JWST Optical Telescope Element
Center of Curvature Test
Presented by Ritva Keski-Kuha
NASA/GSFC
Test Team

- B. Saif, R. Keski-Kuha, L. Feinberg, GSFC
- D. Chaney, K. Smith, L. Carey, Ball Aerospace
- M. Bluth, J. Bluth, A. Abeel, SGT
- P. Greenfield, K. Van Gorkom, K. Brooks, W. Hack, STScI
- S. Chaung, Orbital/ATK
- T. Sanders, T. Martinez, Vantage Systems Inc.
- S. Tournois, Sigma
- J. Berrier, Intelletechs
- M. Barker, C. Bowser, Genesis
- S. Smith, MSFC
- Vladimir Kradinov, SAO
James Webb Space Telescope (JWST) is a large infrared observing space telescope which will launch in 2020.

The observatory is comprised of 4 major subsystems
- Optical Telescope Element (OTE)
- Integrated Science Instrument Module (ISIM)
- Sunshield
- Spacecraft Bus

The OTE and ISIM are integrated together at Goddard Space Flight Center to form the OTIS assembly
The OTIS assembly was integrated at GSFC and then went through a series of vibration and acoustic tests to verify its launch worthiness.

To verify that no detrimental changes occurred to the OTIS assembly from this environmental testing an optical Center of Curvature (CoC) test was conducted.

Help us in understanding potential anomalies identified during the OTIS cryo vac tests and will be helpful for future telescope design.
CoC Test Overview

- CoC (Center of Curvature) test is a standard type of optical test used to measure the surface figure of mirrors using an interferometer.
 - For the SSDIF CoC test we expanded on this basic center of curvature test methodology by using a high speed interferometer manufactured by 4D Technologies capable of taking more than 5,900 surface figure measurements every second.

- We measured **one** mirror at a time (i.e. no phasing of mirrors)

- We performed two types of tests
 - **Static Test:** measures the surface figure of the PM segments (one at a time) and looks for changes in the figure of the mirror. (resolution = 1520x1520)
 - **Dynamic Test:** takes up to 59,000 surface figure measurements over a 10 second period while applying a vibrational input force (stinger) to the OTIS backplane and then calculates changes to the phase and gain transfer functions. This is like having 40,000 one-axis accelerometers on each mirror segment. (resolution = 240x240)
Basic Test Layout

Test Wavefront Matches Shape of “Perfect” Mirror, therefore all rays are normal to the mirror surface and retrace their path back into interferometer.

Test beam is also used to align CGH to interferometer.

Interferometer

Measures difference in shape of mirror vs test wavefront

CGH

Diffractive Null Lens. Changes spherical test wavefront to aspheric.

Test Beam

Mirror
Picture of Actual Test Layout
Metrology Setup

Interferometer
Alignment Camera
CGH
Rotopod
DMI System
An newly developed alignment method was used to align the mirror under test to the CGH in 6 DoF.

- Did not require adding fiducials to the sides of mirror segments (they are only 6-7 mm apart)
- Used for matching alignment condition during pre and post environmental CoC testing
- A camera system took two images
 - First image is of illuminated mirror
 - Second image is of 4 Laser spots projected from CGH onto mirror surface
Alignment Camera Images

Mirror Image

Software determines where six edges of mirror are located in image

Secondary Mirror Support Strut

Wire illuminated by background lights

Spot Image

Shown on same Z scaling as mirror image

Z scaled to show location of 4 spots

Zoomed in to show one spot
A vibration shaker is used to apply a low level force into the composite backplane structure.

Stinger (connection from shaker to mirror) is a graphite/epoxy rod to prevent sagging over the long distance.

A force gauge is attached between the stinger and backplane to capture input forces.
STATIC MEASUREMENT RESULTS
Composite Image of Surface Figure Changes

All Measured Changes were under our metrology uncertainty

* Measured 4 times
** Measured 2 times
*** Modified Alignment Method

Removed from Data
Piston, Tilt, Power, Astigmatism

Metrology Uncertainty

<table>
<thead>
<tr>
<th>Figure</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

RMS: 6.5 nm
PV: 106.8 nm
Units = nm rms
Composite Image of Astigmatism Changes

All Measured Changes were under our metrology uncertainty

<table>
<thead>
<tr>
<th>Metrology Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>Astig</td>
</tr>
</tbody>
</table>

* Measured 4 times
** Measured 2 times
*** Modified Alignment Method

Units = nm rms

106.9

-121.2

nm
Additional Static Results Analyses

- **pC1 results looked a little high for astigmatism (33nm rms vs 45 uncertainty)**
 - This was probably due to an alternate method used to align mirror. The Secondary Mirror Support Struts interfered with our alignment features (projected CGH spots) and therefore we applied an approach of rotating the CGH 180° for alignment and then rotating back for the actual measurement. This added to astigmatism measurement error.

- **Lower right 3 mirrors (pB3, pC3, pB4) showed higher astigmatism levels than other segments**
 - Two potential error sources were looked at.
 - Heating from ISIM electronics unit was shown, through testing, not to be the source of the error.
 - Alignment camera system shown to be a "potential" source of error. Additional testing showed that additional uncertainties due to room lighting, illumination source power, camera & software settings needed to be accounted for in metrology uncertainty budget.
DYNAMIC MEASUREMENT RESULTS
The main goal of the dynamics CoC test is to acquire diagnostic survey data of the OTIS vibrational characteristics at low input levels

- Background with no input stimulus,
- Sine Sweep over 25-50 Hz or 10-50 Hz
- Random input.

The CoC dynamics test uses low level of forcing functions on order of 10 N or less. This force was a dynamic load applied to the OTIS composite structure while the HSI observed a PMSA
Dynamic Data Processing Flow

Processing Flow Chart

(for a single dataset)

1. **Temporal + spatial unwrap to time-series displacement cube**
2. **Zemike decomposition of each frame to produce time-series coefficients**
3. **Undistort from CGH frame to MMR**
4. **4 x 59000 instantaneous phase-shifted interferograms (10 seconds at 5.9KHz)**

Processing Flow Chart

(combining datasets)

1. **Compute the transfer function \(H(\nu) \) to allow comparisons among datasets with different stimulus levels and phase**

 \[
 H(\nu) = \frac{R(\nu)}{F(\nu)} \quad \text{Zemike Coefficient FFT}
 \]
 \[
 F(\nu) = \text{Stimulus FFT}
 \]

 \[
 \text{TF Gain } g(\nu) = |H(\nu)|
 \]
 \[
 \text{TF Phase } \phi(\nu) = \arctan \left(\frac{\text{Im}[H(\nu)]}{\text{Re}[H(\nu)]} \right)
 \]

2. **Organize into groups (~10 datasets) with common stimulus and average**

3. **Compute SNR and coherence with stimulus for each Zemike TF**

 - High-quality data if:
 - pre or post SNR > 2
 - pre or post coherence > 0.75

4. **Limit analysis to high-quality data**
Example of Primary Mirror Response

Rigid Body (Z1-Z3) at 43.0Hz
Transfer Function Gain

Preshake
Nominal
Reproducibility

Rigid Body (Z1-Z3) at 43.0Hz
Transfer Function Phase

Preshake
Nominal
Reproducibility

Postshake
Nominal
Reproducibility

Postshake
Example of Primary Mirror Response

Astigmatism (Z5-Z6) at 43.0Hz
Transfer Function Gain

Astigmatism (Z5-Z6) at 43.0Hz
Transfer Function Phase
Conclusion

- The Center of Curvature test was successful in verifying that no unacceptable changes occurred to the JWST telescope assembly as a result of vibro-acoustic testing.
- The static portion of the test provided excellent results given the enormity of the test.
- A newly developed alignment camera system worked well.
- The dynamics portion of the CoC test successfully measured the opto-mechanical modes of the telescope in low amplitude stimulation to nanometer precision.
- Informed about the health of the OTIS before shipping it to Johnson Space Center (JSC) for optical testing at cryogenic temperature.