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Dual-Layer TPS Material (HEEET)
• Increased mass efficiency of dual-layer 

materials allows mission designers to select 
shallow entry trajectories
- Integrate a top layer with good recession 

performance with a bottom layer with good 
insulation performance

• NASA is maturing a dual-layer 3D-woven TPS 
called HEEET
- Top layer made of densely woven carbon fibers 

(Recession Layer, RL)
- Bottom layer made of carbon and phenolic yarns 

(Insulation Layer, IL)

• Need to develop a sizing process
- Project has developed and validated a one-

dimensional thermal response model based on 
material property and arcjet testing

- Adapt the conventional NASA ablator sizing process 
for application to dual-layer materials

• Weaving width limitation drives need for a 
tiled system
- This talk focuses on acreage material sizing
- Full sizing process has been developed and 

accounts for the gap filler thermal response 
uncertainties 2
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TPS Sizing and Modelling Uncertainties

• TPS thickness is sized to satisfy certain mission-dependent design constraints
- Typically for single-layer materials, the constraint is a not-to-exceed bondline temperature driven 

by adhesive or structure temperature limits

• There are uncertainties associated with models used in TPS sizing process
- Trajectory dispersions
- Uncertainties in aerothermal environments (ground-to-flight traceability)
- Uncertainties in thermal response modelling (properties, models, initial conditions)

• TPS sizing process must include margins that protect against uncertainties in 
modelling
- Margins can be applied to initial conditions, boundary conditions, design constraints or sized 

thickness
- Margins are selected based on testing, uncertainty propagation or engineering judgement
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Conventional NASA Ablator Sizing Process
• Aerothermal environments are computed on the bounding trajectory (typically 

max heat load)
• At each sizing location, TPS thickness is sized along three branches and 

combined in a root-sum-square (RSS) process
- Zero margin: apply nominal environments and size thickness to bondline temperature limit
- Material margin: account for material modelling uncertainties (typically done by reducing 

bondline temperature by a margin informed through Monte Carlo analysis)
- Aerothermal margin: account for uncertainty in aerothermal environments (multiplying factors)

• Other considerations: manufacturing tolerance, factor of safety, recession margin
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Constraint A: 
TBL Limit

Dual-Layer Sizing Nuances

• New constraint at the interface 
between two layers
- HEEET insulation layer should not be 

exposed to flow 
- Arcjet testing scope limited to RL

• RL is sized to be equal to the 
predicted recession; IL is sized to 
bondline temperature limit
- Material margin must be considered for 

both interfaces
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Constraint B: 
Recession

• Current HEEET implementation requires uniform TPS thickness 
for both layers
- Need to find max required thickness for each layer across all body points 

and trajectories
• Max thickness for each layer may occur at different body points 

and trajectories
- Higher ablation leads to lower heat conduction into TPS



Dual-Layer Sizing Nuances

• Sizing RL and IL independently and then stacking max RL thickness from one location 
on max IL thickness from another location is not mass efficient
- Excess RL at some locations can serve as insulation

• More mass efficient to size IL after fixing RL to max sized thickness across all locations
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Dual-Layer Sizing Process

• Proposed sizing process takes advantage of the nonessential portion of 
RL thickness at locations that don’t drive RL sizing
- RL-alone calculation to determine recession for each sizing case; fix RL thickness to 

maximum RSSed recession across all cases (body points, bounding trajectories)
- IL is sized for all sizing cases to bondline temperature limit using the fixed RL 

thickness; Final IL thickness is the maximum thickness across all cases
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Reference Missions

• Venus Lander
- 2010 NASA study VITaL (shallow)
- 45-deg spherecone
- D=3.5m, ME= 2750kg
- VE= 11.3 km/s, ƔE= -9 deg
- Aeroheating simulations by Grant 

Palmer
- 9 sizing cases (9 body points, 1 

trajectory)
- Highlights location impact on sizing

• Saturn Probe
- NF-4 proposal (SPRITE), PI: Amy 

Simon (GSFC), managed by JPL
- 45-deg Spherecone, 1.25m diameter, 

447kg entry mass
- VE= 26.9 km/s, ƔE= -14 deg
- Aeroheating simulations by Dinesh 

Prabhu
- Total of 8 sizing cases (4 body points for 

max heat rate and load trajectories)
- Highlights trajectory impact on sizing
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Sizing for Venus Reference Mission

• Sizing done at 9 locations on the heatshield
- Figure on left: RL and IL sized independently
- Figure on right: RL sized first; then IL sized while for fixed RL thickness

• Taking advantage of the nonessential portion of RL thickness at locations that 
don’t drive RL sizing provides mass benefits  
- 62% reduction in IL thickness, 19% reduction in areal mass
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Sizing for Saturn Reference Mission
• Sizing done at four locations on the heatshield and for two bounding trajectories, Max Heat 

Rate (MHR) and Max Heat Load (MHL)
• Maximum RL thickness occurs at shoulder for max heat rate trajectory
• Maximum IL thickness occurs at stagnation point for max heat load trajectory
• Independent RL and IL sizing would have resulted in 21% increase in IL thickness and 9% 

increase in areal mass
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Summary and Conclusions

• Sizing based on only stagnation point environments in early mission 
phases may not bound required thickness 
- Both for single-layer and dual-layer materials
- The size of impact is likely larger for dual-layer materials if each layer has to be 

constant thickness across the heatshield 
- In applications where off-stagnation environments are suspected to be higher, 

utilizing CFD simulations early in the design is highly recommended 

• Proposed sizing methodology takes advantage of the insulation 
properties of the excess recession layer at locations that don’t drive 
RL thickness

• Allowing the insulation layer to be exposed to flow will provide more 
flexibility in TPS sizing and design
- Requires arcjet testing of insulation layer to establish its max capability
- Sizing process needs to be modified for a different interface constraint (ex. limit 

on combined aerothermal environment experienced by insulation layer)

• Allowing varying TPS thickness across the heatshield will offer mass 
benefits
- Manufacturing challenges should not be underestimated
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Backup
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Complete HEEET Sizing Process (Including Gap Filler and 
Manufacturing Considerations)
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