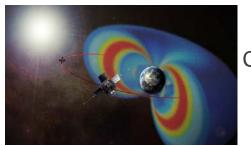


COGNITIVE PERFORMANCE IN MILITARY SENIOR LEADERS: ANALYSIS & IMPLICATIONS

T. J. Williams¹, L. B. Landon², J. S. Schneiderman², K. Seaton², W. B. Vessey¹, J. Tisson³, R. Stanley³, C. Kusmeisz³, D. Arias², S. Stranges², J. Dunn², M. Basner⁴, A. Ecker ⁴

¹NASA Johnson Space Center, Houston, TX ²KBRwyle, Johnson Space Center, Houston, TX ³U.S. Army War College, Carlisle, PA

⁴Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA



Potential Threats to Cognitive Functioning in Space Flight

 The spaceflight environment is filled with risk factors that can have a negative impact on cognitive functioning.

Chronic Stress

Head Injury

Fluid Shifts

Mike Hopkins eating his Thanksgiving meal

Hypoxia

Atmospheric Toxins

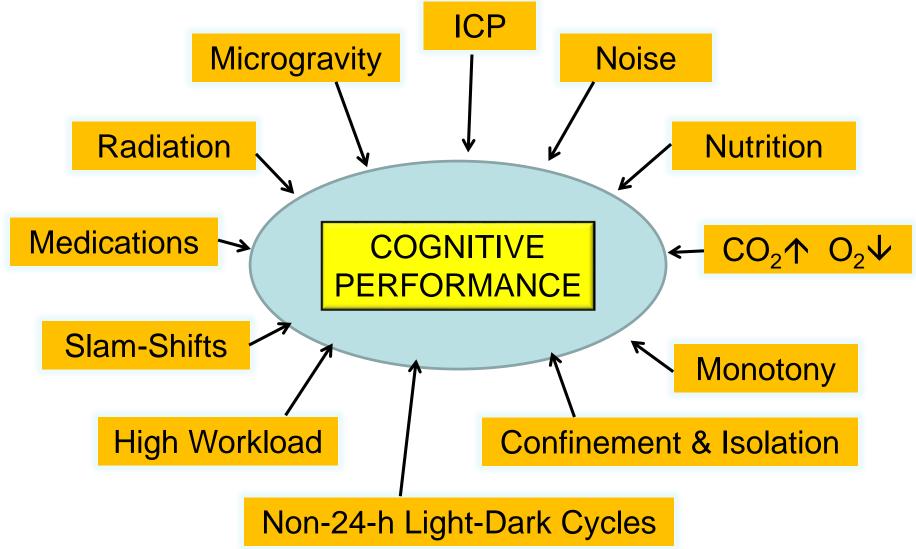
Circadian Disruption/Fatigue

Decompression

Isolation/Confinement

Elevated CO₂

 Risks may increase in severity, and new threats may emerge for longer duration exploration missions.



Reid Wiseman on an EVA

At least 25 risks and gaps of NASA's Human Research Roadmap mention human cognition.

Space Exploration: Extreme Demands in Extreme Environments

NASA is interested in completing Cognitive Assessments of Astronauts

- Spaceflight hazards pose risks to crew health and performance
- Brief screening assessment of cognitive functions is needed.
- Behavioral Medicine requirement for all long-duration U.S. astronauts and currently with JAXA, ESA, and CSA astronauts.
- In-flight tests: Scheduled monthly to establish baseline and maintain proficiency with the test.
- Provides immediate, objective clinical feedback to the astronaut and flight surgeons.

Creative, adaptive leaders....

Joint Education

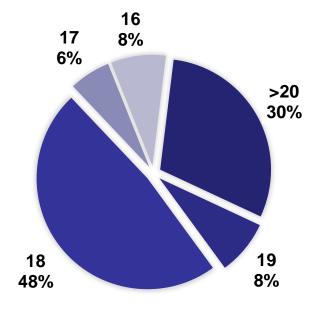
White Paper

16 July 2012

The National Military Strategy of the United States of America 2015

FOSTERING INNOVATION

- Producing creative, adaptive leaders
- Adopting efficient, dynamic processes
- Developing flexible, interoperable capabilities
- Maintain our competitive learning advantage through:
 - Mastery of fundamentals of the art and science of war;
 - Intellectual curiosity, coupled with openness to new ideas;

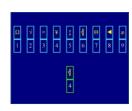

Research Aims

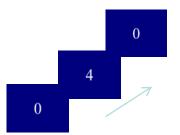
- Compare and validate current (WinSCAT) vs. proposed (Cognition Battery) NASA operational performance tools
 - Independently test and evaluate the 90-day test-retest reliability properties of two measures
 - Develop norms
- Cognitive processing & performance

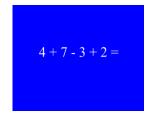
Demographics

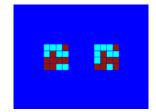
- N=51
- 48 Male, 3 Female
- Ages 41-55, Mean 47.07, SD = 3.73
- All in top 10% of senior military officers

Education Years:

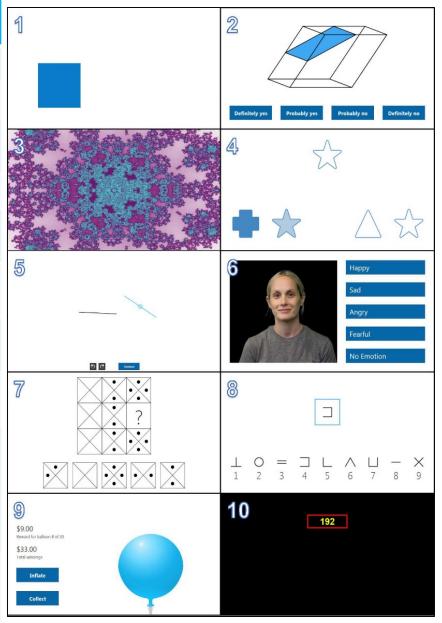

NASA astronaut Sunita Williams, Expedition 33 commander on ISS laptop. Japanese astronaut and flight engineer Aki Hoshide is behind her. Credit: NASA


WinSCAT has been implemented with U.S. astronauts from one NASA/Mir mission and all 55 expeditions on the International Space Station


WinSCAT: Space flight Cognitive Assessment Tool for Windows


WinSCAT Tests


- CDS Code Substitution
 - Learning
- CPT Continuous Processing Task
 - Sustained attention and concentration
- MTH Mathematics
 - Verbal working memory
- MTS Matching To Sample
 - Visual short-term memory
- CDL Code Substitution Delayed
 - Delayed recall



Cognition Battery

Test	Cognitive Domains Assessed	Administration Time [Minutes] Median (Range)
1. Motor Praxis (MP)	Sensory-motor speed	0.4 (0.3 – 2.3)
2. Visual Object Learning (VOLT)	Spatial learning and memory	1.7 (1.4 – 8.2)
3. Fractal 2-Back (F2B)	Working memory	2.0 (1.7 – 16.5)
4. Abstract Matching (AM)	Abstraction, concept formation	1.8 (1.3 - 7.9)
5. Line Orientation (LOT)	Spatial orientation	1.2 (0.8 – 2.4)
6. Emotion Recognition (ERT)	Emotion identification	1.7 (1.2 – 3.1)
7. Matrix Reasoning (MRT)	Abstract reasoning	2.1 (0.6 – 3.9)
8. Digit Symbol Substitution (DSST)	Complex scanning and visual tracking	1.6 (1.6 – 2.6)
9. Balloon Analog Risk (BART)	Risk decision making	2.1 (1.7 – 4.1)
10. Psychomotor Vigilance (PVT)	Vigilant attention	3.2 (3.1 – 4.5)

Cognitive Domains Assessed

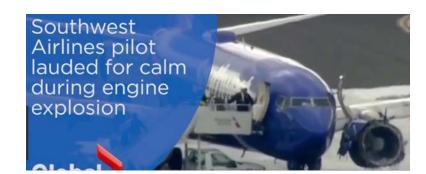
WinSCAT

- Learning
- Sustained Attention & concentration
- Verbal Working Memory
- Visual Short-term memory
- Delayed Recall-Memory

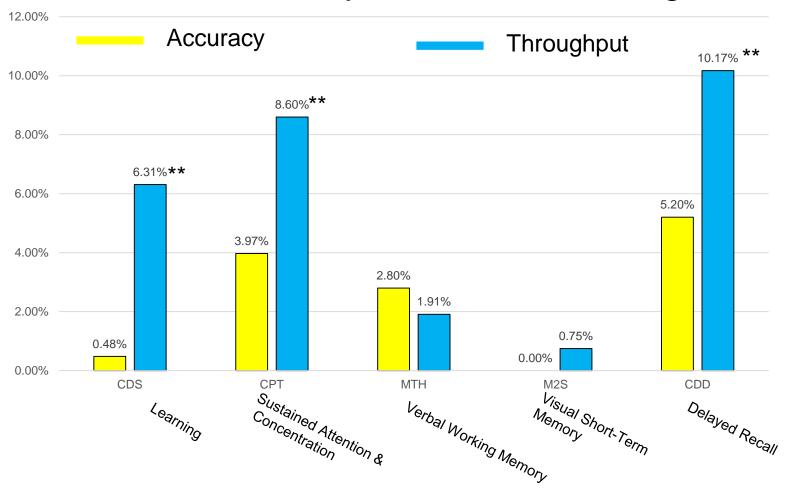
Cognition

- Sensorimotor speed
- Spatial learning & memory
- Working memory
- Abstraction, concept formation
- Spatial orientation
- Emotion identification
- Abstract reasoning
- Complex scanning & visual tracking
- Risk decision making
- Vigilant attention

Derived from: PENN Computerized Neurocognitive Battery (CNB)(Basner et al., 2015)

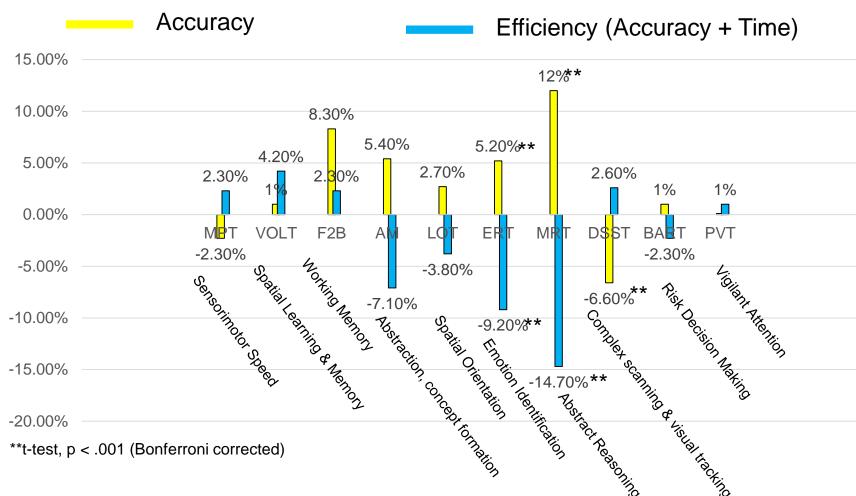

Derived from: Automated Neuropsychological Assessment Metrics (ANAM)

Cognitive Performance: Accuracy & Throughput


- *Throughput* (speed of response or reaction/processing)
 - Measure of mental efficiency
 - Correct responses within specified time
- Accuracy (% or number correct)
- Speed-Accuracy Trade-off
 - "Fast" or "Good"
 - Asymptotic accuracy at long response times
- Improved Cognitive Performance
 - Increased accuracy
 - Decreased response or reaction time

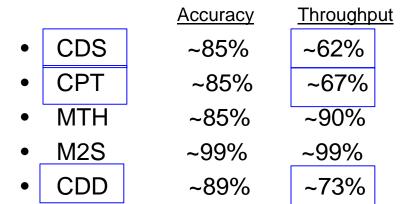
Cognitive Efficiency

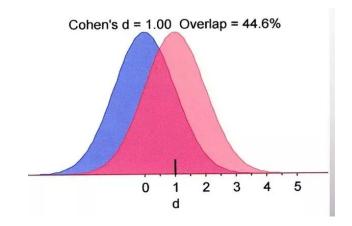
- Attentional resources
 - Limited
 - Ability to cope (competing demands)
- Flexibility
 - Ability to operate at different speeds
 - Less flexible may appear less able
- Higher throughput = greater cognitive efficiency


WinSCAT: 90 Day Pre-Post % Change

Code Substitution (CDS), Continuous Processing Task (CPT), Mathematics (MTH), Match to Sample (M2S), Code Substitution Delayed (CDD)

**t-test, p < .001 (Bonferroni corrected)


Cognition: 90 Day Pre-Post % Change



Motor Praxis (MP), Visual Object Learning (VOLT), Fractal 2-Back (F2B), Abstract Matching (AM), Line Orientation (LOT), Emotion Recognition (ERT), Matrix Reasoning (MRT), Digit Symbol Substitution (DSST), Balloon Analog Risk (BART), Psychomotor Vigilance (PVT)

Stability of Test: Effect Size (reciprocal) to Derive Estimate of Overlap of Pre-Post Scores

WinSCAT (% Overlap; Pre-Post)

Cognition (% Overlap; Pre-Post)

		<u>Accuracy</u>	Throughput
•	MPT	~99%	~99%
•	VOLT	~99%	~85%
•	F2B	~85%	~92%
•	AMT	~82%	~85%
•	LOT	~85%	~85%
•	ERT	~75%	~71%
•	MRT	~73%	~71%
•	DSST	~79%	~82%
•	BART	~99%	~95%
•	PVT	~99%	~92%

= Statistically significant change, pre-post

Conclusions

- WinSCAT (W) & Cognition (C)
 - Generally stable: 90 Day Pre-Post testing
 - Highest Overlap Consistency (Throughput, Pre-Post)
 - Sensorimotor (C-MPT, 99%)
 - Visual, short-term memory (W-M2S, 99%)
 - Verbal working memory (W-MTH, 90%)
 - Risk Tasking (C-BART, 95%)
 - Working Memory (C-F2B, 92%)
 - Vigilant Attention (C-PVT, 92%)

Conclusions (cont'd)

- WinSCAT (W) & Cognition (C)
 - Lowest Overlap Consistency (Throughput, Pre-Post)
 - Delayed recall (W-CDD, 73%)
 - Emotion recognition (C-ERT, 71%)
 - Complex reasoning (C-MRT, 71%)
 - Sustained attention (W-CPT, 67%)
 - Learning (W-CDS, 62%)
 - 90 Day Pre-Post Significant Changes
 - WinSCAT: Learning, Memory, Sustained Attention
 - Cognition: Emotion recognition, abstract reasoning, complex scanning

Acknowledgments

Supported by the National Space Biomedical Research Institute (NSBRI) NBPF00014

- NSBRI Tracy Johnson, Catherine Moreno, Virginia Wotring, Iris Ali
- NASA BHP Operations
 Kim Seaton, Al Holland, Gary Bevin, Jim Picano
- NASA BHP Laboratory
 Lauren Landon, Brandon Vessey, Diana Arias, Steve Stranges, Jocelyn Dunn
- NASA BHP/HFBP Element
 Lauren Leveton, Sandra Whitmire, Laura Bollweg, Kristine Ohnesorge
- University of Pennsylvania
 Mathias Basner, Adrian Ecker
- US Army War College
 John Tisson, Rob Stanley, Chris Kusmesiz, Heidi Kaufman, Denise Connelly, MG William
 Rapp, BG (R) Lance Betros
- Army Research Institute
 Rob Simmons
- KBRwyle
 Steve Vander Ark, Laura Giamfortone, Pam Stilwell
- Colleagues at NASA Johnson Space Center