
Astrobee Robot Software: Modern Software System for Space

Lorenzo Flückiger1, Kathryn Browne1, Brian Coltin1, Jesse Fusco2,
Theodore Morse1, Andrew Symington1

1 SGT Inc., NASA Ames Research Center, Moffett Field, CA, 94035
2 NASA, NASA Ames Research Center, Moffett Field, CA, 94035

Emails: lorenzo.fluckiger@nasa.gov; kathryn.browne@nasa.gov; brian.j.coltin@nasa.gov;

theodore.f.morse@nasa.gov; andrew.c.symington@nasa.gov

ABSTRACT

Astrobee is a new free-flying robot designed to op-
erate inside the International Space Station and perform
surveying, monitoring, sensing and scientific tasks. As-
trobee’s capabilities include markerless vision-based nav-
igation, autonomous docking and charging, perching on
handrails to preserve energy, and carrying modular pay-
loads. Its open-source flight software is based on the
Robot Operating System, and runs on three interconnected
smart phone class processors. We present an architectural
overview of this software and discuss the lessons learned
over the development life cycle. A key feature of this
software is a programming interface that enables research
teams to integrate their projects with Astrobee. We high-
light several research projects that are already using this
interface to develop and test novel ideas that may ulti-
mately end up as on-orbit experiments aboard Astrobee.

1 INTRODUCTION
Astrobee is a new class of free-flying robot shown in

1 that is being developed by NASA to perform a range
of functions inside the International Space Station (ISS).
Astrobee’s propulsion system uses impellers to actively
compress air into a chamber, which it then carefully redi-
rects through one of six nozzles. Each Astrobee has two
propulsion modules to provide full holonomic control of
the platform. Three Astrobees and a supporting dock will
be launched to the ISS towards the end of 2018.

Astrobee packs a tremendous range of sensing, pro-
cessing and networking capabilities into a one foot cube
[1]. Driving these capabilities is open-source flight soft-
ware running on three interconnected processors that in-
teracts with seven micro-controllers, six cameras, two
propulsion modules, and numerous other peripherals.
This software enables Astrobee to navigate safely, per-
form autonomous docking and recharging, as well as
perch on handrails to conserve energy. This paper focuses
on this flight software, and describes the objectives and
requirements driving its design, the implementation ap-
proach, and the lessons learned from its development.

Figure 1. : A rendering of Astrobee in the International
Space Station showing the perching arm deployed.

The Astrobee Robot Software1 provides localization
and mobility control, orchestrates the various software
and hardware components, supports multiple modes of
operation and accommodates external researchers’ – re-
ferred to as guest scientists – software. The Robot Oper-
ating System (ROS) is used for all internal communication
while the Data Distribution Service (DDS) handles exter-
nal communication. The Astrobee Robot Software also
provides a powerful Gazebo-based simulator and tools for
building and deploying to embedded processors.

Astrobee flight software takes advantage of technolo-
gies seen in terrestrial and aerial mobile robots, but also
addresses challenges unique to the space environment:
• The lack of gravity and unconventional interior of

the ISS preclude localization techniques that exploit
GPS, gravity, and prior maps from being used.

• Even though ISS can provide high bandwidth com-
munications, the software must be resilient to fre-
quent Loss Of Signal (LOS) and high latency.

• Although certified safe at the hardware level, flight
software must maximize software reliability to min-
imize crew interventions.

• Astrobee robots are not serviceable by an expert on
orbit, and thus the system needs to support complete
remote software maintenance and introspection.

1Available online: https://github.com/nasa/astrobee

https://github.com/nasa/astrobee


This paper is organized as follows. We first describe
the Astrobee robotic platform, then the software archi-
tecture and components, and finally the lessons learned.
The Astrobee Robot Software has been released under the
Apache-2 Open Source license. This enabled early access
by future guest scientists. We will describe how three ex-
isting projects are using the software in the lessons learned
section.

1.1 Related Work
Flying robots on earth have to overcome the strong

gravity and thus have quite different constraints than free-
flyers on the ISS. Multi-rotors drones however tackle
some similar problems to Astrobee in terms of packing
computing performance in a lightweight package and lo-
calizing in an unstructured environment.

The JAXA Intball has demonstrated remote camera
capabilities with success [2]. IntBall is much smaller than
Astrobee, contains a miniaturised propulsion and con-
trol system and can be sent motion commands from the
ground. CIMON from DLR [3] is about Astrobee size,
with a focus on delivering AI capabilities to assist Astro-
nauts. Both IntBall and CIMON are currently designed
to be permanently crew tended and limited to operate in
a single module. These robots also use visual markers to
localize (Intball) or seed localization (CIMON).

NASA’s Robonaut [4] is not a free-flyer, but another
complex robot residing in ISS, which bears many similari-
ties to Astrobee in terms of software. Robonaut uses ROS,
is deployed on multiple computers and relies on a vision
system to perform tasks like grasping handrails.

The SPHERES free-flyers robots[5] are one of the
most used payloads on the ISS and have supported nu-
merous micro-gravity research experiments over the last
ten years. The SPHERES software is focused primarily on
control problems and limited by the microcontroller used.
Our group has previously developed SmartSPHERES [6],
a SPHERES payload based on a smart phone, demonstrat-
ing what capabilities are possible with a more powerful
computing platform.

2 THE ASTROBEE PLATFORM

2.1 Motivation
The Astrobee project is inspired by the AERCam [7]

and PSA [8] space free-flyers. Astrobee is often consid-
ered a SPHERES replacement since it uses rechargeable
batteries (no consumables that need to be up-massed), of-
fers a modern computing platform, and does not require
crew to perform its missions. Three typical scenarios en-
visioned for Astrobee show that a fundamentally new de-
sign is required:

Mobile Camera: Astrobee allows ISS Flight Controllers
to monitor crew operation with an HD video stream.

Autonomous Survey: Astrobee carries a payload (i.e.,
an air quality sensor) and can perform a multi-hour
survey of some environmental parameters in ISS.

Research Hosting: Guest scientists conduct experiments
in microgravity (i.e., Human Robot Interaction ex-
periment) with a software and/or hardware payload
on Astrobee.

The software features required to support these sce-
narios include:

• Localization throughout the U.S. Orbital Segment
(USOS) of the ISS without extra infrastructure.

• Precise motion planning and execution with safe-
guards against known and unknown obstacles.

• Control and monitoring from the ground with re-
silience to loss of communication.

• Support for multiple control modes, including re-
mote teleoperation, autonomous plan execution and
on-board control by guest science software.

• Dock (and undock) autonomously to recharge and for
wired communications.

• Perch autonomously on an ISS handrail for power
saving and pan/tilt camera.

• Manage guest science software, hardware payloads,
and user interface components.

• Provide a control station application to command and
monitor the Astrobee robot remotely. The control
station is not addressed in this paper.

2.2 Hardware
The Astrobee project will deliver three free-flyer

robots and one dock to the ISS. The dock is equipped with
two berths on which the Astrobee robot can mate to ob-
tain power and Ethernet connectivity. The dock is also
equipped with an embedded computer that monitors the
berths and Astrobee’s status while in hibernate mode. Fi-
nally, the dock computer facilitates software updates on
the robot.

Each Astrobee is equipped with three smartphone
class ARM processors communicating through an Ether-
net network as shown in Fig. 4. The “Low Level Pro-
cessor” (LLP) runs the pose estimator, the motion con-
trol loop and communication with key hardware like the
Inertial Measurement Unit (IMU) or the Power Manager.
The “Mid Level Processor” (MLP) is responsible for com-
putationally intensive computer vision and mapping algo-
rithms. Thus the MLP is connected to two color imagers



Figure 2. : Rendering of an Astrobee Flight Unit equipped with its perching arm, with nomenclature of its main external
hardware components.

(NavCam and DockCam) and two depth imagers (Haz-
Cam and PerchCam). The MLP is also responsible for
communication with the ground and the fault management
system. The “High Level Processor” (HLP) is dedicated
to guest science applications developed by external aca-
demics and commercial researchers. The HLP also man-
ages the human-robot interaction devices like the SciCam,
Touchscreen, Speaker and Microphone. The locations of
the sensors and actuators are shown on Fig. 1.

The Astrobee robot moves using 12 nozzles placed
on two propulsion modules that sandwich the core com-
puting module. The nozzles push out air that has been
pressurized in each module’s plenum by an impeller. The
design of using only two large impellers minimizes the
sound level, but causes other control challenges like a high
latency to acquire the desired pressure at startup.

Finally, the Astrobees are normally equipped with a
perching arm allowing them to grasp ISS handrails and
transform the free-flying robot into a remote pan-tilt cam-
era.

3 SOFTWARE ARCHITECTURE
AND COMPONENTS

The Astrobee Robot Software relies on a modern ap-
proach of software development: the system is composed
of a set of distributed, loosely coupled and highly cohe-
sive components. This is implemented in practice by ˜46
ROS nodelets2 running on three CPUs. The dependencies

2 From the ROS manual: “nodelets are designed to provide a way to
run multiple algorithms on a single machine, in a single process, with-
out incurring copy costs when passing messages intraprocess”. The As-

between nodes are always kept to a minimum by defin-
ing clear responsibilities for each sub-systems. Fig. ??
shows the distribution of the main components on the As-
trobee processors. The Astrobee Robot Software is writ-
ten in C++ for its high-level constructs, ROS support,
and high performance. The LLP and MLP processors
run Linux (Ubuntu 16.04 LTS) because of its widespread
use and the availability of software packages (particu-
larly ROS) for this distribution. Astrobee does not use
any Linux real-time kernel extension. The tightest con-
trol loop (GN&C) runs on the LLP at 62.5Hz with accept-
able jitter. Motor control is done with dedicated micro-
controllers. The code is developed on personal computers
with the same version of the OS. Algorithms are tested
on developer computers in the simulator, then the code is
cross-compiled for the target ARM platform. The HLP
processor, however, runs Android (Nougat 7.1) because
it is the only OS supporting some key hardware for As-
trobee (the HD camera, Video Encoder and Touchscreen).
Android allows for the encapsulation of guest science soft-
ware for the HLP as Android Packages (APKs), avoiding
custom deployment and management methods.

3.1 Middleware
The interactions between the various Astrobee soft-

ware components rely solely on the ROS communication
framework. ROS messages are used for data distribution,
ROS service calls for simple requests (i.e., turning a light
on/off) and ROS actions for control of non atomic oper-
ations (i.e., a motion that has a certain duration). The
use of ROS nodelets and judicious grouping of large data

trobee Robot Software nodelets are grouped into ˜14 ROS nodes.



producers and their consumers permit zero-copy message
passing for high efficiency. For example, the cameras
drivers and the vision algorithms transfer images without
going through the network layer by running as part of the
same node. The nodelet concept is so essential to the As-
trobee Robot Software that we developed our own nodelet
specialization that offers common functionalities. The As-
trobee nodelet encapsulates a unified naming scheme, life-
cycle control for the nodelet, a heartbeat mechanism, and
fault management. These features, which are typically ex-
pected of reliable space software, are thus automatically
available for the whole system.

Communication between one Astrobee and the out-
side world (control stations or other Astrobees) does not
rely on ROS. Instead, RAPID [9] and the Data Distribu-
tion Service (DDS) are used. RAPID has been used pre-
viously to both control robots on Earth from space ([10])
and robots in space from Earth ([6]). A middleware with
powerful Quality Of Service (QoS) capabilities combined
with sufficient robot autonomy allows for reliable teleop-
eration over degraded networks [11]. Compared to ROS,
DDS allows for a much finer control of the bandwidth
usage and offers delay tolerance through manipulation of
QoS per topic.

3.2 API

Astrobee offers multiple control modalities that can
be mixed during a single session.

Teleoperation from a control station where commands
are sent from either ground control or an ISS laptop.

Autonomous plans where the onboard Executive con-
trols the execution of a sequence of actions.

Guest Scientists Applications where guest software on
the HLP controls Astrobee behavior.

As described in the previous section, the communi-
cation between on-board components relies on ROS. The
Astrobee Robot Software maximizes the re-use of ROS
standard messages to leverage other tools offered in the
ROS ecosystem. However, Astrobee has numerous non-
conventional subsystems, hence a set of custom messages
has been crafted. The combined standard and custom ROS
message definitions define the internal Astrobee API.

Every command coming from outside the core soft-
ware (control station or HLP guest science application) is
filtered by the Executive as shown in Fig. 3. A JSON-
based command dictionary describes all commands and
their arguments. This command dictionary is processed
by translators that create 1) set of DDS based commands
(using the RAPID framework) for external control, and 2)
a Java API for guest science control. This system provides
a unified API to Astrobee users.

HLP

DDS Bridge

Operator Access 
Control

Executive

SubsystemSubsystemSubsystems

Guest Science 
App (HLP)Control 

Station

ROS messages

ROS
messages

RAPID Commands
(DDS)

RAPID Msgs
(DDS)

ROS
“Command”

ROS
“Command”

Services, Actions
or Topics (all ROS)

MLP
LLP

ISS or Ground

Figure 3. : Unified Command and Telemetry within As-
trobee core system (LLP and MLP) and external applica-
tions (Control Station and/or HLP).

3.3 Infrastructure

Astrobee software and firmware will need to be up-
dated while aboard the ISS without Astronaut support or
external equipment. All the microcontrollers run a custom
bootloader allowing for a safe firmware update from the
host processor. The HLP processor running Android is up-
dated via network from the MLP using standard Android
tools (fastboot). The MLP and LLP processors have a
more complex OS update mechanism using a rescue parti-
tion that is updated via wired network from the Dock. The
Linux image creation for the ARM processors is based on
a set of custom tools that guarantee consistency between
the development OS (running on laptops) and the mini-
mal OS running on the embedded processors. For reliabil-
ity purpose, the Linux OSes use a read-only file-system.
All the processors, but HLP, are using the exact same OS
image, and the customization per robot/processor is in-
jected with an overlay partition containing robot specific
information (like IP addresses). Finally, the Astrobee free-
flyers exhibit a complex network shown in Fig. 4 that re-
quires elaborate routing and firewalls.

3.4 Simulator

An essential part of the Astrobee Robot Software is
the simulator. The simulator serves both the Astrobee de-
velopers and guest scientists to test software before de-
ploying it on the physical robot. The simulator simu-
lates the robot propulsion system, perching arm, color
and depth cameras, IMU, and environment. The Astrobee
simulator is based on the Gazebo dynamic simulator with
a number of custom plugins. For every software driver
(code communicating with a hardware device), a Gazebo
plugin has been created. For example, ROS messages
commanding the propulsion system are consumed by a
custom Gazebo plugin that convert commands into result-
ing forces applied to the robot. This plugin uses a high fi-
delity model of the blower/nozzles system. The resulting



Astrobee Freeflyer Robot

Astrobee Dock

International Space Station, US Segment

Astronaut Laptop

NASA Ames Multi Mission Operation Center

Ground Computer

Other Centers (NASA or Guest)

Ground Computer

«Inforce 6601»
HLP
Android 7.1

Guest Science Apps
HRI Devices HLP

«wifi»

«Inforce 6501»
MLP
Ubuntu 16.04

Vision based localization
Mobility system
Obstacle detection
Executive
Faults Management
Color and Depth cameras

MLP

«wifi»

«Wandboard Dual»
LLP
Ubuntu 16.04

EFK
Motion Control
Hardware Devices

Network Switch

Astrobee

«eth»

«Wandboard Dual»
Dock Computer
Ubuntu 16.04

Docked Robots Mgt.
Software Repository
Software Update

Network Switch

Dock LAN

«eth»

Berth1

«eth»

Berth2

«eth»

ISS Payload LAN

AB Port

«eth»

ISS

«wifi»

Control Station

Ku‐Band

Ground
Antenna

Astrobee
Data
Storage

Control Station

Control Station

real

empty

space

Ground Networks

Figure 4. : Connectivity of the Astrobee robot with the Astrobee Dock and ISS network, including communication paths
to the ground.

forces are used by Gazebo to compute the dynamic mo-
tion of the robot. An ISS CAD model provides a visual
environment for the simulator. Camera models generate
images that can be consumed by the robot nodes.

The simulator allows the control system to run at its
target rate of 62.5Hz and simulates realistic localization
measurements for the localization algorithms. The simu-
lator can run either at wall clock time, or as fast as the sim-
ulation computer permits (10 times speedup on a desktop
computer with good graphic card). Our architecture al-
lows users to transparently run all components either in
simulation or on the Astrobee, or as a mix of simulation
with hardware processor(s) in the loop.

3.5 Software Components

Fig. 5 show the main software components dis-
tributed on the three processors.

3.5.1 Management

The executive filters incoming commands as a func-
tion of their sources and the current operating mode (tele-
operation, plan execution or guest science). DDS com-
mands issued from the ground are transformed into ROS
commands by the DDS bridge (see Fig. 3). The DDS
bridge also subscribes to all the ROS messages useful for

real time monitoring, and transmits them to the ground at
a controllable rate as DDS messages.

The Astrobee Robot Software uses a distributed fault
management framework. The system monitor collect
faults information from every node and responds accord-
ing to a fault table. The distribution of faults keeps the
responsibility for fault detection and analysis together
within the subsystem concerned.

The Astrobee Robot Software provides a common
framework to support and manage Guest Science appli-
cations developed by external users. The guest science
manager works in concert with the executive to control
the life-cycle of guest science applications. The guest sci-
ence library seamlessly integrates the guest science man-
ager and the guest science APKs. The Astrobee Java API
library encapsulates the command dictionary and allows
guest science APKs running on Android to harmoniously
communicate with the Astrobee flight software.

3.5.2 Mobility

The mobility subsystem is responsible for the safe
motion of the free-flyer. It executes desired trajectories
and ensures that Astrobee is respecting a set of tolerances.
Trajectories can be synthesized on the ground using the
control station, or dynamically created onboard using tra-
jectory planners. The system uses a plugin-architecture
to switch between path planners. For example, the default



path planner generates trajectories respecting the same
constraints (straight translations and facing forward) as
the control station. A second planner creates smooth, opti-
mal trajectories around obstacles [12] and can be selected
at runtime without affecting the rest of the system.

The mobility subsystem is also responsible for obsta-
cle detection. It creates an octree-based occupancy map
from the Hazcam depth camera. It then validates tra-
jectories in this map. The map is augmented with pre-
configured keep-out zones that can be defined for each
mission scenario.

3.5.3 Localization

Astrobee’s localization relies on a pose estimator that
integrates measurements from a variety of sources de-
pending on the robot’s localization mode:

1. The general purpose localization uses the forward
facing camera NavCam with a wide 120 field of view.
Visual features from a pre-built map of the ISS allow
a position error lower than 5 cm in the nominal case.

2. When docking, Astrobee uses the back pointing cam-
era DockCam with a 90 field of view. Artificial mark-
ers positioned on the dock allow a reduction in the
localization error to a sub-centimeter level.

3. For perching on handrails, Astrobee uses the time of
flight camera PerchCam. 3D features are extracted
from the depth image and fed to the pose estima-
tor.[13].

4. A visual odometry algorithm that keeps track of fea-
tures across the most significant 16 frames contribute
to the stability of the localization.

See [14] for further details about Astrobee’s localiza-
tion algorithm.

3.5.4 Control

Astrobee’s motion control subsystem runs on the LLP.
By limiting the number of processes running on this pro-
cessor, the close loop control has a jitter lower than the ac-
cepted tolerance. The control subsystem is developed us-
ing Simulink. C code is auto-generated with the Simulink
buses being mapped to input/output data structures. The
auto-generated code is wrapped into ROS nodes that in-
tegrate seamlessly with the rest of the system. The
parametrization of the control models uses the same con-
figuration files that are used natively in through the rest
of the Astrobee Robot Software. This method allows As-
trobee to capture the expertise of control domain experts
while integrating well into the ROS ecosystem.

The control subsystem includes three main compo-
nents that are connected by ROS interfaces:

1. An Extended Kalman Filter (EKF) implements the
pose estimator described above.

2. The Control (CTL) algorithms realize the closed
loop control of Astrobee.

3. The Force Allocation Module (FAM) translates
forces and torques produced by CTL into actual
propulsion nozzle commands.

This decomposition allows advanced users to replace
a single component (typically CTL) with their own algo-
rithms, while still benefiting from the other components.

4 LESSONS LEARNED

4.1 Software infrastructure cost

Many aspects of the Astrobee Robot Software, like
the localization methodologies or trajectories planning,
are innovative in the field of robotics and thus involve sig-
nificant research. Furthermore, the software infrastructure
itself is key to a successful deployment and comes with its
own innovations to accommodate the distinctive Astrobee
platform. Because of design constraints and hardware
availibility, Astrobee computing elements are not identi-
cal. Only the LLP and the Dock Computer are using the
same “System On Module” (SOM3). The MLP and HLP
are two other SOMs from a different vendor. Even though
the Linux distributions used are the same, numerous Linux
kernel customizations are required for each SOM. In addi-
tion, Astrobee runs both Linux and Android which forces
the team to acquire expertise with two development envi-
ronments and create different tools to maintain each sys-
tem. This heterogeneous hardware platform taxes soft-
ware development effort. Finally, the cell phone technolo-
gies that allow Astrobee to provide the desired capabili-
ties in this form factor introduce additional problems. The
pace of the cell phone industry is much faster than the
pace of a project like Astrobee which spans over more
than 3 years: products like SOMs or HD cameras become
obsolete before the project is mature enough to commit
acquisition in sufficient quantities. This forces software
adaptations costing time, without mentioning likely hard-
ware changes.

4.2 Platform optimization

The use of an embedded computing platform for com-
putationally intensive algorithms necessitates extracting
all the potential from the hardware. For example, despite
Simulink generated code optimizations, the performance

3 The SOM include CPU, GPU, memory and peripheral like I2C,
USB and network adapters.



Function Coder Eigen Improvement
of residual and h 87.0 s 2.0 s 98% (43x)
delta state and cov 22.5 s 3.5 s 84% (6x)
covariance multiply 18 s < 2 s 89% (˜10x)

Table 1. : Performance of some time consuming functions
using the Mathworks Simulink Coder compared to hand
written code using the Eigen library. The times are totaled
over the run of a recorded data set.

of some functions have been drastically improved by us-
ing Eigen [15] efficiently, as show in Table 1. This is pos-
sible thanks to the efforts that Eigen developers invested
into optimizing the library with the accelerated NEON in-
struction set of the ARM processors.

The MLP SOM also offers a Graphical Processing
Unit (GPU) that could be used to optimize further some
Astrobee code. Image processing algorithms are typically
well suited for this type of hardware acceleration. Un-
fortunately, drivers for this GPU are not available under
Linux at this time. However, in the future, we will con-
sider improving the obstacle detection and mapping algo-
rithms using the GPU.

4.3 Open Source

Open-sourcing the Astrobee Robot Software was a
requirement from project inception. Our group is a
pioneer from within NASA in terms of making our
software projects available to outside communities via
Open Source licenses. The Astrobee Robot Software is
classified as Class-C4 , non-safety critical software and
thus is subject to the NASA 7150.2B requirements [16].
While less flexible than academic institutions, the rigor-
ous NASA Open-Source process reviews projects to re-
lease with respect to these requirements. Releasing the
Astrobee Robot Software under an Open Source license
allows all existing or potential users of the Astrobee plat-
form to access the code without putting in place any li-
censing contracts with NASA.

Making Astrobee Robot Software open source brings
another benefit by fostering synergies with other open-
source projects. For example, rather than pure “users” of
ROS and Gazebo, our project now contributes ideas and
code to the community and software patches are more eas-
ily exchanged.

The Astrobee Robot Software could not have been de-
veloped by a small team without extensive use of open
source software. Table 2 lists a subset of key soft-
ware packages which saved numerous man-months for the
project.

4 NASA define class C as: “Mission Support Software or Aeronautic
Vehicles, or Major Engineering/Research Facility Software”

ROS Robot Operating System
Gazebo C++ robot simulator
OpenCV Open Source Computer Vision
Eigen C++ template library for linear al-

gebra
SURF Speeded-Up Robust Features
BRISK Binary Robust Invariant Scalable

Keypoints
DBoW2 bag-of-words library for C++

Table 2. : Subset of Open Source packages used by the
Astrobee Robot Software. The full list of dependencies is
available at https://github.com/nasa/astrobee

4.4 External Users

Three selected use cases illustrate how existing As-
trobee Robot Software users are interfacing with the sys-
tem.

4.4.1 Pure Simulation

The MIT ZeroRobotics project [17] is transitioning
from its use of the SPHERES free-flyer to the Astrobee
free-flyer. In the first phase of the transition, ZeroRobotics
will develop a game framework using the Astrobee simu-
lator and the Astrobee Java API without an Android sys-
tem.

4.4.2 Controller Algorithms

Collaboration with the Naval Postgraduate School
in Monterey is leading to control algorithms to perform
aerial maneuvers using a manipulator. In this scenario, the
researchers replace the Simulink control with their own
model. They also contributed an additional Gazebo plu-
gin to handle the perching mode of Astrobee.

4.4.3 Hardware payload

The REALM team at NASA JSC is developing a radio
frequency identification (RFID) system for autonomous
logistic management [18]. REALM-2 will become the
first hardware payload on Astrobee. For this scenario, the
REALM team is developing a guest science application
running on the HLP. To develop their system before the fi-
nal Astrobee becomes available, the team acquired a HLP
development kit which they can connect their hardware
payload to. The HLP development kit can be connected
to a computer running the Astrobee simulator. This setup
offers high fidelity testing with hardware in the loop.

https://github.com/nasa/astrobee


5 CONCLUSION
The Astrobee Robot Software manages a powerful but

complex hardware platform. Adopting a dual middleware
approach allows us to take advantage of ROS onboard
while respecting space network constraints. We hope in
the future to transition to a unified middleware with ROS-
2 using DDS as a transport layer. The software infrastruc-
ture for the Astrobee project is key for space deployment
and maintenance and represents a significant fraction of
the effort. Embracing ROS provides both a reliable dis-
tributed system and access to tools like Gazebo that are
part of the ROS ecosystem. We demonstrated that a prop-
erly crafted ROS based software system delivers a benefi-
cial solution for an embedded robotic platform. The As-
trobee robot prototype has been operated numerous hours
without being hampered by the lack of real time operating
system. The software components developed enable:

• remote and on-board commanding, execution and
monitoring of the robot

• support for guest science applications with a unified
API

• markerless localization and navigation in a ISS like
environment

• flexible management of hardware resources with
ROS enabled drivers

• faster than real time simulation with an abstraction of
the hardware drivers

The Astrobee Robot Software has reached a level of
maturity that has allowed its release by NASA as an open
source project. This permitted an easy access to several
guest scientists developing experiments for the Astrobee
platform on ISS. Researchers can interact with the As-
trobee Robot Software at various level depending on their
need. As the Astrobee robots are commissioned aboard
ISS late this year, we hope that our software will open
opportunities for new exciting research.

REFERENCES
[1] Trey Smith et al. “Astrobee: A new platform for

free-flying robotics on the international space sta-
tion”. In: International Symposium on Artificial
Intelligence, Robotics, and Automation in Space
(iSAIRAS). 2016.

[2] JAXA. First disclosure of images taken by the
Kibo’s internal drone ”Int-Ball”. url: http : / /
iss.jaxa.jp/en/kiboexp/news/170714_

int_ball_en.html (visited on 07/14/2017).

[3] DLR. CIMON - the intelligent astronaut assistant.
url: http : / / www . airbus . com / newsroom /
press- releases/en/2018/02/hello-- i-

am-cimon-.html (visited on 03/02/2018).

[4] Julia Badger et al. “ROS in Space: A Case Study on
Robonaut 2”. In: Robot Operating System (ROS).
Springer, 2016, pp. 343–373.

[5] Swati Mohan et al. “SPHERES flight operations
testing and execution”. In: Acta Astronautica 65.7-
8 (2009), pp. 1121–1132.

[6] Mark Micire et al. “Smart SPHERES: a Telerobotic
Free-Flyer for Intravehicular Activities in Space”.
In: AIAA SPACE 2013 Conference and Exposition.
2013, p. 5338.

[7] Trevor Williams and Sergei Tanygin. “On-orbit
engineering tests of the AERCam Sprint robotic
camera vehicle”. In: Spaceflight mechanics 1998
(1998), pp. 1001–1020.

[8] Gregory A Dorais and Yuri Gawdiak. “The per-
sonal satellite assistant: an internal spacecraft au-
tonomous mobile monitor”. In: Aerospace Confer-
ence, 2003. Proceedings. 2003 IEEE. Vol. 1. IEEE.
2003, pp. 1–348.

[9] Hans Utz et al. The Robot Application Program-
ming Interface Delegate Project. url: http : / /
robotapi . sourceforge . net / index . html

(visited on 05/01/2013).

[10] Maria Bualat et al. “Surface telerobotics: devel-
opment and testing of a crew controlled planetary
rover system”. In: AIAA Space 2013 Conference
and Exposition. 2013, p. 5475.

[11] Lorenzo Flückiger and Hans Utz. “Service Ori-
ented Rbotic Architecture for space robotics: de-
sign, testing, and lessons learned”. In: Journal of
Field Robotics 31.1 (2014), pp. 176–191.

[12] Michael Watterson, Trey Smith, and Vijay Kumar.
“Smooth trajectory generation on SE (3) for a free
flying space robot”. In: Intelligent Robots and Sys-
tems (IROS), 2016 IEEE/RSJ International Confer-
ence on. IEEE. 2016, pp. 5459–5466.

[13] Dong-Hyun Lee et al. “Handrail detection and pose
estimation for a free-flying robot”. In: International
Journal of Advanced Robotic Systems 15.1 (2018),
p. 1729881417753691.

[14] Brian Coltin et al. “Localization from visual land-
marks on a free-flying robot”. In: Intelligent Robots
and Systems (IROS), 2016 IEEE/RSJ International
Conference on. IEEE. 2016, pp. 4377–4382.

[15] Eigen Overview. url: http : / / eigen .
tuxfamily . org / index . php ? title = Main _

Page#Overview (visited on 03/20/2018).

http://iss.jaxa.jp/en/kiboexp/news/170714_int_ball_en.html
http://iss.jaxa.jp/en/kiboexp/news/170714_int_ball_en.html
http://iss.jaxa.jp/en/kiboexp/news/170714_int_ball_en.html
http://www.airbus.com/newsroom/press-releases/en/2018/02/hello--i-am-cimon-.html
http://www.airbus.com/newsroom/press-releases/en/2018/02/hello--i-am-cimon-.html
http://www.airbus.com/newsroom/press-releases/en/2018/02/hello--i-am-cimon-.html
http://robotapi.sourceforge.net/index.html
http://robotapi.sourceforge.net/index.html
http://eigen.tuxfamily.org/index.php?title=Main_Page#Overview
http://eigen.tuxfamily.org/index.php?title=Main_Page#Overview
http://eigen.tuxfamily.org/index.php?title=Main_Page#Overview


[16] NASA. NASA Software Engineering Requirements,
NPR 7150.2B. url: https://standards.nasa.
gov/standard/nasadir/npr-71502 (visited on
11/19/2014).

[17] Sreeja Nag, Jacob G Katz, and Alvar Saenz-Otero.
“Collaborative gaming and competition for CS-
STEM education using SPHERES Zero Robotics”.
In: Acta astronautica 83 (2013), pp. 145–174.

[18] Patrick W Fink et al. “Autonomous Logistics Man-
agement Systems for Exploration Missions”. In:
AIAA SPACE and Astronautics Forum and Expo-
sition. 2017, p. 5256.

HLP

MLP

LLP

Guest Science
Manager

Guest Sience
APKs

Drivers
USB
HD Camera
Touchscreen
Speaker/Mic

executive

dds_bridge sys_monitor

localization
sparse_map
ar_targets
handrail

mobility
choregrapher
validator
obstacle_detection

planners

nav_cam
dock_cam perch_cam

haz_cam

GN&C
EKF CTL FAM

propulsion IMU

other_drivers
power_system
status_lights
signal_lights
flashlights
laser

Figure 5. : The main software components running on As-
trobee. The components on this diagram represent logical
groupings normally composed of multiple ROS nodelets.
The arrows indicate dependencies, not flow of informa-
tion.

https://standards.nasa.gov/standard/nasadir/npr-71502
https://standards.nasa.gov/standard/nasadir/npr-71502

	Introduction
	Related Work

	The Astrobee Platform
	Motivation
	Hardware

	Software Architecture and Components
	Middleware
	API
	Infrastructure
	Simulator
	Software Components
	Management
	Mobility
	Localization
	Control


	Lessons Learned
	Software infrastructure cost
	Platform optimization
	Open Source
	External Users
	Pure Simulation
	Controller Algorithms
	Hardware payload


	Conclusion

