Abstract:

There is currently a very limited set of engineering polymers that have been demonstrated as viable for use
in 3-D printing. Additive manufacturing of custom components will require a much larger array of
polymers, especially those with physical, thermal, chemical, and mechanical properties that can be tailor-
made. The development of ‘lonic Polyimides’ offers a solution to this shortage by combining the well
understood and widely accepted properties of conventional polyimides, with a new approach to polymer
synthesis. Polyimides and polymeric ionic liquids (poly(ILs)) are at the forefront of advanced polymer
materials, each with their own set of advantages and disadvantages. While it is clear that more types of
polymer materials are needed for fused deposition modeling (FDM) additive manufacturing, there is a
need to explore these classes of materials. The synthesis process developed by the Bara Research Group
at the University of Alabama allows full control over polymer structure, nanostructure, thermal,
electrical, and physical properties making them a prime candidate for use in the additive manufacturing
process. Furthermore, the new process allows us to tailor-make a high strength polymer that can be used
to fabricate filament feedstock instead of pellets for 3D printing.

The primary objective of this proposal is to determine the relationship between molecular structure,
physical properties, and performance of ionic polyimides. Further, we seek to determine their utility as
materials suitable for additive manufacturing of components used in aerospace vehicles, with an
emphasis on characterizing and simulating their thermal behaviors and properties. This proposal
addresses the need for fundamental research on a customizable polymer filament feedstock for 3-D
printing with tailor-made properties potentially making it superior to the commercial blends offered in
industry today. The deliverables for this project are the creation of a database that will detail the
relationships between the molecular structure and physical properties for the ionic polyimide of interest
(e.g. Tg/Tm relative to different ionic polyimide structures). This new database will provide a “road map”
to the development of the first generation of materials and ultimately proof-of-concept.
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Abstract

* There is currently a very limited set of engineering polymers that have
been demonstrated as viable for use in 3-D printing

e Additive manufacturing of custom components will require a much
larger array of polymers, especially those with physical, thermal,
chemical, and mechanical properties that can be tailor-made

* The development of ‘lonic Polyimides’ offers a solution to this
shortage by combining the well understood and widely accepted
properties of conventional polyimides, with a new approach to
polymer synthesis



Abstract cont.

e Polyimides and polymeric ionic liquids (poly(ILs)) are at the forefront
of advanced polymer materials, each with their own set of
advantages and disadvantages

 While it is clear that more types of polymer materials are needed for
fused deposition modeling (FDM) additive manufacturing, there is a
need to explore these classes of materials

* The synthesis process developed by the Bara Research Group at the
University of Alabama allows full control over polymer structure,
nanostructure, thermal, electrical, and physical properties making
them a prime candidate for use in the additive manufacturing process
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lonic Polyimide Synthesis

|IC API ortho xylene
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lonic Polyimide Synthesis

TC API ortho xylene
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lonic Polyimide Synthesis

PMDA API ortho xylene
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lonic Polyimide Synthesis

6FDA API ortho xylene
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lonic Polyimide Synthesis

6FDA I3A para xylene
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lonic Polyimide Synthesis

6FDA I3A meta xylene
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lonic Polyimide Synthesis

IC I3A meta xylene
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Thermal Characterization Techniques —
Differential Scanning Calorimetry (DSC)

DSC is a technique in which the
difference in energy inputs into a
substance and a reference
materials reassured as a function
of temperature while the
substance and reference is
subjected to a controlled-
temperature program

10/10/2017

reference sample
“I7 mm
I,l i
_ /\\ =
\ a1 [ | | |
/ L
/ temperature and

heat flow sensor {

thermal resistance

T,
—

heat flow
heating and cooling

Netzsch, Inc. Thermal Analysis — An Introduction
3-7-2005 .



10/10/2017

Heat Flow -> exothermic

Typical DSC Transitions
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DSC Results — Starting Materials

m Endothermic Transition 1 | Endothermic Transition 2 | Endothermic Transition 3
(J/g) ()/g) (/g) Transition (J/g)

Sample 1
Onset Temperatures (°C)

Sample 2
Onset Temperatures (°C)

Sample 3
Onset Temperatures (°C)

Sample 5
Onset Temperatures (°C)

Sample 6

Onset Temperatures (°C)

Sample 7
Onset Temperatures (°C)

Sample 8
Onset Temperatures (°C)

Sample TC
Onset Temperatures (°C)

Sample 6FDA
Onset Temperatures (°C)

10.34 £ 0.08

229.15+0.33
37.59+4.43

229.15+0.33
356

304.67
12.65+1.27

74.54 £1.02
186.5+1.13

116.79 + 18.83
105.85+1.91

47.75+0.16
490.45 + 232.28

256.81 £ 2.96
9.79+0.26

71.06 £0.16
110.45+6.71

247.56 £0.19

196.45 + 10.68 140.65 +4.31
265.83+0.13 287.85+0.16
61.73+ 21.45
171.95+0.21
153.2 £4.80

232.97 £16.67

218.4 +55.58
282.66 +4.11
122.65+3.18 280.05 +0.92
85.96 £ 0.41 277.37 £0.56

48.08 £ 0.92

374.22 £4.07
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DSC Results — Starting Materials

Sample: Sample 1

DSC File: C:..\3-20-2017Sample 1 Test 1
Size: 11.2000 mg Operator: Jackson
Method: Polyimides Run Date: 20-Mar-2017 11:14
Comment: Sample 1 Test 1 Instrument: DSC Q20 V24.11 Build 124
0
226 .50°C 285.72°C
256.89°C
] 10.39Jig 204.0J/g 143 7 Jig
22968°C
-2
E-; ]
=
E} ]
T
™
S ]
T
-4
| 265.73°C
287.74°C
-6 T T T T T T T T T T T T T T T T T T T T T
0 50 100 150 200 250 300 350 400
Exo Up

Temperature (°C)

Universal WV4.5A TA Instruments

16



DSC Results — Starting Materials

Sample: Sample 2 Test 4 DSC File: EA3-20-20173-28-2017\Sample 2 Test 4
Size: 7.2000 mg Operator. Jackson
Method: Polyimides Run Date: 28-Mar-2017 05:39
Comment: Sample 2 Test 4 Instrument: DSC Q20 V24.11 Build 124
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i 371.34°C
@ 0.0
% 1
E ]
& i 368.40°C
P 48.73JIg
T— 051
-1.07
48 54°C
L e e e e e s S . A
0 50 100 150 200 250 300 350 400
Exo Up Temperature (°C) Universal V4.5A TA Instruments

10/10/2017



DSC Results — Starting Materials

Sample: Sample 3 Test 1
Size: 30.6000 mg
Method: Polyimides
Comment: Sample 3 Test 1

File: C:..\3-20-2017\Sample 3 Test 1
DSC Operator: Jackson

Run Date: 26-Mar-2017 07:32

Instrument: DSC Q20 V24.11 Build 124
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DSC Results — Starting Materials

Sample: Sample 5

Size: 17.3000 mg
Method: Polyimides
Comment: Sample 5 Test 1

0.0

File: C:._\3-20-2017\Sample & Test 1
DSC Operator: Jackson

Run Date: 21-Mar-2017 0745

Instrument: DSC Q20 V24.11 Build 124

] 70.60°C
13.54Jig
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DSC Results — Starting Materials

Sample: Sample 6 DSC File: C2..\3-20-2017\Sample 6 Test 1 dafa
Size: 14.7000 mg Operator: Jackson
Method: Polyimides Run Date: 21-Mar-2017 14:59
Comment: Sample 6 Test 1 Instrument: DSC Q20 V2411 Build 124
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DSC Results — Starting Materials

Sample: Sample 6FDA Test 1 DSC File: C:..\3-20-2017\Sample 6FDA Test 1
Size: 7.1000 mg Operator: Jackson
Method: Polyimides Run Date: 23-Mar-2017 14:42
Comment: Sample 6FDA Test 1 Instrument: DSC Q20 V24.11 Build 124
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DSC Results — Starting Materials

Sample: Sample 7

Size: 14.0000 mg DSC
Method: Polyimides

Comment: Sample 7 Test 1

File: C:._\3-20-2017\Sample 7 Test 1
Operator: Jackson

Run Date: 22-Mar-2017 07:45
Instrument: DSC Q20 V24.11 Build 124
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DSC Results — Starting Materials

Sample: Sample & Test 2
Size: 15.5000 mg

Method: Polyimides
Comment: Sample 8 Test 2

File: C:...\3-20-2017\Sample & Test 2
DSC Operator: Jackson

Run Date: 23-Mar-2017 09:39

Instrument: DSC Q20 V24.11 Build 124
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DSC Results — Starting Materials

Sample: Sample TC Test 1 DSC File: C...\3-20-2017\Sample TC Test 1
Size: 13.6000 mg Operator: Jackson
Method: Polyimides Run Date: 23-Mar-2017 20:14
Comment: Sample TC Test 1 Instrument: DSC Q20 V24,11 Build 124
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DSC Results — Polymeric Materials

-“ - = o
XYL

Endotherm #1 67.62+0.36 244.25+0.12 101.21+6.75 80.14+9.98 166.26 +8.61

GEEIORIINGLE: S  9.35 + 0.63 104.8+4.11 4.90+0.51 50.57 £5.12 21.51+0.61

W s 69.94+0.77  246.3+0.16  108.62+7.85 13258 £+3.80 193.76 £1.15

Endotherm #2 81.70 £ 0.38

GEEIRS R TSGR 78 109.27 £ 6.34

WELG Al &: 788 85.06 + 1.67
Endotherm #3

Heat of Fusion #3

Melting Point #3
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TC-API-M-XYL

139.16 +£3.97

5.86+1.29

151.07 £5.90

321.81+2.46

0.28+0.24

324.17 £4.23

340.96 £ 5.92

0.17+0.08

341.48 £5.90

6FDA-Starting
Mat'L

244.47 +0.05

98.94 +9.80

246.63 +£0.21

BPADA-APT-P-
XYL

129.37 +£5.21

20.62 +8.12

142.32 +5.35
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DSC Results — Polymeric Materials

Sample: GFDA API Ortho XYL

Size: 9.3000 mg
Method: Polyimides

DSC File: C:..\9-7-2017\6FDA AP| Ortho XYL Test 1
Operator: Jackson
Run Date: 11-Sep-2017 12:20

Comment: SFDA API Ortho XYL Test 1 Instrument: DSC Q20 V24,11 Build 124
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DSC Results — Polymeric Materials

Sample: 6FDA T3A Meta XYL DSC File: C:..\9-7-2017\6FDA I3A Meta XYL Test 2
Size: 8.6000 mg Operator: Jackson
Method: Polyimides Run Date: 08-Sep-2017 08:21
Comment: 6FDA T3A Meta XYL Test 2 Instrument: DSC Q20 V24.11 Build 124
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DSC Results — Polymeric Materials

Sample: 6FDA 13A Para XYL

Size: 10.4000 mg

Method: Polyimides

Comment: 6FDA 13A Para XYL Test 1

File: C:._\8-7-201T\6FDA 13A Para XYL Test 1
Operator:. Jackson

Run Date: 08-Sep-2017 11:33

Instrument: DSC Q20 V24.11 Build 124
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DSC Results — Polymeric Materials

Sample: IC APl Ortho XYL

Size: 8.9000 mg DSC
Method: Polyimides

Comment: IC APl Ortho Test 1

File: C2..\3-7-2017C APl Ortho Test 1
Operator: Jackson

Run Date: 14-Sep-2017 07:53
Instrument: DSC Q20 V24.11 Build 124
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DSC Results — Polymeric Materials

Sample: IC I3A Meta XYL

Size: 7.5000 mg

Method: Polyimides

Comment: IC 13A Meta XYL Test 1

0.1

File: C:.\9-7-2017\C I3A Meta XYL Test 1
DSC Operator: Jackson

Run Date: 11-Sep-2017 08:11

Instrument: DSC Q20 V24.11 Build 124

0.0
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DSC Results — Polymeric Materials

Sample: PDMA XPI Ortho XYL DSC File: C:._\9-7-2017\PDMA XPI Ortho Test 1
Size: 11.4000 mg Operator: Jackson
Method: Polyimides Run Date: 13-Sep-2017 07:51
Comment: PDMA XPI Ortho Test 1 Instrument: DSC Q20 V24.11 Build 124
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DSC Results — Polymeric Materials

Sample: TC API Ortho XYL

Size: 7.4000 mg
Method: Polyimides

Comment: TC APl Ortho Test 1

File: C:..\8-7-2017\TC API Ortho Test 1
DsC Operator: Jackson

Run Date: 13-Sep-2017 11:558

Instrument: DSC Q20 V24.11 Build 124
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TG-IR

 Thermogravimetric analysis (TG) follows changes in mass of the
sample as a function of temperature and/or time.

e TG gives characteristic information about the composition of the
measured sample, in particular the amounts of the various
components and their thermal behavior.

* In addition, further measurements are possible such as kinetic
analysis of thermal decomposition.

* The identification of gases released directly from the sample or during
thermal treatment cannot be performed just by thermal analysis, but
coupling a spectroscopic method such as Fourier-Transform-Infrared
(FTIR) spectroscopy is an excellent solution.



TG-IR cont.

* |[R spectroscopy is a classical
technique, which depends upon
the interaction of infrared radiation
with the vibrating dipole moments
of molecules.

e |t gives, with the exception of
homonuclear diatomics and noble
gases, a characteristic spectrum for
each substance.

 TG-FTIR is useful for a wide range
of applications, including:

Outgassing of Materials
Detection of Residues
Analysis of Additives
Analysis of Aging Processes
Competitive Analysis

Characterization of Natural and Raw
Materials

Desorption Behavior
Analysis of Synthesis Processes
Analysis of Decomposition Processes



TG-IR Data
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Figure 1. Infrared Spectrum of Building Block #1
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Figure 2. TGA Profile of Building Block #1
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FTIR Experimental Method

 ATR module with germanium crystal and pressure device
(thunderdome)

e 64 scans
e 4 resolution



Absorbance Units

FTIR Data — Condensed Stage

6FDA I13A Meta XYL
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Absorbance Units

FTIR Data — Condensed Stage

6FDA 13A Para XYL
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FTIR Data — Condensed Stage

IC I3A Meta XYL
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FTIR Data — Condensed Stage

IC API Ortho-XYL
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Absorbance Units

FTIR Data — Condensed Stage

PMDA API Ortho XYL
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Molecular Modeling

* Properties of ionic polyimides not strictly
dependent on bulk structure are calculated using
Gaussian '16:

e Heats of formation

e Heats of solvation

e Heats of reaction (isodesmic series)
e Infrared and Raman spectra

e Charge transfer (conductivity)

e Bulk property estimation using molecular dynamics
e Glass transition temp
e Others...



ADb Initio Calculations

* Heats of formation are calculated using a Gaussian-3 (G3) formulation, which isolates sources of
error in individual methods and derives total energy from the ensemble of energies:

e Equilibrium structure optimized at HF/6-31G(d)
e Zero-point energy calculated using harmonic frequencies scaled for 6-31G(d) basis

e Geometry optimized at MP2/6-31G(d), single-point at MP4/6-31G(d); used in subsequent
single-point calculations:
» Diffuse correction: MP4/6-31+G(d)
* Polarization correction: MP4/6-31G(2df,p)
* Correlation correction: QCISD(T)/6-31G(d)
* Basis correction: “G3Large” basis (3d 2f 2df)++**

* Spin-orbit and valence corrections: empirical

* Total energy equivalent to QCISD(T)(full)/6-311++G(3df 2df 2dp)
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IR & Raman

* Infrared and Raman spectra are calculated from the harmonic

vibrational frequencies using medium-range correlation corrected
density functional theory:

e The Minnesota functionals, Mxx; e.g. M06, M06-2X

e The inclusion of Grimme’s correction into other
1.0 . :
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Solvation

* Heats of solvation are determined using self-consistent reaction field
calculations with medium-range correlation corrected density functional
theory with the SMD method in G16

 The Minnesota functionals, Mxx; e.g. M06, M06-2X
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Charge Transfer

* Conductive/semiconductive properties may be estimated from
monomer polarizabilities and from the calculation of charge transfer in
local ring systems using Symmetry-Adapted Perturbation Theory
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Charge Transfer

* Conductive/semiconductive properties may be estimated from
monomer polarizabilities and from the calculation of charge transfer in
local ring systems using Symmetry-Adapted Perturbation Theory
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Charge Transfer

* Conductive/semiconductive properties may be estimated from
monomer polarizabilities and from the calculation of charge transfer in
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Charge Transfer

* Conductive/semiconductive properties may be estimated from
monomer polarizabilities and from the calculation of charge transfer in
local ring systems using Symmetry-Adapted Perturbation Theory
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Charge

ransfer

* Conductive/semiconductive properties may be estimated from
monomer polarizabilities and from the calculation of charge transfer in
local ring systems using Symmetry-Adapted Perturbation Theory
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Charge Transfer

* Conductive/semiconductive properties may be estimated from
monomer polarizabilities and from the calculation of charge transfer in
local ring systems using Symmetry-Adapted Perturbation Theory
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Charge Transfer

* Conductive/semiconductive properties may be estimated from
monomer polarizabilities and from the calculation of charge transfer in
local ring systems using Symmetry-Adapted Perturbation Theory
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Glass Transition Temperature

* Glass Transition Temperature (T,) has been estimated with reasonably
small errors for OLED polymers from surface polarizabilites of
monomers using quantitative structure-property modelling

7(T,)(r)=—0.286- ‘I’(l‘)‘75.091x10'2~V(r)+9.633><]0‘3-UV(I‘)]% 0 .
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Figure 2.24 Surface-integral model for glass transition temperature using COSMO-optimized structures:
MUE= 15.3, RMSD= 18.7. 1'= 0.779, r'o,=0.491.



Glass Transition Temperature

e A gas solubility study of ionic polyimide oligomers using molecular
dynamics (MD) has recently been published. MD may also been used to

model bulk properties such a T, using either explicit solvation or
continuum solvation.

10/10/2017



Future Work

e Continue synthesizing different variations of these polyimides

e Characterize these polyimides with different thermal characterization
techniques
 DSC
e TG-IR
* FTIR

 Model these polyimides via ab-initio calculations

e Develop filament feedstock materials from these ionic liquids to
additively manufacture these materials for aerospace applications
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Questions?
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