

Additive Manufacturing at NASA/MSFC – Steven Burlingame

Hybrid Manufacturing of Bi-Metallic Liquid Rocket Engine Igniter – Greg Hyatt, Ph.D.

ADDITIVE MANUFACTURING USERS GROUP

2018 AMUG 30th Annual Education and Training Conference

St. Louis Union Station St. Louis, Missouri April 8 – 12, 2018 National Aeronautics and Space Administration Marshall Space Flight Center

Additive Manufacturing at NASA/MSFC Transforming Design & Manufacturing

Steve Burlingame

Advanced Manufacturing Assistant Chief NASA / MSFC

Agenda

Our History in AM Our AM Efforts

- Manufacturing "In Space"
- Manufacturing "For Space"
- AM Developments and Goals
 Hybrid AM Developmental Efforts (Collaboration with DMG MORI – Dr. Greg Hyatt)

Additive Manufacturing History at MSFC

- Extensive experience in Additive Mfg. (AM) design & process development
- Experimented with over 30 AM technologies/systems in the past 26 years
- Capital investments in Powder Bed Fusion hardware, engineering, facilities and testing (\$56M in the past 4 years).
- Have the largest commercially available PBF system in Metallic and the largest commercially available polymer AM system

Additive Manufacturing at MSFC

For-Space

Objectives: To develop, demonstrate and evolve Additive Manufacturing as a key component of an integrated engineering solution and risk reduction for affordable manufacturing for space transportation systems, and manufacturing in reduced-gravity environments.

In-Space

AM Manufacturing "IN-Space"

Why is it important?

AM is a critical technology for deep space explorations, part replacements, tools and habitats.

3D Print Flight Unit with the MSG Engineering Unit in the background

3D Print Technology Demonstration

- First manufacturing capability in Space (International Space Station)
- Presently have two 3D printers on Space Station and two more are in works. One of which is a 3D printer and recycler (all in one).

AM Manufacturing "For Space"

NASA MSFC is looking to Additive Mfg. and innovative designs to reduce manufacturing cost and schedule and help affordability of access to Space.

Major Efforts Include:

- Implementation of AM components for next generation of rocket engines
- Characterization of applicable alloys in AM
- Rationales for flight certification for NASA and our vendors
- Risk reduction and data share in pursue of smart vendor base
- Development of new alloys for AM processes (i.e. copper)
- Next generation AM technologies (Additive/Subtractive System)

MSFC AM Machines: Polymers

MSFC AM Machines: Metals

Significant Effort in AM Characterization

MAPTIS

Characterization

Process Parameters

Dimensional & NDE Inspections

Microstructure

Heat Treatment

What is MSFC's Role in AM ?

Image Credit: Aerojet Rocketdyne

- Although SLM/Powder Bed Fusion satisfies a lot of AM manufacturing needs, it has limitations
- Some limitations: build envelope size, surface finish, speed, component design, multi-materials
 - Some of these issues have been solved and demonstrated by the following collaboration between NASA and DMG MORI Utilizing DMG MORI LT4300 system

Bi-metallic AM Development Fabricated Two Liquid Rocket Engine Igniters

NASA

Successful Test Results

The second additively built bi-metallic igniter, first of its kind was installed and test fired successfully 33 times at NASA MSFC propulsion test facility in July 2017. These were low-pressure, hot-fire component testing to simulate the cryogenic tank-head operation of the igniter during engine start-up.

Backup Charts

DMG MORI Hybrid System (LT4300)

- Integrated machining/grinding during build
- Single build from multiple alloys
- Graded alloys
- Build on existing substrates/repair
- High deposition rates
- Lower cost metal powder
- Large build volume and scalability

NASA

Optical microscopy images of bond area

Videos

33 Hot-fire Test (July12, 2017) Infrared image of igniter exhaust flame

Large Scale Composites Mfg.

Large Scale Composites Mfg.

Payload Adapter for Space Launch System

Digital Engineering Suite

Manufacturing Simulations

- Facility Verification
- •Kinematic Analysis
- •Interference Analysis
- •Off-line Programming
- •Assembly/Disassembly Verification
- Model-based Instructions

and real from the	COMPANY AND A COMPANY					
COPUMOL, Ben	ING KOHADISS-ODICEPEA					
ext such in	Pater During		199. 1	ertal Constitute		
0+1+1 E	CBMDA DOME ASSY, AFT C	OMMON BULK	HEAD			
NOTES						
THE AREA WHERE T	THIS WORK IS BEING DONE IS DE RE OR WHO WILL BE WORKING	SIGNATED AS	A FOD AW	ARENESS ZONE TRANED IN FOO	AWARENES	WHO CO
PERSONNEL WHO C AND USE UNIT FREE	COME IN CONTACT WITH THE HA	REWARE WILL	WEARLINT	FREE COTTON	GLOVES	10.0
FRENCH THE BOTT	TOM SURFACE OF THE VIRING IS			-		
The following links are	to drawings required in execution of					
CEMDA AFT Dome D	RAWING 97M40056 REV E	Conte		20(4)481	12. 18	Link.
CEMIDA AFTY RING	DRAWING 97M40057 REV C		and the	The state of the state	12	LT1
DOME ASSEMBLY	AFT COMMON BLUGHEAD BITM		21	14	-150	
			and a second	MAT-		391
Compart and Classes	090 CLOSE Y-Ring Fixtur		- 12	the second second		
Mouth instact all	electrical connections			1	- Dies	
Check that any cost	to boost an closed so as to remain					
A March and all shows	concerned are covered by as to remain	1 PV 1	1			
 verity statility of course 	s are engaged		1	A		-
5. Yeary 1-ang is cove	red to protect nom crips		N.		0	
s verry nong mgs at	re removed from halo clamp			-		
 Perform protogram 	metry to capture pre / post trim don					
Ar Los	Display			1000.000	front lines	100.000
	Conception of Streets (1994)				Ville	12202
Brodan	Devation of Dome to Posture /				\$7.08	
Beaty	Hanarity of Come to Future (0.110	
6 Outine Halo clamp	teet for visual queue of ring movem	ert.				
	Davier					
Buydl Type	these fitte		% Congleta/	Index Line D	Ligidate Taxe	144
			ALC: NAME OF ALC: NO			

Mfg Planning and Execution

- •Paperless delivery of work instructions
- •Controls Build of Engineering Released Data
- Process Planning, Execution, and Quality
- •As-Built BOM and Data Package

Structured Light Scanning

• Drive Mfg Processes

•As-Built CAD Parts

- •As-Built CAD Assemblies
- •Virtual Fit Checks
- •Mfg Tooling Setup/Verification
- Reverse Engineering
- •Quality Inspection and Acceptance
- •Facility/Equip Modeling (MAF)

Additive Manufacturing

- Technologies
- •SLM
- •EBM
- •FDM
- Materials
- •Titanium
- •Aluminum
- Inconel
- Plastic
- •Uses
- Rapid Prototypes
- •Complex Part Mfg
- •In-space Manufacturing

/22/2018

Four Technology Areas – One Solution

Additive Manufacturing at NASA/MSFC – Steven Burlingame

Hybrid Manufacturing of Bi-Metallic Liquid Rocket Engine Igniter – Greg Hyatt, Ph.D.

ADDITIVE MANUFACTURING USERS GROUP

2018 AMUG 30th Annual Education and Training Conference

St. Louis Union Station St. Louis, Missouri April 8 – 12, 2018