbon Dioxide Concentration (09/06/14 - 03/31/2017)
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GOSAT and OCO-2 era

Monthly coverage over the Pacific Nifio 3.4
and OCO-2 Trow-
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Observable trends in 2015-2016

onset phase of peak phase of end of
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Time-series showing the
temporal evolution of

Xcop anomalies over
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Panel B — X, response
* Initial decline followed by
steady ramp up in X¢o; Months (2014-2016)
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Carbon system in the Tropical Pacific

SOUTH AMERICA
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DEEP COLD WATER & HIGH CO2

Dijkstra [20

0 Normal conditions: upwelling of cold subsurface waters that have high potential pCO,
+ inefficient biological pump =2 strong CO, outgassing

0 El Nino conditions: deepening of thermocline, reduction in upwelling, weakening of
trade winds + more efficient biological pump = decreases CO, outgassing by 40-60%
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Ishii et al. [2014]

LDEO V2009

O Estimate of trop. Pacific flux: 0.4 - 0.6 PgC yr!
O Area of trop. Pacific — Ishii definition (~66 million km?), Nifio 3.4 (~6 million km?)
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Response of the ocean carbon cycle
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Gradients in the ocean response o
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. . . . . onset phase of peak phase of e”_df)f_
increase in emissions from biomass El Nifio 2015-2016 El Nifio 2015-2016 E/:N”;_%;%
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burning L
watrmer and drier climate — overall Positive peak in Xoo,
anomaly ... but it leads
the fire signal by 1-2
months!
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High CO emissions during
Indonesia/SE Asian peat

/ fires in Sep-Oct 2015

CO column anomalies (107 mol/cm?)

SE Asia/lndonesian
. fires reached their
A peak in Sep-Oct 2015
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Response of the terrestrial carbon cycle

@ O0CO-2 data of CO, S
@ Model data estimates using OCO-2 &
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Putting 1t all together...

ENSO indicators
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0 Onset Phase of ENSO: Spring-Summer 2015

= reduction in CO, outgassing over the tropical Pacific

5.

larger lagged
terrestrial
response

— negative CO, anomalies throughout but with

Xcop anomalies (ppm)

perceptible west-east gradients

large reduction in
CO; outgassing

O Mature Phase of ENSO: Fall 2015 onwards

= increase in CO, anomalies registered over the
tropical Pacific —combination of reduced biospheric

£
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activity and increase in fire activity

SE Asia/Indonesia °
®—® fire emissions in
Sep - Oct 2015

CO anomalies (107 mol/cm?)

Chatterjee et al. [2017], Science
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Ocean vs. L.and Contribution during ENSO

GEOPHYSICAL RESEARCH LETTERS, VOL. 26, NO.4, PAGES 493-496, FEBRUARY 15, 1999

The relationship between tropical CO; fluxes and the
El Nino-Southern Oscillation

Peter J. Rayner! and Rachel M. Law

CRC for Southern Hemisphere Meteorology, Monash University, Clayton, Australia
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transition (from negative to positive) being matched to the
end of the ENSO event. It seems likely that the initial re-
sponse of tropical CO2 fluxes to ENSO occurs in the ocean
and the response is later offset then reversed by terrestrial
responses.

Acknowledgments. This study was carried out with the
support of the Australian Government through its Cooperative
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molecules arrive at the %urﬂlce, on]y a fraction of them stick or
adsorb onto it**”. Compared with non-template proteins, a tem-
plate protein entering its imprint will have a higher likelihood of
being retained as a result of interlocking within a pit and subse-
quently binding strongly to it. In addition, adsorbed protein on a
low-adsorptivity surface can exchange with dissolved protein in
solution®*. Non-template protein that does not fit into a pit is more
readily displaced than template protein”, because the pit occupied by
the template protein is no longer accessible to solution-phase protein.
The hydrophilic, crosslinked sugars on protein imprints, in contrast
to hydrophobic surfaces, allow for a lower protein-sticking probability
and a higher protein exchangeability. Both of these processes lead to
‘recognition of the fittest’ through dynamic adsorption—exchange,
which we believe is essential for protein recognition.
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The Carbon Cycle Response to ENSO: A Coupled Climate—Carbon Cycle Model Study
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ABSTRACT

There is significant interannual variability in the atmospheric concentration of carbon dioxide (CO,) even
whcn the effect of anthropogenic sources has been accounted for. This variability is well correlated with the EI
is behavior of the natural carbon cvcle provides a valuable mech-

Influence of El Nino on the
equatorial Pacific
contribution to atmospheric
CO, accumulation
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The equatorial oceans are the dominant oceanic source of CO, to
the atmosphere, Ily ing to a net flux of 0.7-1.5 Pg
(10" g) of carbon, up to 72% of which emanates from the
equatorial Pacific Ocean'~. Limited observations indicate that
the size of the equatorial Pacific source is significantly influenced
by El Nifio events*", but the effect has not been well quantified.
Here we report spring and autumn multiannual measurements of
the partial pressure of CO, in the surface ocean and atmosphere in
the equatorial Pacific region. During the 1991-94 El Nino period,
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Feely et al. [1999]

Jones et al. [2001]
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Key messages

0 OCO-2, with its unprecedented coverage over the tropical Pacific Ocean,
provides a first-hand look at the space-time evolution of atmospheric CO,
concentrations during the 2015-2016 El Nifio

O Oceans do contribute to the ENSO CO, effect

= suppressed outgassing from the oceans happen early, followed by a larger (and
lagged) response from the terrestrial component

0 Net impact on the global carbon cycle 1s an increase in atmospheric CO,

concentrations
= would be even larger if it weren’t for the reduction in CO, outgassing
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How robust are these findings?

BACKUP

Sources of error

v v

“representativeness’ of methodological biases residual “biases” in
Xcop anomalies anomaly calculation retrievals
v" can we isolate the ocean v' stitching together v' ocean glint retrievals are
signal to the trop. Pacific GOSAT and OCO-2 biased low (say 0.1-1.0
Ocean? records ppm) over the Tropics

v" biases due to curve-
fitting procedure

AL A4y
' anomalies calculated for |
range of bias values (0.1-1ppm)

A J A o D F A

Months (2014-2016)

Months(2014-2016)
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BACKUP

Isolating the negative anomaly to the trop. Pacific
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Distinct temporal trends
within Nifo 3.4

Specific region
analyzed

Alternative hypothesis

Figure showing
difference between
analyzed region and
Nifio 3.4

Global
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Tropical Atlantic
(6°N -5°S, 5°-35°W)

North Pacific
(20°-30°N, 120°-170°W)

South Pacific
(20°-30°S, 120°-170°W)

Xcoz @anomalies over the Pacific Ocean are
responding to changes in terrestrial CO,
concentrations

Xcoz anomalies over the Pacific Ocean are
responding to changes in global
CO, concentrations

Xcoz anomalies over the tropical Pacific
Ocean are responding to changes in CO,
concentrations across the entire
Pacific Ocean

Xcoz anomalies over the tropical Pacific
Ocean are responding to changes in CO,
concentrations across the entire
Pacific Ocean
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What are the
signature of
Xco, anomalies
in other ocean
basins with
respect to those
observed over
the trop. Pacific
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CO; leads
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