

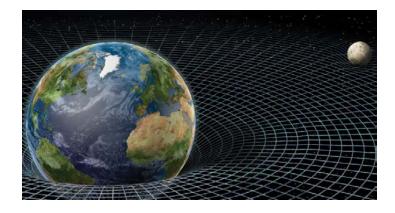
Percutaneous Drainage Capability for Deep Space Exploration

89th Annual Scientific Meeting of the Aerospace Medical Association

Allen Guehl, MD, DPM, MS David P. Reyes, MD, MPH, MS Eric L. Kerstman, MD, MPH Erik L. Antonsen, MD, PhD

Disclosure Information

AsMA 89th Annual Scientific Meeting


- We have no financial relationships to disclose
- We will not discuss off-label use or investigational uses

Objectives

• Discuss current evidence based capabilities of percutaneous drainage (PCD) for spaceflight

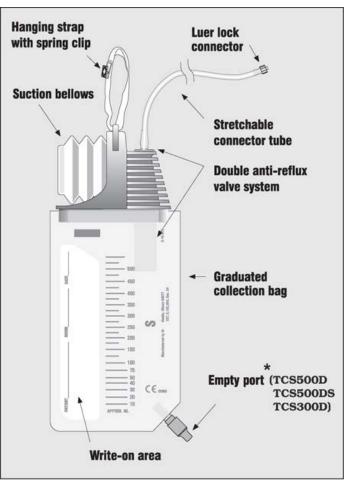
Exploration Medical Capabilities (ExMC)

"Evidence Report: Risk of Adverse Health Outcomes and Decrements in Performance due to In-Flight Medical Conditions," 2017

- Expanding capability beyond LEO
- New challenges
 - No evacuation
 - Communication delays
 - Mass/volume constraints
- Need robust autonomous capabilities

Percutaneous Drainage

- Drainage of fluid, abscess or air
- Needle or catheter placement
- Often with image guidance
- Benefits
 - Preferred for many conditions
 - Simple
 - Repeatable
 - Minimally invasive


Equipment

- Low mass and volume
- Alternate medical/non-medical uses
- Ultrasound Imaging likely imaging modality
- Ongoing development
 - Flow is reduced at 0G compared to $1G^1$

¹L. Brown, Personal Communication, October, 23,2017

Equipment

Training and Currency: MicroG

- Standard sterile technique
- Tubing and equipment tethering
- Altered fluid mechanics
- Abdomen tends to "circularize"¹
- Parabolic flight tests

- Successful aspiration of intra-peritoneal fluid
- No more demanding than 1-G rehearsals
- Fluid collections more distinct from surrounding viscera²

¹Surgical Capabilities for Exploration and Colonization Space Flight," 2015. ²A W Kirkpatrick et al., 2002

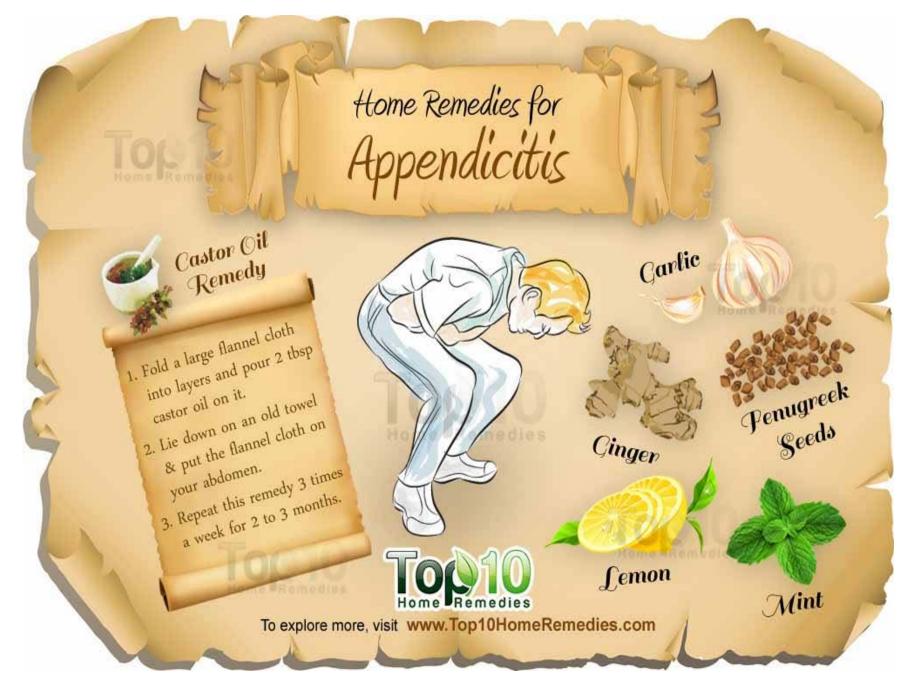
Training and Currency: Deep Space

- Non-physician versus physician astronaut
- Emergency Physicians (ACEP) training guidelines:

- Sixteen to twenty four hours¹

- ISS FAST exam trial: successful exam with
 - three hours of familiarization
 - two hours hands on training²
 - Non medical crew
- Augmented reality computer based simulations³
 - May provide ongoing review and training on mission

¹Emergency Ultrasound Guidelines,2009 ²Sargsyan et al.,2005 ³Magee et al., 2007 Percutaneous Drainage

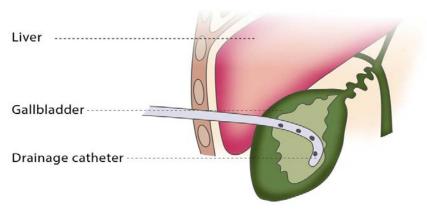

Percutaneous Drainage

- Integrated Medical Model (IMM) conditions:
 - Appendicitis
 - Acute Cholecystitis
 - Chest Injury
 - Abdominal Injury
 - Urinary Retention
 - Hydronephrosis (kidney stone)

Appendicitis

- Percutaneous drainage
 - Only intervention available in ExMC
 - Ruptured appendix and intra-abdominal abscess
 - 64% success rate with US guided drainage¹
- Recent meta-analysis:
 - Antibiotic treatment comparable to appendectomy
 - 72% antibiotic success rate²
 - 14.2 to 20% subsequent surgical appendectomy³
- Modification of success rates needed
 - Healthy crew
 - Quick treatment and no surgical option

¹Fagenholz et al., 2016 ²Zhi-Hua Liu, 2014 ³Flum, 2015



National Aeronautics and Space Administration

Percutaneous Drainage

Acute Cholecystitis

- Drainage via perc. transhepatic cholecystostomy
- Can be definitive procedure
- 94 % technical success rate
- 86 % procedural success rate
- US lower complication /death rate versus fluoroscopy

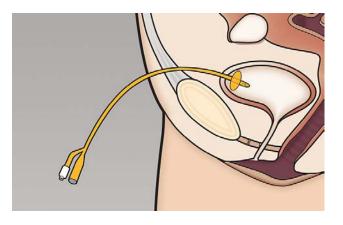
Cholecystostomy (drainage)

Wagner et al., 2017

Hemothorax/Pneumothorax

- 100 % Success with pneumothorax
- 80 % Success with loculated pleural effusions¹
- Successful with different pleural fluids
- Studies found minimal complications
- Significant clinical improvement²

¹Bediwy & Amer, 2012; Liu et al., 2010 ²Aziz, Penupolu, & Flores, 2012


Abdominal Compartment Syndrome

- Intra-abdominal pressure >12 mm hg
- Possible etiologies in spaceflight¹
 - Abdominal trauma
 - Hemorrhage
 - Intestinal obstruction
 - Large Burns
- Percutaneous drainage preferred over laporotomy²
- PCD is safe and effective in preventing ACS in burn patients³

¹Backer, 1999 ²Kirkpatrick et al., 2013 ³Latenser et al., 2002

Urinary Retention

- Suprapubic catheterization safely performed in remote areas by non-physicians¹
- Study showed suprapubic catheterization to be:
 - Quick procedure
 - High success rate
 - Minimal complications
 - Recommended after 2 or 3 failed transurethral attempts²

¹Gujral, Kirkwood, Hinchliffe, & Gujral, 1999 ² Bilehjani E & Fakhari S, 2017

Hydronephrosis

- Kidney stone usual cause
- Found in 89 % of suspected stone¹
- US guided placement success rate 96%²
- Complete urinary obstruction
 - One week-complete recovery of kidney function
 - Twelve weeks- Non recoverable kidney damage

Complications

- Infection
- Bleeding
- Nephrostomy complication rate 10%¹
- Abdominal PCD complications < 5%
- Bowel puncture with 21 g needle "inconsequential" in most cases²

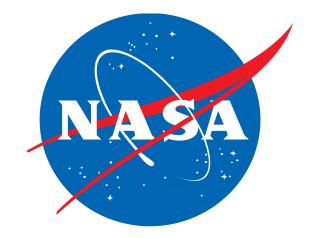
Further Research

- Risk mitigation
 - Guidance and training
 - Physician-astronaut utilization
- Optimal catheter size and materials
- 3D printing of supplies

PCD Conclusions

- Achievable skill by physician and non-physician
- Small overall resource burden
- Treat surgical conditions that can occur in spaceflight
- Many advantages of a robust procedural capability
- Decreases mission risk

Thank You



References

- Aziz, F., Penupolu, S., & Flores, D. (2012). Efficacy of percutaneous pigtail catheters for thoracostomy at bedside. *Journal of Thoracic Disease*, 4(3), 292–295. https://doi.org/10.3978/j.issn.2072-1439.2011.12.01
- Backer, D. D. (1999). Abdominal compartment syndrome. *Critical Care*, *3*(6), R103–R104. https://doi.org/10.1186/cc373
- Bediwy, A. S., & Amer, H. G. (2012). Pigtail Catheter Use for Draining Pleural Effusions of Various Etiologies [Research article]. https://doi.org/10.5402/2012/143295
- Bilehjani E, & Fakhari S. (2017). Using central venous catheter for suprapubic catheterization in cardiac surgery. *Research and Reports in Urology, Vol Volume 9, Pp 1-4 (2017),* 1.
- Emergency Ultrasound Guidelines. (2009). *Annals of Emergency Medicine*, *53*(4), 550–570. https://doi.org/10.1016/j.annemergmed.2008.12.013
- Fagenholz, P. J., Peev, M. P., Thabet, A., Michailidou, M., Chang, Y., Mueller, P. R., ... Velmahos, G. C. (2016). Abscess due to perforated appendicitis: factors associated with successful percutaneous drainage. *American Journal of Surgery*, 212(4), 794–798. https://doi.org/10.1016/j.amjsurg.2015.07.017
- Flum, D. R. (2015). Acute Appendicitis Appendectomy or the "Antibiotics First" Strategy. *New England Journal of Medicine*, 372(20), 1937–1943. https://doi.org/10.1056/NEJMcp1215006
- Gujral, Kirkwood, Hinchliffe, & Gujral. (1999). Suprapubic catheterization: a suitable procedure for clinical nurse specialists in selected patients. *BJU International, 83*(9), 954–956. https://doi.org/10.1046/j.1464-410X.1999.00051.x
- Kirkpatrick, A W, Nicolaou, S., Campbell, M. R., Sargsyan, A. E., Dulchavsky, S. A., Melton, S., ... Hamilton, D. R. (2002). Percutaneous aspiration of fluid for management of peritonitis in space. *Aviation, Space, And Environmental Medicine*, 73(9), 925–930.
- Kirkpatrick, Andrew W., Roberts, D. J., De Waele, J., Jaeschke, R., Malbrain, M. L. N. G., De Keulenaer, B., ... Olvera, C. (2013). Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. *Intensive Care Medicine*, *39*(7), 1190– 1206. https://doi.org/10.1007/s00134-013-2906-z

References

- Latenser, B. A., Kowal-Vern, A., Kimball, D., Chakrin, A., & Dujovny, N. (2002). A pilot study comparing percutaneous decompression with decompressive laparotomy for acute abdominal compartment syndrome in thermal injury. *The Journal Of Burn Care & Rehabilitation*, 23(3), 190–195.
- Liu, Y.-H., Lin, Y.-C., Liang, S.-J., Tu, C.-Y., Chen, C.-H., Chen, H.-J., ... Hsu, W.-H. (2010). Ultrasound-guided pigtail catheters for drainage of various pleural diseases. *The American Journal of Emergency Medicine*, *28*, 915–921. https://doi.org/10.1016/j.ajem.2009.04.041
- Lorenz, J., & Thomas, J. L. (2006). Complications of Percutaneous Fluid Drainage. *Seminars in Interventional Radiology*, 23(2), 194–204. https://doi.org/10.1055/s-2006-941450
- Magee, D., Zhu, Y., Ratnalingam, R., Gardner, P., & Kessel, D. (2007). An augmented reality simulator for ultrasound guided needle placement training. *Medical & Biological Engineering & Computing*, *45*(10), 957–967. https://doi.org/10.1007/s11517-007-0231-9
- Pabon-Ramos, W. M., Dariushnia, S. R., Walker, T. G., Janne d'Othée, B., Ganguli, S., Midia, M., ... Nikolic, B. (2016). Quality Improvement Guidelines for Percutaneous Nephrostomy. *Journal of Vascular and Interventional Radiology*, 27, 410–414. https://doi.org/10.1016/j.jvir.2015.11.045
- Sargsyan, A. E., Hamilton, D. R., Jones, J. A., Melton, S., Whitson, P. A., Kirkpatrick, A. W., ... Dulchavsky, S. A. (2005). FAST at MACH 20: Clinical ultrasound aboard the International Space Station. *Journal of Trauma-Injury Infection and Critical Care*, 58(1), 35–39. https://doi.org/10.1097/01.TA.0000145083.47032.78
- Song, Y., Hernandez, N., Gee, M. S., Noble, V. E., & Eisner, B. H. (2016). Can ureteral stones cause pain without causing hydronephrosis? *World Journal Of Urology*, *34*(9), 1285–1288. https://doi.org/10.1007/s00345-015-1748-4
- Surgical Capabilities for Exploration and Colonization Space Flight. (2015). Retrieved October 13, 2017, from https://ston.jsc.nasa.gov/collections/TRS/_techrep/TP-2016-219281.pdf
- Wagner, A., Mayr, C., Kiesslich, T., Berr, F., Friesenbichler, P., & Wolkersdörfer, G. W. (2017). Reduced complication rates of percutaneous transhepatic biliary drainage with ultrasound guidance. *Journal of Clinical Ultrasound: JCU*, 45(7), 400–407. https://doi.org/10.1002/jcu.22461
- Zhi-Hua Liu, Chao Li, Xing-Wei Zhang, Liang Kang, & Jian-Ping Wang. (2014). Meta-analysis of the therapeutic effects of antibiotic versus appendicectomy for the treatment of acute appendicitis. *Experimental & Therapeutic Medicine*, 7(5), 1181–1186. https://doi.org/10.3892/etm.2014.1584

