

A First Look at 22 nm FDSOI SRAM Single-Event Test Results

Megan C. Casey¹, Scott Stansberry², Christina Seidlick², Jeffrey Maharrey³, Dante Gamboa⁴, Jonathan Pellish¹, and Kenneth A. LaBel¹

> ¹NASA Goddard Space Flight Center ²ASRC Federal Space and Defense, Inc. (AS&D, Inc.) ³Boeing ⁴Defense Microelectronics Activity

Acronyms

- 22FDX[®] GlobalFoundries
 22 nm Fully-Depleted SOI
 Process
- BGA Ball Grid Array
- DMEA Defense Microelectronics Activity
- FD Fully Depleted
- LET Linear Energy Transfer
- LGA Land Grid Array

- MBU Multi-Bit Upset
- PD Partially Depleted
- SOI Silicon-on-Insulator
- SEFI Single-Event Functional Interrupt
- SEE Single-Event Effect
- SBU Single-Bit Upset
- SRAM Static Random Access Memory

Introduction

- The per-bit cross-section for heavy ions was found to be identical in 65 nm and 45 nm partially depleted SOI SRAMs manufactured by IBM [Heidel TNS 2009]
 - However, the number of MBUs increased from 65 nm to 45 nm and only double bit errors were observed
- At 32 nm, direct-ionization proton effects were primarily studied, but there is some heavy ion data [Pellish TNS 2014]
 - No saturated cross-section was identified
 - Multi-bit upsets continue to increase and up to four bit upsets were observed
 - Little difference in roll angles was observed

Background

- RUFUS is a 128 Mbit SRAM test vehicle designed in GlobalFoundries 22 nm FDX process
 - FDX is fully-depleted SOI
- The nominal voltage is 0.8 V, but a range from 0.64 V to 1.08 V is supported by the technology
- Custom test boards were fabricated for single-event testing and interfaced to MicroZed[™] for data collection and control
 - MicroZed[™] is a low cost evaluation board that employs a Zynq[®] 7010

To be presented by Megan Casey at the 2018 SEE-MAPLD Single Event Effects (SEE) Symposium/Military and Aerospace Programmable Logic Devices (MAPLD) Workshop, La Jolla, CA, May 21-24, 2018.

Part Preparation

- Samples were packaged in BGAs
- They were thinned to a minimum thickness of 80 um
- After thinning, the were mounted on adapter boards that converted the BGA package to an LGA

					77.2	76.6	76.3					
			77.4	75.0	73.4	72.7	72.5	73.8	75.5			
		77.2	74.0	71.5	69.7	69.4	69.3	69.8	71.7	74.6		
	79.1	74.9	71.2	68.7	67.0	66.4	66.0	67.1	69.3	72.1	76.0	
	76.8	72.8	70.2	67.0		64.6	63.8		67.4	70.3	73.9	
81.7	76.3	71.9	68.0	o Invalid	63.5	62.9	63.0	64.0	65.9	68.7	72.0	77
81.2	75.3	71.7	67.3	64.7	62.7	62.2	62.4	64.1		68.1	72.1	77.
80.7	75.5	70.5	67.2		62.9	61.6	62.1	63.3	64.7	68.3	72.5	77.
	76.8	71.6	68.0	65.9	64.1	62.8	62.9	64.1	64.5	69.2	73.2	
	77.0	72.5	69.3	66.9		64.5	64.2	65.3	67.6	70.6	75.9	
		75.0	71.5	68.5	67.0	66.0	66.6	68.1	69.9	72.9		
			74.6	71.8	69.5	69.3	70.1	70.5	72.2			
					74.6	70.0	73.3					

Measured silicon thickness of test DUT Image provided by DMEA

NASA

Test Conditions & Beams Used

- All voltages were nominal
- Static tests write test pattern, irradiate, read back cells
- Dynamic tests write memory block, read all cells in the block
 - This was repeated several times depending on the length of the irradiation

Ion Species	Energy (MeV)	Nominal LET (MeV-cm ² /mg)	Nominal Range (µm)	Tilt Angles (°)	Roll Angles (°)
¹⁴ N	195	1.3	379.6	0, 30, 45, 60, 62, 66, 71	0, 90
²⁰ Ne	270	2.8	267.5	0, 30, 45, 60	0, 90
⁴⁰ Ar	508	8.6	180.1	0, 30, 45, 60	0
⁶³ Cu	729	20.3	123.5	0, 30, 45	0, 90
¹⁰⁹ Ag	1170	43.6	107.2	0, 30	0
¹²⁹ Xe	1366	53.1	107.7	0, 30	0, 90

To be presented by Megan Casey at the 2018 SEE-MAPLD Single Event Effects (SEE) Symposium/Military and Aerospace Programmable Logic Devices (MAPLD) Workshop, La Jolla, CA, May 21-24, 2018.

Initial Results vs 32/45 nm

- Approximately an order of magnitude lower crosssection per bit in the 22 nm FDX[®] than was observed in either the 32 or 45 nm SRAMs
 - This is not surprising with the expected reduction in charge collection of fullydepleted SOI compared to partially depleted SOI
- The onset LETs, while not conclusively found, appear to be roughly the same for this node geometry

Cosine Law

- Appears to still follow cosine law
- Difference in cross-sections at same LET are about 30-50%
 - Increase with N may be due to high angles and increased MBU
 - Will continue to investigate with additional ions and with smaller angles

Input Pattern

No observable difference in the cross-sections as function of the input pattern (all 0s, all 1s, and logical checkerboard)

Single-Bit vs Multi-Bit Upsets

- Only single and double bit errors were observed
 - No higher order multi-bit upsets were observed
 - Angle did not increase likelihood of MBU
- The MBUs accounted for approximately 0.01% of the total number of errors
- At 45 nm, there was a strong dependence on input pattern with MBU probability, however, at 22 nm, all patterns were equally likely to exhibit MBUs

11

MBUs – Input Pattern

Pattern also does not appear to effect the likelihood of MBU

Roll Angle

- There is a strong directionality in the layout of the cells of the SRAMs and the transistors within the cells
 - No apparent effect on the cross-section

0° Roll Angle

To be presented by Megan Casey at the 2018 SEE-MAPLD Single Event Effects (SEE) Symposium/Military and Aerospace Programmable Logic Devices (MAPLD) Workshop, La Jolla, CA, May 21-24, 2018.

Roll Angle

No significant difference in 0° and 90° roll angle Approximately 3-7% difference with the exception of copper at 45° tilt angle (~30%) Copper at 45° may be due to ion range issues

14

Dynamic Testing – SEFIs

- Dynamic testing wrote pattern to one block and then read the same block
 - Then moved to the next block and repeated until all 36 blocks had been written and read
 - This was repeated for the entire memory several times (12-30 depending on duration of the irradiation)
- Only one SEFI was observed: During the last Xe dynamic test, every address in one block was in error
 - This persisted through each subsequent R/W cycle until the irradiation concluded and was only cleared by a power cycle
 - Test conditions: All 1s pattern, LET = 53.1 MeV-cm²/mg, nominal supply voltages, average flux was ~500 cm⁻²/s

Initial Conclusions

- 22 nm FDSOI SRAM upset cross-section per bit is about an order of magnitude lower than 32 and 45 nm
 - Onset LETs appear to be similar, although additional testing is required to verify
- There does not appear to be any dependence on the roll angle or the input pattern, and cosine law is consistent with the tilt angle results
- MBUs accounted for a maximum of approximately 0.01% of the errors on any given run
 - Physical mapping of upsets is being attempted MBU results may change substantially after post-processing
- One SEFI was observed when dynamically testing the DUT
 - Additional testing at higher LETs and with a laser will be conducted to investigate further

Future Work

- Additional single-event tests
 - More heavy ions
 - Laser test
 - Low-energy electrons
 - High-energy protons
- Investigate the effect of voltage on the SRAM array voltage (near threshold computing), as well as the n- and p-well voltages (body biasing)
- Further investigate the cosine law effect with additional low LET ions
- Further investigate SEFIs cause and approximate likelihood
- Comparison to bulk 28 nm SRAM process uses several of the same manufacturing steps as the 22 nm SOI

Acknowledgments

17

- Naval Research Laboratory
 - Lew Cohn and Steve Buchner
- Boeing
 - Jon Ballast and Manuel Cabanas-Holmen
- DMEA
 - Jamesson Kaupanger, Brandon Smith, and Daniel Marrujo
- Sandia National Laboratories
 - Nathaniel Dodds and Michael King