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ABSTRACT 

It is acutely recognized in the Probabilistic Risk Assessment 

(PRA) field that software plays a defining role in overall system 

reliability for all modern systems across a wide variety of 

industries.  Regardless of whether the software is embedded 

firmware for working components or elements, part of a 

Human-Machine-Interface, or automated command and 

control logic, the success of the software to fulfill its function 

under nominal and off-nominal environments will be a 

dominant contributor to system reliability.  It is also recognized 

that software reliability prediction and estimation is one of the 

more challenging and questionable aspects of any PRA or 

system analyses due to the nature of software and its integration 

with physics based systems.  Irrespective of this dichotomy, any 

incorporation of software reliability methods requires that the 

contributions are accountable, quantitative, and tractable.  

This paper provides a brief overview of software reliability 

methods, establishes some minimum requirements that the 

methods should incorporate for completeness, and provides a 

logic structure for applying software reliability.  Model 

resolution will be discussed that supports current testing plans 

and trade studies.  We will provide initial recommendations for 

use in the National Aeronautics and Space Administration 

(NASA) PRA and present a future dynamic option for software 

and PRA. 

Space Launch Vehicle software is recognized to be reliable in 

static conditions, yet relatively vulnerable to a set of failure 

modes in changing environments/flight phases. Two 

quantitative methods were chosen to incorporate software 

reliability into a Space Launch Vehicle PRA accounting for 

phase adjustments.  One method predicts latent software failure 

using statistical methods, and the second provides estimates of 

coding errors and software operating system failures based on 

test and historical data.  Software uncertainty will also be 

discussed.  It is determined that recommendations for PRA 

software reliability should be modeled at the software module 

level where multiple software components compose a module 

and combinations of the software architecture can lead to a 

functional failure.   

INTRODUCTION 

Software risk estimates and predictions are difficult to 

quantify and incorporate into a formal risk assessment not 

only because software has inherent characteristics that differ 

from hardware [1], but also because software can fail in 

similar modes and generate significantly dissimilar 

 

unpredicted effects on a system.  Yet software plays a critical 

part in all space launch systems.  This part is only going to 

increase as cost and schedule pressures mount in a budget-

tight space industry.  Software is inherent in every space 

launch electronic element in some manner and often 

participates in actuation; in particular, it controls the avionics 

system during ascent and can contribute significantly to 

system risk during this flight stage. 

An apparent and often erroneous reliability approach to 

estimating software reliability is the treatment of software 

like a standard hardware component.  Software and hardware 

contain some dissimilar features that pertain to reliability and 

risk. Software does not wear out and is often very reliable in 

static conditions. This can be seen with orbiting satellite 

historical data that exhibit minor dynamic changes after 

startup and upon reaching designated orbit. Software is not 

subject directly to environmental stressors such as 

temperature, pressure, and vibration and there are typically 

no warnings or indications prior to a software failure. 

Hardware has physical connections or interfaces such as 

power lines and communication cables while software 

connections are virtual and often obscure.  Software can 

potentially repair itself with a reboot and software 

redundancy and standard parts are truly a different concept 

than with hardware.  Therefore, although modeling software 

in a PRA can be accomplished in a similar manner to 

hardware via deductive reasoning, the quantification and 

application of software failures needs to be accomplished 

within the constraints of software characteristics.  

This paper will provide an example application of modeling 

and software reliability estimates that may be applied to other 

industries. This approach was established when avionics 

software was in the development stage, yet the basic structure 

and specifications were known well enough to establish 

preliminary design, documents, and functional requirements. 

The paper is organized into the following sections:  the 

general approach, quantification of the approach, an estimate 

of uncertainty, design modification, and testing scheme 

discussions.  
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1. GENERAL APPROACH FOR SOFTWARE 

FAILURE RATES 

1.1 Methods 

Methods for estimating software failures vary from complex 

algorithms to qualifying organizational effectiveness. 

Software failures, unlike their counterparts in hardware are 

due entirely to human error rather than being influenced by 

physical or environmental factors. Qualitative methods may 

be based on project management and identify organizational 

and management influence on the code outcome and 

reliability. Another method focuses on the process of code 

development and relies on a function of upgrade and software 

improvements to reach a steady state of reliability. 

Quantitative methods include reviewing fault and failure data 

and estimating reliability trending from defect density. The 

better methods for use in PRA are quantitative and based on 

historical information that is close to the target if available.  

Some software applications, such as SoftRel use qualitative 

factors such as testing time, organizational experience, and 

quality requirements, as well as a wide historical defect 

density database.  This approach is very good for answering 

questions beyond the specific PRA question of failure rate.  

For example, it can be used to provide to a safety program an 

estimate of the time required for testing to establish an 

acceptable failure rate.    

1.2 Historical Data 

This approach quantifies failure rates extracted from similar 

historical data rather than actual data or heuristic reliability 

predictions for several reasons.  First and foremost, this 

approach is for software under development and not 

completed.  Specifically, where official testing of the 

software is under initiation and defect density does not have 

the historical basis to estimate current failure rate data for the 

space craft software available.  Secondly, the use of heuristic 

reliability predictions was considered to be less accurate than 

using similar historical data.  Lastly, there were ample similar 

historical data available from space launch vehicles such as 

the Space Shuttle.  Similar is a relative term; however, for 

example the Space Shuttle avionics system may have some 

striking similarities to more modern vehicles despite the time 

differences when it was designed and built from some 

modern space craft, including a voting computer group, 

similar software languages, similar main engines and 

boosters, and many similar functional interfacing avionics 

boxes.  Nevertheless, there were some obvious differences 

with some modern space craft.  The question regarding use 

of the Space Shuttle historical data was whether the major 

differences could be adjusted to better reflect space launch 

craft.  Even if this adjustment could not be accomplished, the 

authors felt that the historical data would better represent 

space launch craft software failure rates than other prediction 

approaches.  Fortunately, after reviewing the data and 

calculations used in the Space Shuttle Program, there were 

adjustments that reflected the space launch craft such that the 

historical data would provide reasonable failure predictions.  

Some adjustments may need to be incorporated such as 

removing the effectiveness of the back-up computer system 

considered in the Space Shuttle since some space launch 

systems do not have a back-up computer, using the 

percentage of flight time in ascent and in space since the 

failure rate was based on total mission time, and adjusting the 

number of critical software failure reports (DR-1s) to reflect 

potential failures during the associated phases.  

The historical data is based on the Primary Avionics 

Software System (PASS) report [3].  The quantitative basis 

for the failure rate in the PASS report is the Source Line of 

Code (SLOC).  SLOC represents a reasonable, although 

debatable, measure of code complexity and quality especially 

when using similar coding rules, languages, and 

specifications such as the PASS and some space launch craft 

coding practices.  For the PRA, the level of coding expertise 

and organizational aspects that can affect defect density is 

considered to be similar to the Space Shuttle. The PASS also 

takes into account coding and context errors; the latter 

represents latent errors that occurred during off-nominal 

flights that made it through testing and on to Space Shuttle 

flights. Some of these errors (critical and non-critical) were 

on an operational increment (OI) of the code that flew 

multiple Space Shuttle missions [3]. 

1.3 Software Failure Modes 

A logical progression of predicting software reliability starts 

with the anticipated Failure Mission Scenarios (FMS) and 

progresses through a set of software failure modes that are 

determined based on what could cause the designated 

scenarios.  Then the portion of the code that could cause each 

of the failure modes is determined and a historical failure rate 

for the apportioned code, adjusted for space launch craft, is 

applied to the failure modes.  The numeric SLOC was 

determined to be the common measurement to relate the 

Space Shuttle failure rates with predictive space launch craft 

values. Software contributions to these FMS can account for 

distinct failure modes and are considered to be mutually 

exclusive.   

Most space launch vehicles’ software uses some form of 

ARCINC 653 specification [1] that provides some resiliency 

in safety-critical application by partitioning major functions.  

Each partition acts separately and can fail without harming 

other partitions. Next, the Flight Software (FS) structure is 

segregated into functional partitions that are made up of one 

or more modules.  Each partition is a functional construct that 

is also directly related to a computer process (i.e., each 

partition has its own process) that is monitored by the 

operating system.  Software failure modes can be caused by 

a specific failure of either code in a set of partitions or 

modules depending on their function.  Using this approach, a 

total SLOC can be determined for each failure mode.  Fig. 1 

represents a representation of different failure modes and 

their definitions.  As can be seen in Fig. 1, some partitions or 

modules may cause different software failure modes to occur.  

For example, a management partition includes the time and 

mode manager modules.  Therefore, an early command 

software failure (error in the management partition) and loss 

of communication (requires an increment in the time stamp 

from the time manager module) could potentially be caused 

by loss of functionality of the management partition.  When 

the SLOC for the same partition is accounted for in multiple 
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failure modes it should be noted that the total software failure 

rate needs to be normalized such that the total SLOC of 

critical code equals the total software failure SLOC to avoid 

double counting.  
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Figure 1.  Notional Software Failure Modes and Associated Partitions 

1.4 Maturity Ranges 

It is recognized that software tends to mature over time and 

when it is applied under different scenarios errors often get 

recognized and removed.  New functionality or 

modifications that represent a new release also introduce 

new errors.  There is often an accounting between finding 

errors and introducing new errors to determine the current 

defect density of the code at any given time.  This can be 

clearly seen and calculated in the PASS report [2]. 

The PASS report divides the failures and ultimately the 

defect densities into three broad ranges that represent the 

PASS reliability growth curve for the Space Shuttle. These 

include an immature, mid-mature, and mature failure rate of 

the software.  An immature range would represent first 

flight, whereas the mid-mature range/defect density may 

characterize reuse of some systems for flight.  In keeping 

with the Space Shuttle methodology and providing software 

reliability predictions for different needs of reliability 

development, three levels of maturity are calculated for the 

avionics software.  In effect, the ranges represent the 

uncertainty of the total reliability curve over time.  

2. UNCERTAINTY BOUNDS 

Ironically, the testing data collection was more defined and 

structured at the end of the Space Shuttle’s mission life and 

represents the best data (least uncertain) collected.  The 

probability of a SLOC leading to a Severity 1 error includes:  

the total defect probability; the probability the error makes 

it through three different testing schemes; the probability the 

error is on the flight; the probability the error is a Severity 1 

error; and the probability that the backup computer fails to 

be effective in the scenario.  Errors and operations found at 

the three different levels of testing are inputs into a beta 

distribution in the PASS report and portray an increase in 

uncertainty as the testing levels increase (initial testing to 

final testing) due to the decrease in total operations and 

errors respectively as one would anticipate.  These 

parameters and their uncertainty are shown in Fig. 2. 

2.1 Software Distributions 

The avionics software prediction uses the same approach to 

define uncertainty about the mean.  A representative 

depiction of the uncertainty for avionics software is seen in 

Fig. 3 for the three different ranges. 
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Figure 2.  Notional Example of Uncertainty Ranges for Software Risk Elements Determining SLOC Failure Rate
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Figure 3.  Notional Calculation and Uncertainty for a 100 KSLOC Across Maturity Levels 

Actual NASA values are not shown in this paper, although 

the uncertainty represents an accurate range for the 

associated maturity levels.  The uncertainty charts were 

developed in R [4] using a 5,000 Monte Carlo sampling 

routine.  The uncertainty, as denoted by an error factor of the 

mature level, is about 3.2.  The uncertainty is on the low side 

due to the size of the data sets and accounts for additional 

uncertainty of the adjustment factors (mentioned above) that 

apply the software failure rates from Space Shuttle to new 

space launch craft.  Uncertainty increased for earlier data 

represented by Immature and Mid-Mature values because the 

latter (Mature) data sets in the Space Shuttle were collected 

more according to the testing schemes.  Hence the Immature 

and Mid-Mature values were derived from the Mature data 

set.  

3. TESTING 

When hardware design modifications, such as adding 

computer redundancy or an independent backup computer, 

are limited and organizational and team expertise are 

established, the ability to reduce software unreliability via 

defect rates relies often on testing. One unique aspect about 

modern space craft avionics is that all flight computers may 

act as a voting group and run the exact same versions of the 

software on each computer.  Therefore, an avionics software 

error will be apparent on all computers defeating the 

hardware redundancy.  

Testing provides a manner to reduce the defect density 

theoretically to zero using some popular prediction methods 

[5].  Although theoretical values may be based on an 

elongated schedule, reality provides limited testing and 

assumes that some errors make it through even the best 

testing schemes and practices.  The likelihood of this 

occurring increases with code complexity.  Applying a set of 

metrics to testing and data collection is an initial task.  The 

more challenging effort is in assessing the quality of the tests.  

Based on the complexity of the space launch craft flight and 

phases, the number of FMS combinatorial failures are far 

more numerous than can be tested with-in schedule.  PRA 

can both support the testing schemes and, as test results begin 

to emerge, use the results to hone software reliability 

predictions. 

With the potential for an inordinate number of potential 

scenarios for modern space launch craft due to the 

complexity of the systems and subsystems, the prioritized 

ranked risk of each avionics FMS scenario is an obvious 
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starting point for testing.  Testing should include these top 

scenarios for functional testing.  Each avionics FMS scenario 

provides associated logic and identifies specific software 

failure modes.  Therefore, component and integrated testing 

can also benefit from the PRA logic models. 

Course adjustment testing presents a facet in testing that is 

less practiced.  As defects are revealed and tracked, the 

opportunity to provide feedback to how defects manifest to 

specific software failure modes becomes possible.  Use of a 

Bayesian updating technique where prior distributions are 

developed from the Space Shuttle historical data and the 

posterior distribution includes space launch craft testing 

results would improve predictions.  

4. CONCLUSION 

Software reliability predictions are a very difficult and 

challenging aspect of space flight engineering.  Historical 

data can provide an alternative to demonstrated reliability 

information for critical systems under development given 

that the systems and approaches are similar.  For the avionics 

system, the use of Space Shuttle avionics data provides a 

basis for predicting avionics software and a method for 

quantifying software specific failure modes. Maturity and 

uncertainty values provide a probabilistic approach to new, 

similar, or hybrid systems. 

This approach has the potential to be generalized/ tailored for 

other aerospace or industrial operations.  Applications to 

other industries would need to establish uncertainty bounds  

for the specific application applicability.  Critical aspects of 

this approach are the determination of software failure modes 

and the identification of the relationship between the 

software architecture and these failure modes, which 

provides a basis for applying historical data.  PRA can use 

this approach to conduct case studies and to aid in abort 

trigger assignments and priorities.  As testing progresses and 

defect data is collected, PRA has the potential to provide 

course correction to the testing team. 
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