
1

Estimating Software Reliability for Space Launch

Vehicles in Probabilistic Risk Assessment (PRA)

Steven D. Novack (1), Mohammad Al Hassan (2), Adam Harden (1), Steven Kossow (1)

(1) Bastion Technologies Incorporated, 17625 El Camino Real #330, TX 77058, USA, Email/Phone Number:

steven.d.novack@nasa.gov/(256) 544-2739, adam.j.harden@nasa.gov/(256) 544-5767,

Steven.o.Kossow@nasa.gov/(256) 544-1607

(2) NASA Marshall Space Flight Center, Huntsville, AL 35812, USA, Email/Phone Number:

mohammad.i.alhassan@nasa.gov/(256) 544-2410

ABSTRACT

It is acutely recognized in the Probabilistic Risk Assessment

(PRA) field that software plays a defining role in overall system

reliability for all modern systems across a wide variety of

industries. Regardless of whether the software is embedded

firmware for working components or elements, part of a

Human-Machine-Interface, or automated command and

control logic, the success of the software to fulfill its function

under nominal and off-nominal environments will be a

dominant contributor to system reliability. It is also recognized

that software reliability prediction and estimation is one of the

more challenging and questionable aspects of any PRA or

system analyses due to the nature of software and its integration

with physics based systems. Irrespective of this dichotomy, any

incorporation of software reliability methods requires that the

contributions are accountable, quantitative, and tractable.

This paper provides a brief overview of software reliability

methods, establishes some minimum requirements that the

methods should incorporate for completeness, and provides a

logic structure for applying software reliability. Model

resolution will be discussed that supports current testing plans

and trade studies. We will provide initial recommendations for

use in the National Aeronautics and Space Administration

(NASA) PRA and present a future dynamic option for software

and PRA.

Space Launch Vehicle software is recognized to be reliable in

static conditions, yet relatively vulnerable to a set of failure

modes in changing environments/flight phases. Two

quantitative methods were chosen to incorporate software

reliability into a Space Launch Vehicle PRA accounting for

phase adjustments. One method predicts latent software failure

using statistical methods, and the second provides estimates of

coding errors and software operating system failures based on

test and historical data. Software uncertainty will also be

discussed. It is determined that recommendations for PRA

software reliability should be modeled at the software module

level where multiple software components compose a module

and combinations of the software architecture can lead to a

functional failure.

INTRODUCTION

Software risk estimates and predictions are difficult to

quantify and incorporate into a formal risk assessment not

only because software has inherent characteristics that differ

from hardware [1], but also because software can fail in

similar modes and generate significantly dissimilar

unpredicted effects on a system. Yet software plays a critical

part in all space launch systems. This part is only going to

increase as cost and schedule pressures mount in a budget-

tight space industry. Software is inherent in every space

launch electronic element in some manner and often

participates in actuation; in particular, it controls the avionics

system during ascent and can contribute significantly to

system risk during this flight stage.

An apparent and often erroneous reliability approach to

estimating software reliability is the treatment of software

like a standard hardware component. Software and hardware

contain some dissimilar features that pertain to reliability and

risk. Software does not wear out and is often very reliable in

static conditions. This can be seen with orbiting satellite

historical data that exhibit minor dynamic changes after

startup and upon reaching designated orbit. Software is not

subject directly to environmental stressors such as

temperature, pressure, and vibration and there are typically

no warnings or indications prior to a software failure.

Hardware has physical connections or interfaces such as

power lines and communication cables while software

connections are virtual and often obscure. Software can

potentially repair itself with a reboot and software

redundancy and standard parts are truly a different concept

than with hardware. Therefore, although modeling software

in a PRA can be accomplished in a similar manner to

hardware via deductive reasoning, the quantification and

application of software failures needs to be accomplished

within the constraints of software characteristics.

This paper will provide an example application of modeling

and software reliability estimates that may be applied to other

industries. This approach was established when avionics

software was in the development stage, yet the basic structure

and specifications were known well enough to establish

preliminary design, documents, and functional requirements.

The paper is organized into the following sections: the

general approach, quantification of the approach, an estimate

of uncertainty, design modification, and testing scheme

discussions.

mailto:steven.d.novack@nasa.gov

2

1. GENERAL APPROACH FOR SOFTWARE

FAILURE RATES

1.1 Methods

Methods for estimating software failures vary from complex

algorithms to qualifying organizational effectiveness.

Software failures, unlike their counterparts in hardware are

due entirely to human error rather than being influenced by

physical or environmental factors. Qualitative methods may

be based on project management and identify organizational

and management influence on the code outcome and

reliability. Another method focuses on the process of code

development and relies on a function of upgrade and software

improvements to reach a steady state of reliability.

Quantitative methods include reviewing fault and failure data

and estimating reliability trending from defect density. The

better methods for use in PRA are quantitative and based on

historical information that is close to the target if available.

Some software applications, such as SoftRel use qualitative

factors such as testing time, organizational experience, and

quality requirements, as well as a wide historical defect

density database. This approach is very good for answering

questions beyond the specific PRA question of failure rate.

For example, it can be used to provide to a safety program an

estimate of the time required for testing to establish an

acceptable failure rate.

1.2 Historical Data

This approach quantifies failure rates extracted from similar

historical data rather than actual data or heuristic reliability

predictions for several reasons. First and foremost, this

approach is for software under development and not

completed. Specifically, where official testing of the

software is under initiation and defect density does not have

the historical basis to estimate current failure rate data for the

space craft software available. Secondly, the use of heuristic

reliability predictions was considered to be less accurate than

using similar historical data. Lastly, there were ample similar

historical data available from space launch vehicles such as

the Space Shuttle. Similar is a relative term; however, for

example the Space Shuttle avionics system may have some

striking similarities to more modern vehicles despite the time

differences when it was designed and built from some

modern space craft, including a voting computer group,

similar software languages, similar main engines and

boosters, and many similar functional interfacing avionics

boxes. Nevertheless, there were some obvious differences

with some modern space craft. The question regarding use

of the Space Shuttle historical data was whether the major

differences could be adjusted to better reflect space launch

craft. Even if this adjustment could not be accomplished, the

authors felt that the historical data would better represent

space launch craft software failure rates than other prediction

approaches. Fortunately, after reviewing the data and

calculations used in the Space Shuttle Program, there were

adjustments that reflected the space launch craft such that the

historical data would provide reasonable failure predictions.

Some adjustments may need to be incorporated such as

removing the effectiveness of the back-up computer system

considered in the Space Shuttle since some space launch

systems do not have a back-up computer, using the

percentage of flight time in ascent and in space since the

failure rate was based on total mission time, and adjusting the

number of critical software failure reports (DR-1s) to reflect

potential failures during the associated phases.

The historical data is based on the Primary Avionics

Software System (PASS) report [3]. The quantitative basis

for the failure rate in the PASS report is the Source Line of

Code (SLOC). SLOC represents a reasonable, although

debatable, measure of code complexity and quality especially

when using similar coding rules, languages, and

specifications such as the PASS and some space launch craft

coding practices. For the PRA, the level of coding expertise

and organizational aspects that can affect defect density is

considered to be similar to the Space Shuttle. The PASS also

takes into account coding and context errors; the latter

represents latent errors that occurred during off-nominal

flights that made it through testing and on to Space Shuttle

flights. Some of these errors (critical and non-critical) were

on an operational increment (OI) of the code that flew

multiple Space Shuttle missions [3].

1.3 Software Failure Modes

A logical progression of predicting software reliability starts

with the anticipated Failure Mission Scenarios (FMS) and

progresses through a set of software failure modes that are

determined based on what could cause the designated

scenarios. Then the portion of the code that could cause each

of the failure modes is determined and a historical failure rate

for the apportioned code, adjusted for space launch craft, is

applied to the failure modes. The numeric SLOC was

determined to be the common measurement to relate the

Space Shuttle failure rates with predictive space launch craft

values. Software contributions to these FMS can account for

distinct failure modes and are considered to be mutually

exclusive.

Most space launch vehicles’ software uses some form of

ARCINC 653 specification [1] that provides some resiliency

in safety-critical application by partitioning major functions.

Each partition acts separately and can fail without harming

other partitions. Next, the Flight Software (FS) structure is

segregated into functional partitions that are made up of one

or more modules. Each partition is a functional construct that

is also directly related to a computer process (i.e., each

partition has its own process) that is monitored by the

operating system. Software failure modes can be caused by

a specific failure of either code in a set of partitions or

modules depending on their function. Using this approach, a

total SLOC can be determined for each failure mode. Fig. 1

represents a representation of different failure modes and

their definitions. As can be seen in Fig. 1, some partitions or

modules may cause different software failure modes to occur.

For example, a management partition includes the time and

mode manager modules. Therefore, an early command

software failure (error in the management partition) and loss

of communication (requires an increment in the time stamp

from the time manager module) could potentially be caused

by loss of functionality of the management partition. When

the SLOC for the same partition is accounted for in multiple

3

failure modes it should be noted that the total software failure

rate needs to be normalized such that the total SLOC of

critical code equals the total software failure SLOC to avoid

double counting.

Software

Failure Mode

Associated

SW Module

1

Associated

SW Module

2

Associated

SW Module

3

Associated

SW Module

4

Associated

SW Module

5

Associated

SW Module

6

Associated

SW Module

7

Software

conversion /

corruption data

for control

Data Out
GNC

Module

Last good data

on BUS (stale

data) causes a

fail in place

Input Data

Exchange

Output Data

Exchange

Application

Partition
Data Out Data In Infrastructure

Command

Partition

Loss of

communication

of flight

computers

Communication

Module

Management

Partition

Software data

causes a loss of

control

environment

GNC Module

Software does

not execute a

command

Application

Partition

Management

Partition

Software

command is

early or late

Management

Partition

Figure 1. Notional Software Failure Modes and Associated Partitions

1.4 Maturity Ranges

It is recognized that software tends to mature over time and

when it is applied under different scenarios errors often get

recognized and removed. New functionality or

modifications that represent a new release also introduce

new errors. There is often an accounting between finding

errors and introducing new errors to determine the current

defect density of the code at any given time. This can be

clearly seen and calculated in the PASS report [2].

The PASS report divides the failures and ultimately the

defect densities into three broad ranges that represent the

PASS reliability growth curve for the Space Shuttle. These

include an immature, mid-mature, and mature failure rate of

the software. An immature range would represent first

flight, whereas the mid-mature range/defect density may

characterize reuse of some systems for flight. In keeping

with the Space Shuttle methodology and providing software

reliability predictions for different needs of reliability

development, three levels of maturity are calculated for the

avionics software. In effect, the ranges represent the

uncertainty of the total reliability curve over time.

2. UNCERTAINTY BOUNDS

Ironically, the testing data collection was more defined and

structured at the end of the Space Shuttle’s mission life and

represents the best data (least uncertain) collected. The

probability of a SLOC leading to a Severity 1 error includes:

the total defect probability; the probability the error makes

it through three different testing schemes; the probability the

error is on the flight; the probability the error is a Severity 1

error; and the probability that the backup computer fails to

be effective in the scenario. Errors and operations found at

the three different levels of testing are inputs into a beta

distribution in the PASS report and portray an increase in

uncertainty as the testing levels increase (initial testing to

final testing) due to the decrease in total operations and

errors respectively as one would anticipate. These

parameters and their uncertainty are shown in Fig. 2.

2.1 Software Distributions

The avionics software prediction uses the same approach to

define uncertainty about the mean. A representative

depiction of the uncertainty for avionics software is seen in

Fig. 3 for the three different ranges.

4

Figure 2. Notional Example of Uncertainty Ranges for Software Risk Elements Determining SLOC Failure Rate

5

Figure 3. Notional Calculation and Uncertainty for a 100 KSLOC Across Maturity Levels

Actual NASA values are not shown in this paper, although

the uncertainty represents an accurate range for the

associated maturity levels. The uncertainty charts were

developed in R [4] using a 5,000 Monte Carlo sampling

routine. The uncertainty, as denoted by an error factor of the

mature level, is about 3.2. The uncertainty is on the low side

due to the size of the data sets and accounts for additional

uncertainty of the adjustment factors (mentioned above) that

apply the software failure rates from Space Shuttle to new

space launch craft. Uncertainty increased for earlier data

represented by Immature and Mid-Mature values because the

latter (Mature) data sets in the Space Shuttle were collected

more according to the testing schemes. Hence the Immature

and Mid-Mature values were derived from the Mature data

set.

3. TESTING

When hardware design modifications, such as adding

computer redundancy or an independent backup computer,

are limited and organizational and team expertise are

established, the ability to reduce software unreliability via

defect rates relies often on testing. One unique aspect about

modern space craft avionics is that all flight computers may

act as a voting group and run the exact same versions of the

software on each computer. Therefore, an avionics software

error will be apparent on all computers defeating the

hardware redundancy.

Testing provides a manner to reduce the defect density

theoretically to zero using some popular prediction methods

[5]. Although theoretical values may be based on an

elongated schedule, reality provides limited testing and

assumes that some errors make it through even the best

testing schemes and practices. The likelihood of this

occurring increases with code complexity. Applying a set of

metrics to testing and data collection is an initial task. The

more challenging effort is in assessing the quality of the tests.

Based on the complexity of the space launch craft flight and

phases, the number of FMS combinatorial failures are far

more numerous than can be tested with-in schedule. PRA

can both support the testing schemes and, as test results begin

to emerge, use the results to hone software reliability

predictions.

With the potential for an inordinate number of potential

scenarios for modern space launch craft due to the

complexity of the systems and subsystems, the prioritized

ranked risk of each avionics FMS scenario is an obvious

6

starting point for testing. Testing should include these top

scenarios for functional testing. Each avionics FMS scenario

provides associated logic and identifies specific software

failure modes. Therefore, component and integrated testing

can also benefit from the PRA logic models.

Course adjustment testing presents a facet in testing that is

less practiced. As defects are revealed and tracked, the

opportunity to provide feedback to how defects manifest to

specific software failure modes becomes possible. Use of a

Bayesian updating technique where prior distributions are

developed from the Space Shuttle historical data and the

posterior distribution includes space launch craft testing

results would improve predictions.

4. CONCLUSION

Software reliability predictions are a very difficult and

challenging aspect of space flight engineering. Historical

data can provide an alternative to demonstrated reliability

information for critical systems under development given

that the systems and approaches are similar. For the avionics

system, the use of Space Shuttle avionics data provides a

basis for predicting avionics software and a method for

quantifying software specific failure modes. Maturity and

uncertainty values provide a probabilistic approach to new,

similar, or hybrid systems.

This approach has the potential to be generalized/ tailored for

other aerospace or industrial operations. Applications to

other industries would need to establish uncertainty bounds

for the specific application applicability. Critical aspects of

this approach are the determination of software failure modes

and the identification of the relationship between the

software architecture and these failure modes, which

provides a basis for applying historical data. PRA can use

this approach to conduct case studies and to aid in abort

trigger assignments and priorities. As testing progresses and

defect data is collected, PRA has the potential to provide

course correction to the testing team.

REFERENCES

1. Wind River Systems/IEEE, ARCINC 653 – An

Avionics Standard for Safe, Partitioned Systems,

August 2008

2. Pham, Hoang, System Software Reliability,

Springer Science and Business Media, April 21,

2007, pg 122

3. Russell Robin, Thompson Nelson, Zhu Shangyi,

NASA Primary Avionics Software System (PASS)

Probabilistic Risk Assessment, SSMA-08-011

Rev. B, August 27, 2010.

4. R-Statistical Software Project

5. Neufelder Ann Marie, Software Reliability Toolkit

for Predicting and Managing Software Defects,

Copyright, SoftRel, 2006.

7

Biography

Author – Steven Novack

Mr. Novack received his B.S. degree in Physics from the University of Washington and completed course work

in an M.S. Environmental Engineering from Idaho State University. He has worked in the area of Quantitative

and Probabilistic Systems Analysis and Reliability for 34 years. Prior to his work as the PRA technical Lead

for the Space Launch System (SLS) Safety and Mission Assurance (SMA) contract at NASA’s MSFC , Mr.

Novack worked as an Advisory Scientist and then Program Manager for 20 years at the Idaho National

Laboratory (INL). He also performed probabilistic risk assessments (PRA) as a Principal Analyst at Energy

Incorporated, and EBASCO Environmental in Seattle. Mr. Novack has led or participated in multiple PRA

software programs including the EI PRA workstation, the Ecological Risk Assessment Program (EcoRAP), the

INL Risk Monitor, the Virtual Risk Reliability Availability Maintainability Program (VRAM). He has

programming experience in Fortran, C, Visual Basic.Net, and Pascal.

Co-author-Adam Harden

Adam J. Harden currently works for Bastion Technologies, Inc. as a Probabilistic Risk Assessment (PRA) Engineer to

support NASA Safety and Mission Assurance for Space Launch System (SLS). His primary responsibilities include PRA

analyses for SLS core stage and exploration upper stage avionics as well as the flight termination system.

Previously, Harden was a PRA Engineer for Scientech, a Curtiss-Wright company, in Tukwila, Washington (2013-2017)

and for PKMJ Technical Services, located on-site at Davis-Besse Nuclear Power Station, in Oak Harbor, Ohio (2010-2012).

Harden graduated with a Bachelor of Science in electrical engineering from Michigan State University in 2008.

8

Co-author Mohammad Al Hassan

Mohammad Al Hassan currently works for NASA Safety and Mission Assurance (SMA) Directorate as a Reliability

engineer under the Space Launch System (SLS) Stages Branch. His primary responsibilities include insight and oversight

of the SLS launch vehicle primary contractor, Boeing. Prior to this role, Al Hassan was a Probabilistic Risk Assessment

analyst working on SLS core stage, booster avionics and flight termination system.

Previously Al Hassan was an electrical circuit analyst in the Risk-Informed Engineering Department for Southern Nuclear

Company in Birmingham, Alabama. Al Hassan obtained a Bachelor of Science in electrical engineering from The

University of Alabama at Birmingham.

Co-Author Steven Kossow

Steven Kossow currently works for Bastion Technologies in the NASA Safety and Mission Assurance (SMA) Directorate

as a System Safety Engineer. His primary responsibilities include performing and documenting hazard analyses on both

systems and software associated with the Space Launch System (SLS) and working with system and design engineering to

implement hazard controls into the design to prevent the occurrence of identified potential vehicle mishaps. Prior to this

role, Mr. Kossow was a System Safety Engineer for several Department of Defense contractors working on a variety of

systems. Mr. Kossow earned his Bachelor of Science in Electronics Engineering Technology from DeVry Institute of

Technology in Phoenix, Az and his Master of Science in Systems Engineering from San Jose State University in San Jose,

CA.

